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Abstract

The post-LEP eTe™ colliders proposed for the precise high-energy physics will pro-
vide a set of ground-breaking measurements of a large number of new-physics sensitive
electroweak pseudo-observables (EWPOs), with improvement by one to two orders
of magnitude in experimental precision. The full exploitation of the significantly in-
creased experimental precision at the Z boson resonance region for EWPOs (effective
weak mixing angles, the Z-boson partial and total decay widths, the branching ratios,
the hadronic cross section), necessitates Standard Model (SM) predictions accurate at
a level commensurate with this precision, demanding leap-jumps in the precision of
higher-order perturbation calculation represented by multi-scale multi-loop Feynman
integrals. We discuss different techniques used for the evaluation of these Feynman
integrals beyond the one-loop level, focusing on Mellin-Barnes representations, sec-
tor decomposition and differential equations. In this respect, we developed auxiliary
programs and procedures to automate calculations with sector decomposition and dif-
ferential equation methods. These methods have been used further to calculate SM
three-loop W and Z boson self-energies and the W /{y, vertex of the order O(a?ay).
These corrections are missed so far and are needed for a full exploration of EWPOs,
in particular for the determination of the p parameter and the muon decay Ar param-
eter. We also show that with present tools and methods, it is possible to calculate
numerically with sufficient precision the most difficult vertex integrals in Minkowskian
kinematics, required by future collider physics analysis and needed for the evaluation

of three-loop SM corrections to the Z boson decays.
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Streszczenie

Proponowane nowe zderzacze ete” po erze LEP-u w ramach precyzyjnej fizyki
wysokich energii dostarcza szeregu przetomowych pomiaréow dla duzej liczby czutych
na nowa fizyke elektrostabych pseudoobserwabli (EWPOs), gdzie spodziewana poprawa
eksperymentalnej precyzji bedzie od jednego do dwéch rzedow wielkosci. Pelne wyko-
rzystanie znacznie zwigkszonej precyzji eksperymentalnej w obszarze rezonansu bozonu
Z dla EWPOs (efektywne katy stabego mieszania, catkowite i czeSciowe szerokosci roz-
padu bozonu Z, stosunki rozgatezien i hadronowy przekrdj czynny) bedzie wymagaé
doktadnosci przewidywari Modelu Standardowego (SM) na poziomie odpowiadajacym
tej precyzji, w konsekwencji potrzebna bedzie skokowa poprawa w precyzji obliczen
perturbacyjnych wyzszych rzedéw reprezentowanych przez wieloskalowe, wielopetlowe
catki Feynmana. Omawiamy rézne techniki stosowane do obliczen tych catek, koncen-
trujac sie na reprezentacjach Mellina-Barnesa, rozktadzie sektorowym i réwnaniach
rozniczkowych. W tym zakresie opracowaliSmy programy pomocnicze i procedury
automatyzujace obliczenia z wykorzystaniem rozkiladu na sektory i metody réwnan
rozniczkowych. Metody te zostaly nastepnie wykorzystane do obliczenia energii wtas-
nych bozonéw W i Z oraz wierzchotka Wiy, w trzech petlach dla Modelu Standar-
dowego rzedu O(a’a;). Poprawki te sg jak dotad zaniedbywane, jednak sa potrzebne do
pelnej eksploracji dla EWPOs, w szczegélnosci do okreslenia parametru p i parametru
rozpadu mionu Ar. Pokazujemy réwniez, ze przy uzyciu obecnych narzedzi i metod
mozliwe jest numeryczne obliczenie najtrudniejszych catek wierzchotkowych w kine-
matyce Minkowskiego, catlek wymaganych w planowanych analizach fizyki zderzaczy i

potrzebnych do wyznaczenia poprawek SM w trzech petlach dla rozpadéw bozonu Z.
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1 Introduction

1.1 Importance of precision in the past

Increasing precision of measurements and theoretical calculations allows us to change
paradigms and lead to discoveries of the fundamental laws of physics.

The first example comes with Tycho de Brahe’s data, obtained with the naked eye,
which was accurate down to the Moon’s 1/30"" angular size [1]. The data gathered
and preserved in the form of the Rudolphine tables led Johannes Kepler to derive
laws of planetary motion, and later, Sir Isaac Newton deduced the law of gravity.
So experimental data were instrumental in getting new concepts. Experimental data
were also crucial for the interpretation of the Albert Michelson and Edward Morley
study [2] in which it was established by precise measurements using an interferometer
that the speed of light is constant, independent of the reference frame [3]. It is said
to be the most famous failed experiment [4] whose aim was to validate the existence
of ether. Whether this experimental result influenced or even was known to Einstein
and triggered him towards the theory of special relativity is not clear [4]. The opposite
happened in 1919 when the experimental results of eclipse measurements by Sir Arthur
Eddington proved that the General Theory of Relativity was the right model. Speaking
about huge steps in the history of physics, the accurate measurement of black-body
radiation led Max Planck to introduce quantum fields.

Finally, from the 21%¢ century precision physics perspective, several breakthroughs
should be noticed:

(i) 1998-2002. Discovery of the neutrino masses by Super-Kamiokande and SNO
Collaborations [5,6].

(ii) 2012. The Higgs boson discovery at the LHC [7-9].
(iii) 2016. Detection of gravitational waves [10] where, putting it pictorially, preci-

sion is such that the shortening of the 4-kilometre interferometer arm reaches

dimensions of single atoms [11].

(iv) 2018. Watt balance measurement of the Planck constant and new quantum
definition of the kilogram [12]. Now the Planck constant is defined as exact and

kilogram is determined with 8-digit accuracy [13].

(v) 2020. Low energy electromagnetic fine-structure constant measurement which,
after 22 years of measurements, is o' = 137.035 999 139(31) (81 parts per
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trillion) [14]. The experiment is still developing. To improve the accuracy of da,
(electron anomalous magnetic moment) by an order of magnitude in the coming
years, it will be at the sensitivity level of (¢ — 2), (muon anomalous magnetic
moment). Measurement of (g —2). or (¢ —2), is a window into the exotic Beyond
Standard Models (BSM) with light and weakly coupled particles, below the TeV
scale, as estimated in [14] for compositeness models. The systems with muons

can already be sensitive to the TeV BSM physics.

(vi) 2021. ‘Frequency Ratio Measurements with 18-digit Accuracy Using a Network
of Optical Clocks’ [15], which means that the present error of one-second mea-
surement is at the scale of the age of the Universe (14 billion years is about
4 - 107 s). Such precision can have many consequences, e.g. for communication
and navigation. Amazingly, it can help detect low-frequency gravitational waves
by measuring Doppler effects from satellites sent to Uranus and Neptune [16].

In passing, two remarks are in order. The history and examples above show that
theories can trigger breakthroughs in experiments and vice versa. Furthermore, let us
also note that new steps in accurate measurements of physical units and observables
were decisive in the past and will remain crucial for developments of new technologies
(e.g. GPS and time measurement) and affect civilization progress, influencing trade,
business, economy, law, social life and politics [17]. Fwvery leap in precision generally
leads to new scientific and technological advances. Needless to say, the high-energy
particle physics studies also have socioeconomic impacts [18,19].

This thesis is devoted to some aspects of theoretical precision studies required by
accurate measurements at future colliders, aiming to discover new effects by finding

new particles or interactions.

1.2 Importance of precision in particle physics

For a while, particle physics was a part of the quest for an understanding of atoms and
nuclei and their quantum nature. After several decades, it emerged as a well-defined
subfield of physics. The way from the beginnings of particle physics in the 1890s (Perrin
- observation that cathode rays are the flow of negatively charged particles; Rontgen -
discovery of X-rays; Becquerel - evidence for spontaneous radioactivity effect; Thomson
- discovery of the electron, the first elementary particle) to the precise confirmation of
the Standard Model in the 1990s (LEP and SLAC experiments) is a fantastic illustra-

tion of how science advances with new experimental tools and hard-won data, wrong



turns and conservative dogma transformed into brilliant insights.

From a perspective of precision experiments, maybe the first worth mentioning
experimental result is by Frisch and Stern, who discovered in 1933 the anomalous mag-
netic moment of the proton [20]. Only after more than three decades this phenomenon
could be explained by finding the short-distance structure of nucleons as quark and
gluon partons by the MIT-SLAC experiments [21,22], which fitted to already intro-
duced at this time theoretical concepts. But the first real push in development of
precision theoretical calculations which are the main interest of this thesis was trig-
gered by the issue of infinities and radiative corrections in the 1930s which appeared
in electromagnetic studies of the Dirac’s hole theory and vacuum polarization (mostly
self-energy (SE) problem and works by Jordan, Dirac, Heisenberg, Weisskopf, Furry
and others [23]). Yet in 1946 the problem of (logarithmic type) infinities seemed to be
not surpassable!. For the first time, the role of radiative corrections in precise mea-
surements was evident in nonrelativistic calculation by Bethe of the self-energy of a
bound electron [24]. The calculation agreed with the fine-structure measurement of
hydrogen by Lamb and Retherford [25] (the 2s — 2p shift in the hydrogen energy level).
A breakthrough came during the Shelter Island and Pocono conferences in 1948 [23]
and new calculations by Schwinger and ideas by Feynman (formalized by Dyson) for
what we call now the calculation of Feynman diagrams and integrals.

The idea was systematically treated by Dyson in his two seminal papers [26, 27]
followed by Feynman himself [28,29] (that is why initially it was called the Feynman-
Dyson approach to QED) [30]. Quantum electrodynamics was achieved as a renor-
malizable theory in which infinities were systematically treated. Feynman, Schwinger
and Tomonaga shared the Nobel Prize in 1965 for "their fundamental work in quan-
tum electrodynamics, with deep-ploughing consequences for the physics of elementary
particles".

That quantum perturbative QED effects are significant was further confirmed with
a determination of the magnetic moment of charged leptons i = gﬁg , which, as
predicted by the Dirac relativistic equation, gives the g-factor ¢ = 2 while the measured
value differed by a small amount (a = 22 = 0.00116). Due to this deviation from the
theoretical prediction by Dirac, from now on, we are talking about the anomalous
magnetic moments of electrons and muons.

Due to the photonic quantum one-loop vertex correction, the anomalous magnetic

1 As noticed in [23], the pessimistic point of view on the theory was reflected in Cambridge concer-
ence talks titled "Problems of Elementary-Particle Physics" (Bohr), "Difficulties of Field Theories and

of Field Quantization" (Pauli), "Difficulties in Quantum Electrodynamics" (Dirac).



moment of the electron is g = 2(1 + 3%) [31].

Till today, the anomalous magnetic moment of the muon (a,) is one of the best
measured physical quantity, the present worldwide value is (average of FNAL and BNL
results [32])

a,(EXP) = 116 592 059(22) x 10~ (0.19 ppm). (1.1)
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Figure 1: The Muon (g-2) theoretical predictions for the Standard Model and values
from different experiments. Figures taken from [33] and [34], with copyright agreement

from Alex Keshavarzi.

Until recently, theoretical prediction within the Standard Model differed from (1.1)
and defined a longstanding problem [35]. The difference, a,(EXP) — a,(SM) = (251 £
59) x 1071, had a significance of 4.2 o, see Standard Model prediction (2020) in
Fig. 1. This discrepancy could represent a potential hint of new physics in particle
physics and it was calling for improving the theoretical prediction given planned further
improvements for the Fermilab measurement [32]. Lately, there has been great progress
in lattice QCD calculations, bringing the theoretical prediction, blue highlight in Fig. 1,
into agreement with the experimental average marked with the red highlight on the
right plot of Fig. 1.

While a,, is sensitive to quantum corrections, it must be computed precisely, which
is a highly nontrivial exercise [35]. The evaluation involves QED contributions, cur-
rently known up to O(a®), which corresponds to a precision of 0.001 ppm. Then
there are electroweak contributions, currently known with an accuracy of 0.01 ppm.
The dominant uncertainties originate from non-perturbative contributions, namely the
hadronic vacuum polarisation and the hadronic light-by-light, with a precision of 0.34

ppm and 0.15 ppm, respectively.



Another important quantum effect in precision studies of particle physics, which
finally took its place within SM, is due to Veltman [36] who found the quadratic mass
effects of fermion doublets in the 1-loop electro-weak self-energy radiative corrections,
for obvious reasons especially sensitive to the top quark mass, Ap ~ M? /M3, where Ap
is connected with W and Z boson self-energy corrections at zero momentum transfer as
in (1.4), see also section 5.4. This effect, when confronted with other precise theoretical
predictions for SM particles (notable gauge bosons), made it possible to indirectly de-
termine the top quark mass at Tevatron (CDF and DO collaborations) [37,38]. Milder,
logarithmic in mass relation Ap ~ In M7 /M3, was also identified by Veltman (the
so-called screening effect) [39]). Beyond self-energy corrections, the first non-trivial
study of electroweak (EW) loop effects was the calculation of the complete one-loop
corrections to the Z decay parameters (vertex corrections) in [40-43]. Through the
years of LEP and SLC studies, the effects of EW corrections became visible in global
fits of the SM parameters [44-47]. Global fits to EW precision measurements allowed
to predict the mass of the top quark and the Higgs boson prior to their discoveries at
Tevatron in 1995 [38] and at the LHC in 2012 [7], leading to the upper limits on the
Higgs boson mass.

Today, radiative corrections have become essential in precise renormalizable Stan-
dard Model tests. We will give now simple arguments for their necessity, see also
section 2.3.

To show the importance of the radiative corrections, let us consider the following
example of W and Z boson mass determination, discussion according to [48]. Expres-
sions and notation below will appear in the next chapters (first, see section 2.2), though
they represent the student’s level of knowledge on particle physics, see e.g. [49].

The W and Z boson mass in terms of a(My), G, and sin? O1exr are derived from

sin O =1 — M2, /M2, G, = ra 14 Ar 1.2
w w/Mj " ﬁsin29WM§V( ) (1.2)
.y cos? Oy e
sin® O e (Mz) = [ 1+ S0y Ap | sin” Oy, (1.3)
27 Ww 2
Ap = 0 _Er (0, 3 M V26, . M, =17340.4 GeV, (1.4)

M2 a2, 0 F 16 72

where 2V W(ZZ)(()) denotes the transverse part of the W (Z) boson self-energy defined
in section 3.1.2, see also Appendix A.1. For basic definitions of the Weinberg angle 0y,
see discussion in section 2.3. The Fermi constant G,, Ar and Ap are important parts

of the muon decay parametrization. The iterative solution with experimental input
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sin? Oy (Mz) = (1 — u/a;)/4 = 0.23148 is
sin? Oy, = 0.22426, (1.5)

which results in W and Z boson masses

My? =80.379 £ 0.012 GeV, (1.6)
MZ7® =91.1876 £ 0.0021 GeV, (1.7)
1— M—I%V = 0.22263. (1.8)
M3
Using basic relations
A M,
szm; Ag = \/g(éu ; MZ:COS;VW, (1.9)

and including photon vacuum polarization correction a~!(My) = 128.953 £ 0.016, for
the W, Z mass we then get

Mihe = 81.1636 + 0.0346 GeV; MY = 92.1484 + 0.0264 GeV.

This means the deviation between the experimental and theoretical results for W and

Z boson masses, while their errors are added in quadrature, is
W :230 and Z: 360. (1.10)

While the result is scheme dependent, this example very well illustrates the sensi-
tivity of the observables to the radiative corrections and the need for the subleading
SM corrections, including vertex and box diagrams in the first place, without which

EWPOs would not fit experimental data, in general.

1.3 Needs for precision at future colliders: The Tera-Z case

With the discovery of the Higgs boson, the set of particles and interactions described
by the SM of particle physics is complete. So far, we see no compelling deviations
from this theory. Yet, the Higgs interactions are largely unknown or not precisely
known. Additionally, several fundamental experimental facts remain completely unex-
plained, such as the matter-antimatter asymmetry, the evidence for dark matter, and
the non-zero neutrino masses. Quite a few theoretical issues also point towards BSM
physics. The list starts with gravity, which at the moment is outside of the SM — we

have no theory of unification of all four basic interactions. Furthermore, we have no
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understanding of the observed small neutrino masses, which may be described, but
not explained by the so-called seesaw models. Further issues are the hierarchy prob-
lem (maybe explainable by a supersymmetric extension of the SM), parity restoration
(maybe explainable by a so-called left-right symmetric extension of the SM), or the no-
tion of extra space-time dimensions and supergravity. For a deepened understanding,
we need a better experimental basis. Besides astrophysics with several recent pub-
licly visible progresses, there are very good prospects coming from the planned new

generation of particle accelerators.

The European particle physics community met in Granada, Spain in May 2019 for
an open discussion on the roadmap for the future of the discipline. Though formal
decisions by the CERN Council will only be taken after the next ESPPU symposium,
which took place in Venice in June 2025 [50], a consensus is emerging that (see talks
by F. Gianotti, M. Benedikt and others at [50])

e The next machine ought to be an ete™ collider;

o Europe should proceed with a flagship collider programme at CERN;

o A vigorous R&D programme must continue to pave the way towards the highest

possible centre-of-mass energy with high luminosities.

Regarding the lepton colliders, a few plans are considered. First, there are circular
eTe colliders, LEP3 [51], FCC-ee [52], both planned location at CERN, and CEPC [53,
54] in China. Apart from that, two linear lepton colliders are also considered: Compact
Linear Collider (CLIC) [55] and International Linear Collider (ILC) [56]. CLIC would
be built at CERN near Geneva and could reach an energy of up to 3 TeV. ILC would
operate in Japan with energies up to 1 TeV, though recently proponents of the linear
collider option advocate for a linear collider at CERN, see talk by S. Stapnes [50].
The comparison of capabilities of the future lepton colliders is presented in Fig. 2. The
colliders would work at a few stages with different energies corresponding to the masses
of the desired particles. Integrated luminosity would depend strongly on energies and
activity time, but generally, it will reach the level of ab™!. Luminosity goals for future

ete™ colliders are summarized in Fig. 3.
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Figure 2: Summary of prospected timelines of the R&D and physics operations for the

proposed future colliders. Taken from [57]. More options are discussed within the text.
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Figure 3: Expected luminosities at the future lepton colliders as a function of centre-
of-mass energy +/s. Plot taken from [58].

Matching the experimental precision with theoretical predictions is one of the prior-
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ities for a CERN FCC-ee program, and this requirement has been listed as a strategic,
high-priority item in the FCC-ee CDR [52]. The huge envisaged statistics of 5 x 102
Z decays at the Tera-Z FCC-ee stage - which is about 6 orders of magnitude better
than in the wealthy LEP era - allows to study rare decays and processes with a pre-
cision which goes even beyond that considered in dedicated low-energy projects like B
factories [59]. The broad potential FCC-ee physics programme is shown in Fig. 4. All
the proposed future lepton colliders set stringent demands on the theory predictions.
However, the FCC-ee project is the most ambitious, broad-reaching and demanding
project for ground tests of the SM and for searches for feebly new effects in the Z

resonance region [52,60,61].

FCC-ee Physics Runs Ordered by Energy

=——CDR baseline runs (41Ps)
—— Additional opportunities

= Total
z ww ZH tt integrated
o1 40 125 40 30 19.2 5 10.8 0.4 2.7 luminosity
e It )| It . (ab™)
T T T T T T Energy
40 60 88 91.2 94 125 157.5 - 1625 217 240 340 .. 350 365 (GeV)
Z lineshape W mass and width
Qcb QCD o ) top EW couplings
precision flavour \T"!?L‘-"-"V‘ N, Higgs mass Higgs couplings Miop Higgs VBF production Physics
studies rare decays fukawa as o (F and Higgs couplings improved)  highlights
dark sector flavour (e.g. Veb)
oo 0109 o@x109 0(2x109) ¥ events

(4 1Ps)

—

T T T EW sector

to new physics
by probing
SM predictions

T T T Higgs sector

! !

sensitivity to Higgs self-coupling via quantum effects

indirect sensitivity

Figure 4: The outline of the potential physics programme for FCC in its ete™ stage.
The sequence is ordered by increasing centre-of-mass energy, not chronologically. The
parts marked with red belong to the minimal, 15-year running programme, whereas

blue indicates other considered stages. Figure taken from [62].

Lepton-flavour violating (LFV) Z decays, rare and LE'V 7 decays, searches for heavy
neutral leptons, and rare b-hadron decays have all been explored in [63] as benchmark

or flagship searches, illustrative of the unique potential of a high-luminosity Z factory.
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Observable Theoretical error EXP now FCC-ee CEPC GigaZ

Ty [MeV] 0.4 2.3 0.1 05 08

sin? 0! x 10° 43 160 6 23 10

Table 1: Two representative EWPOs, Z boson width ['; and effective weak mixing
angle sin? @'. The prospective precision measurements at the future lepton colliders
(statistical errors) are presented. The values of theoretical errors are taken from [64].
The entry “EXP now” gives the present experimental precision, as known since LEP-

1 [45]. The CLIC project is omitted here because no Z resonance program is foreseen.

The present discrepancy between the foreseen experimental and the actual theo-
retical capabilities is a serious problem, because it is bigger than the accuracy of the
planned experimental setups. The fact that theory is at the moment much behind
the experimental expectations for the FCC-ee can be seen clearly from Tab. 1 where
two representative I'; and sin? 64 electroweak pseudo-observables (EWPOs) are given.
The estimated theoretical uncertainties from missing higher orders QCD and EW cor-
rections in Tab. 1 have been discussed originally in [64]. The prospects of precision
electroweak measurements at the FCC-ee are at the level of 100 keV for both the Z bo-
son mass and width, and 6 x 1076 for sin6’;. These are some flagship SM observables,
sensitive also to the BSM physics. The Z boson decay width was calculated for LEP
within the SM with 0.5 MeV accuracy. This was good enough because the final LEP
experimental precision was 2.3 MeV. Compared to that, the FCC-ee project demands
that the theoretical accuracy be five times better, namely 0.1 MeV. At the FCC Week
2018, it was announced that I'; can be measured even with four times better accuracy,
namely 0.025 MeV = 25 keV. So, on the experimental side, the expectations can still
get even sharper. To be able to fully leverage the potential of such an intensity frontier
lepton collider, a leap-jump in the precision and accuracy of theoretical computations
in the Standard Model is indispensable.

The theoretical calculations in the thesis are intended to bring us closer to satisfying
the experimental requirements, in particular for the Tera-Z physics.

At LEP, it was a standard analysis procedure that QED effects were extracted such
that only the first and higher-order EW effects remained in the electroweak pseudo-
observables [65]. The next mandatory corrections needed for EWPOs at FCC-ee are
given in Tab. 2. Into the list of EWPOs go partial decay widths and coupling constants

of Z boson and W boson, forward-backward and polarization asymmetries, peak cross
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Observable aa?  aad  a’a, o | Total
Le,r [MeV] 0.008 0.001 0.010 0.013 | 0.018
I, [MeV] 0.008 0.001 0.008 0.011 | 0.016
[ue [MeV] 0.025 0.004 0.08 0.07 | 0.11
[as [MeV] 0.016 0.003 0.06 0.05 | 0.08
T, [MeV] 011 002 013 006 | 0.18
T, [MeV] 0.23 0035 021 020 | 04
Re [1079] 25 04 36 39 | 6
R. [10-] 16 03 34 30| 5
Ry [10-] 55 09 64 37 | 10
o0 . Iph] 02 003 42 37 | 6
sin0: [10°°] | — 03 3.0 31 | 43
sin20% [10°°] | 0.7 04 43 32 | 53

Table 2: Estimated values of the leading unknown higher-order corrections for various

EWPOs. Table taken from [64].

sections at the Z resonance position, effective electroweak mixing angles [45], and addi-
tional EWPOs in the WW, ZH and tt production processes. As EWPOs encapsulate
experimental data after the extraction of intricate QED and QCD effects, they provide
a convenient bridge between real data and the theoretical predictions of the Standard
Model and beyond. This is why EWPOs were and remain key objects in precision tests
of the SM, in a quest for unveiling new physics phenomena in particle physics.

One of the main aims of the thesis is the calculation of the O(c*ay) order contribu-
tions needed for the muon Ar parameter (G, /My ) and Z decay EWPOs observables.
As you can see from the Tab. 2, this contribution for many observables is the biggest
of the unknown, and certainly simpler than the o® corrections (pure EW). Physically,
O(aay) accounts for the 3-loop mized QCD-EW contributions with one gluon and
massive SM particles: EW bosons and top quark (remaining quarks and leptons are
treated as massless).

As one can see in Tab. 1, the estimated present-day theory errors for unknown

higher-order corrections for future colliders, apart from FCC-ee, are already at the
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level of the experimental expectations. However, also here, the situation is not too
comfortable because the theoretical uncertainties can differ substantially from these
educated guesses after real calculations are completed. As rough estimates, educated
guesses are no robust quantitative predictions, and must be treated with a grain of
salt. For instance, after completion of the two-loop SM corrections to I'z in [66], it
turned out that the bosonic 2-loop SM corrections are 3 to 5 times larger (depending
on the renormalization scheme and on input parameters) than expected before. To
be on the safe side, certainly also for ILC/GigaZ and CEPC, there is a need for more

precise theoretical calculations, probably by a factor of 3 to 5.

Today’s state-of-the-art accuracy is at the accuracy level of complete electroweak
two-loop corrections, and the needs of a future collider are at the next order, three-
loop level. The difference in numbers in Tab. 1 seems to be harmless, but in fact,
lowering theoretical uncertainties from 0.4 MeV to 0.1 MeV for I', for instance, makes
us explore a different world. To get this level of accuracy, not only do we have to
perform higher-order loop calculations — for EWPOs at the Z resonance, we have to
go to the 3-loop electroweak and 4-loop QCD levels — but also we have to understand
several unexplored issues connected with Z boson resonance physics and with the
interplay of QED/QCD effects. Both for the correct Laurent series expansion around
the Z-peak with background resonances and for the QED deconvolution (see section
2.3), much more refined conceptual work must be done. Moreover, the determination
of input parameters like running QED and QCD coupling constants must improve
considerably [48,67,68]. Still, there are also some remaining calculations which should
be done at the 2-loop level. For instance, apart from computing all the higher-order
QCD and EW corrections included for the Z boson in [64], also calculations of the

same order are needed for the W boson case.

The very broad program of the FCC will improve the precision of the SM parame-
ters’ determination significantly. The example of error shrinking can be seen in Fig 5,
taken from [69]. The improvements for EWPOs are typically at the level of one or
two orders of magnitude [70]. This allows for very precise tests of SM and studies of

indirect BSM effects in various SM extensions or effective theories [64,71].

One of the crucial measurements for the FCC-ee project with centre-of-mass energy
Vs = 125 GeV, showing the ultimate sensitivity of the project, is a measurement of
the Higgs boson coupling modifier to electrons k., see Fig. 6. Its value is predicted by
the Higgs mechanism to be smaller than the Higgs boson to muon coupling by a factor

of the electron to muon mass ratio.

12



302 The European Physical Journal Special Topics

< e
8 o
~80.38—
> C
£ u
80.371—
80.36|—
80.35 —— FCC-ee (Z pole)
C —— FCC-ee (Direct)
- ---- LHC (Future)
80.34 < LHC (Now)
C Z pole (now) + mj,
- —— Standard Model
8083 |l
170 172 174 176 178
Mygp (GeV)

Figure 5: A 1-0 confidence level contours of the SM fits to the electroweak precision
measurements, the FCC-ee in comparison to direct measurements of My, and M;. Plot
taken from [69].
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Figure 6: Current and future LHC and FCC experimental precision of the Higgs boson
coupling modifier to electrons k., demonstrates how much the precision of H —e™ — e~

coupling will improve. Plot taken from [72].

There are also other projects beyond ete™ of future colliders, such as the muon
collider (see a talk by D. Schulte at [50]), photon collider [73] or very promising for the
extremely high energies - Wakefield plasma colliders [74]. All of these machines can
lead to direct or indirect signals of BSM physics, and both cases rely heavily on the

precision of SM calculations and predictions, the subject of the thesis.
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2 The Standard Model and electroweak observables

The Standard Model (SM) of elementary particles is a fundamental theory in particle
physics. It comprises three of the four fundamental forces, i.e. electromagnetic, weak
and strong interactions; only gravity cannot yet be included in the model. It is based on
the SU(3) x SU(2) x U(1) gauge group, where SU(3) represents the strong interactions,
whereas SU(2) xU (1) corresponds to the unified electromagnetic and weak interactions,
so-called electroweak (EW) interactions. The unification of these two basic forces was
proposed in the 1960s, and it is largely attributed to Sheldon Glashow, Abdus Salam,
and Steven Weinberg, for which they received the Nobel Prize in 1979 [75-78]. The
Standard Model formulation was completed in the 1970s by the description of the
strong forces within so-called Quantum Chromodynamics (QCD) [79-81].

Besides the interactions, SM also categorises and describes elementary particles,
the basic building blocks of matter and the force carriers mediating the interactions.
Historically, the development of the SM started with the discovery of the electron by
J.J. Thomson in 1897 and still continues, with the latest elementary particle discovery
of the Higgs boson in 2012, which was the final missing piece confirming the mechanism
through which particles acquire mass. The discovery was a result of the comparison
of the very precise SM predictions and experimental data gathered within the Large
Hadron Collider detectors ATLAS and CMS [82,83].

The Standard Model is a framework that allows us to predict and precisely describe
phenomena observed in all known experiments. Yet, with all its success, SM is not a
complete theory. It leaves some unexplained phenomena; therefore, many theoretical
and experimental groups conduct searches for the so-called New Physics, i.e. physics
beyond the description of the SM. Some of the phenomena beyond the description of
SM are listed below, starting with six selected in [62], followed by questions of my

choice.

o What is the origin of the Higgs boson?

o What is the origin of the presence of matter in the Universe?
o What is the origin of mass and flavour?

o What is the nature of dark matter?

o What lies beyond the Standard Model?

o Why is the electroweak interaction so much stronger than gravity?
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o Are there charge-parity violating Higgs decays?
o Are there multiple Higgs sectors?
o What is the origin of the early Universe inflation?

Further, we summarise the SM, which will be followed by the basic ingredients and
formalism needed to make precision tests of the model, i.e. we will describe radiative

corrections and calculational background.

2.1 SM particles and interactions

The fundamental constituents of matter are fermions of spin 1/2, i.e. leptons and
quarks. Whereas the SM interactions are mediated by gauge bosons of spin 1. Let us
focus on some basic properties of these particles.

There are three (known) families/generations of leptons and quarks, each of them
characterised by quantum numbers. For each of them, an antiparticle of the opposite
inner quantum number and the same mass exists.

Leptons are fundamental particles that do not interact strongly; each of their three
families consists of a pair of charged and neutral particles, which are characterised
by a conserved quantum number, so-called lepton number. The three generations are
(Ve,€), (Y, 1), (Vr, T), electron, muon and tau with corresponding electron, muon and
tau neutrinos, characterized by electron number L, = 1, muon number L, = 1, tau
number L, = 1, respectively. All leptons interact weakly, and the charged ones also
interact electromagnetically.

The main difference between quarks and leptons is that they also interact strongly.
We have not observed quarks as free particles; they are constituents of the so-called
hadrons, for example, the proton and neutron of atomic nuclei. The quantum numbers
characterising hadrons are the flavour quantum numbers - their isospin, strangeness,
charm, bottomness, topness, and they all carry a baryon number of 1/3. The first
generation of quarks consists of up and down (u,d) pair, the second of charm and
strange (¢, s) and the third, top-bottom doublet (¢,b). Their electric charge determines
the electromagnetic interaction couplings, whereas the doublet structure is important
for the weak interactions. The strong interactions are described by QCD. For this,
we need to mention another quantity, the colour quantum number, which has three
possible values: red, green and blue (r, g,b). Each of the quarks exists in each of the
three colours. The colour state of quarks cannot be observed directly, as all hadrons -

the physical, directly observed particles - are all colourless bound states of quarks.
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The gauge bosons are responsible for the interactions between the particles. For the
electromagnetic interactions, there is a massless photon, weak interactions are mediated
by the heavy neutral Z boson and charged W= bosons, and gluons are responsible for
the strong interactions.

All fields and interactions of the SM are described via its Lagrangian. It can be

divided into three individually gauge-invariant parts

Lsyv = Laauge + Ls + L. (2.1)

The gauge part reads

1 7 173 a va v
‘CGauge = _Z (GHVGM + W;U/WM + BIWB'M ) s (22)

The field strength tensors are the following

SUB) : G, =0,Gi —0,Gl + g, f/*GIG" (2.3)
SU?2) : Wi, =0,W, —0,W + g W)Wy (2.4)
Ul) : B, =09,B,—0,B,, (2.5)

where 7% and €% are the complex 3 x 3 matrices of Yukawa couplings of gauge groups
SU(3) and SU(2) respectively.

Let us first focus on the electroweak part of the SM. The following relation between
the hypercharge Yy, third component of the weak-isospin T3, and electric charge @)
has to be fulfilled to ensure that U(1) stays unbroken after the electroweak symmetry
breaking (EWSB)

Q=T+ YQW (2.6)

and Ty = 03/2, where o3 is the Pauli matrix. The total and third component of the
isospin, as well as the electric charge for all SM particles, are summarised in Tab. 3.

The next part Lg of the full SM Lagrangian describes the Higgs sector with a
complex scalar-doublet @ that has a non-vanishing vacuum expectation value (VEV),
the doublet takes the form

1 [gstiga) _ (o7 (x)
*0 =7 (¢1 +z¢2) - (¢°<x)) ' 2D

The first component of the scalar is charged and the other is neutral, by demanding
Yw to be 1
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Particles T T Q
Ve v Uy +1/2 0
) e Y
—1/2 -1
Leptons /L L T /
VeRr VMR Vrr 0 0 O
eRr MR TR 0 0 —1
u c t +1/2 +2/3
1/ / /
d S b —1/2 —-1/3
Quarks L L L / /
ur CR tR 0 0 +2/3
dR SR bR 0 0 —1/3
W+ 1 +1 +1
Bosons Z9~% g 0 0 0
HO L 0

Table 3: The weak-isospin structure of the particles in the SM. L and R stand for
left-handed and right-handed fermions, 7" and T3 are the total weak-isospin and its

third component, and () is the electric charge.

Q) = (T+ 22 ) o) = (é g) B(a), 28)

The interaction of the Higgs doublet with the gauge fields is through the covariant

derivative and the corresponding Lagrangian reads

Ls = (D,®)!(D'D) - V(®,81), (2.9)
where the potential V' is

)\2
V(®,0") = —p 2T + Z(@*@)Q (2.10)
which remains non-zero after the EWSB.
By the requirement of the left-handed fermions forming a SU(2) doublet and right-
handed fermions forming singlets, we construct the parity-violating interaction between

gauge and matter fields
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L Iy L uf
Lj = (,U_Lj = VJL s Q]- = w_Qj = di (211)
J

lf = wylj, uf = w4y, df = wydy, (2.12)

where w4 = HE% are the projectors and j index indicates the lepton and quark family.
The right-handed neutrinos could easily be added in (2.12), yet neutrinos are treated
as massless, as their contributions are negligible in the SM calculations. The last part

of the SM Lagrangian Lz can be written as

Lp = Y (iL;PLF)+ > (it; PIF + af Puf + id; Paf) - (2.13)

7

S (LY + QIYEul® + QrY(dli® + hee), (2.14)

(2

Lu,d . . . . =
where Y;j’“’ are the Yukawa coupling matrices corresponding to fermion masses and ®

is a charge conjugated scalar field

d = im2®* = (¢ (), —¢ )T, (2.15)

Let us now focus on the strong, interactions described by the first term in (2.2).

Collecting all terms connected with QCD, we can write the corresponding Lagrangian

1. .
—*Gl G,um —+ Z qz@w — m)i]’q]', (216)

1%
4 flavours

with the covariant derivative defined as in (2.17).

(D,)ij = 0u0i; + igs (TkAjj) (2.17)

]
The covariant derivative for QCD also includes colour and couples quarks and gluons.
Similarly, we also need to introduce the covariant derivative for electroweak interactions
as in (2.18)

i
D, =9, —igT,W¢ + ig'TWBN, (2.18)

where ¢’ is the U(1) coupling constant.
Colour is an internal degree of freedom of particles, we expect that the theory

is invariant under rotations in this colour space. The colour charge of a gluon is
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represented by a matrix in the colour space. These 8 matrices 7% i = 1,...,8 can be

related to Hermitian Gell-Mann matrices A\, the extension of Pauli matrices [34].
) 1..
T =X\ (2.19)
2
The following relations are fulfilled
Tr(AN) = 269, [N, N] = 20 fi7R\F, (2.20)
Translating back to the colour matrices

(T8, T9] = if 9% 1T*%  Tr(T'TV) = Tré", (2.21)

where Tr = 1/2. Matrices T* are the generators of the SU(3) group, and the antisym-
metric fY% contains the SU(3) structure constants. The group structure is characterized
by

SRR = 009, ST = O, (2.22)
kil g

where Cy = N, = 3 and Cp = ]\;%v_cl = %. N, is a number of colours and C4 r are
Casimir operators and 1 is the identity matrix. We use these relations directly in
chapter 5.

In the SM, the transitions between different quark flavours are parametrized by the
unitary Cabibbo-Kobayashi-Masakawa (CKM) matrix V. The four mixing parameters
left after the quark field redefinition are contained in the matrix which relates quark
weak and mass eigenstates. There are different parametrisations of the CKM matrix,

for instance

Via Vus Vi C12C13 $12€13 s13e”"
_ _ i5 i5
= c cs Veo | = | —S12023 — c12523513€" 12C23 — S12523513€" 23C13 | >
|4 Veia Vs Vi S19C C12593513€ C12C $19593513€ S93C
is i5
t ts Vi 12823 — C12€23513€" —C12823 — S12€23513€" 23C13
Vie Vie Vi S128 C12C23513€ C128 $12C93513€ Co3C
(2.23)

where s;; = sinf;;, ¢;; = cosf;;, the angles 0;; are the mixing angles between quark

generations and 0 is the CP-violating phase.
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2.2 Muon decay and Ar

The relation between the masses of gauge bosons My, and My, the Fermi constant G,
and the fine structure constant « is one of the most important quantities while testing
the SM and its extensions. This relation can be derived from the muon decay as the

Fermi constant enters the expression for the muon lifetime 7, [85-90]

G2m5 m2
Sl A PRl C) (14 A 2.24

where F(z) = 1 — 8 — 122%In(z) + 82 — 2 is the kinematic factor coming from the

25
2 (T

model, m, and m, are electron and muon masses, respectively. To account for the

phace space integration and Ag = — 72) is a QED correction within the Fermi

SM corrections, we start from the effective matching between the Fermi and the SM

theory, namely, the effective interaction amplitude in the Fermi model reads

MG = 3% (0,77 (1 = ¥ )up) [5e70(1 = 7")u,] (2.25)

while the SM amplitude for the muon decay is
SM g - Ll 5 1 g _ 1 5
M(u—mueuﬂ) - [ﬁuyﬂv 5(1 -7 )U'H‘| m [ﬁUeVU2(1 -7 )Uue] ) (226)

where g/v/2 is a weak coupling and p is W boson four momentum. By comparison,

taking the case of the muon decay p* < M3, we get a relation

G, g°
— = . 2.27
V2  8ME (2:27)
Let us recall that
2 2
g To . o 9 M,
g = m and Sin QW = SW = ]_ — @ (228)
Putting all of this together, we get
M?2 T
M2 (1-— W): 1+ Ar 2.29
b (1-50) = e (220

where Ar = Ar(o, Gp, My, Mz, My;my) collects in addition symbolically all possible
SM radiative corrections. Over the years, a great effort has been devoted to computa-
tions at various orders in both the EW theory [91-96] and QCD [97-101]. Currently,
the full two-loop contributions are known [102-117] as well as partial three-loop and
four-loop results [118-123].
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Figure 7: Types of Feynman diagrams contributing to Ar at the one-loop level, V
denotes the vector boson and F are fermions. From top-left to bottom-right, there are

vector boson SE, fermions SE, vertex and box diagrams.

At the one-loop order, the Fermi constant matched with the SM corrections can be
written as [88-90]

T de sy, OME  XWVW(0)
G, = —— (1422w W 27 + Svertibon
' ﬁwMW< e s My M o
yiyes
= —— (14 Ar), 2.30
\/ES%VMV?V< ) (2:30)

where W (0) denotes the transverse part of the W boson self-energy. Ar is a fi-
nite combination of one-loop diagrams and counterterms; the same concept follows
for higher loop orders. The contributing types of Feynman diagrams that need to be
included are presented in Fig. 7.

The dyertipor contribution contains corrections coming from vertex and box dia-

grams and is given by [89]

«Q M?2 Q 7 — 452 M?2
Svertibor = —o— | A — log—X 6 Wiog—W 2.31
t+b 7"'3]2/(/ < 0og /L2 ) + 477'512/{/ ( + 28%[/ 0og M% ) ( )
where
A =e ' — ylog(4n), (2.32)
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¢ is a dimensional regularization parameter and v is the Euler constant.
The first term in (2.31), which is a UV-divergent part can be expressed in terms of
the transverse part of photon and Z boson mixing ¥4%(p?) at p? = 0 which is also a

wave renormalization constant 0754 as described later in section 3.2

M2 2 ZAZ

< (A—loggv> - r(0), (2.33)

TSy M swew Mg
Finally at the one-loop level in the on-shell scheme the Ar result is [88,90-93]
SWW(0) — Re (SFW(MF))
AA T T w
Ar= II°4(0) + Y2
s? M?2 M2 '
W z W
222(0 7—4sy  Mj

oW =T § ) 4 C 6+ =W 0g

The first term IT44(0), which is a derivative of the photon self-energy at p? = 0, is
a bit tricky, it follows from
44 (p?) = w. (2.35)
p
Treatment of these derivatives is automated in our in-house methods (see next
chapters). Traditionally, it is divided into three parts: one with light fermions, one
with the top quark, which is the only fermion whose mass is considered non-zero in
our calculations, and the bosonic part

I144(0) = I1;3/,,(0) + T,22(0) + el (0). (2.36)

top bos

The light fermion contribution can be calculated as

I0,,00) = =R I, (M) + 105;5,(0) + R I, (M) (2.37)
= —-R ﬂﬁ;;n(Mg) + R 10535, (M3). (2.38)

The R ﬁﬁ;}n(Mg) term is a renormalized vacuum polarization corresponding to the

electromagnetic coupling

a(M2) = a(l14+ Aa)+0(?), Aa=-R ﬂﬁ;t(Mg). (2.39)
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As already mentioned, the top quark mass is not neglected in our calculations, and
due to the QCD effects, it can be evaluated directly (see section 3.3.1)

A4 « Ao(Mt)

top (0) = ;(D - 2>97W (2.40)

The calculation described in the thesis aims to add another three-loop contribution
to the list, namely O(a?a,). For the precision needed at the future colliders at least all
three-loop terms should be computed and accounted, see discussion around Tab. 2 and
[PhD4] in List of papers. Currently, the missing higher-order contributions lead to a
theoretical uncertainty d My, = 4 MeV using the on-shell renormalization scheme [124].
A 1o variation of all the input parameters to Ar leads to the parametric uncertainty
0My, = 5 MeV while the predicted experimental accuracy for the W boson mass at
the FCC is estimated to be of the order 0.5 MeV [60,61].

For the three-loop calculations of the muon decay of the order O(a%a;), one needs
to determine the W and Z boson self-energy and Wiy vertex contributions, so we will
discuss Feynman diagrams with one gluon in loops or one-loop top quark counterterm
insertion (both proportional to ay). Details of the calculations at the three-loop level

can be found in chapter 5.

2.3 7 boson decay and EWPOs

Apart from the muon decay, which is relevant for precision EWPOs studies, the sec-
ond important information about the Standard Model comes from the observables
connected with Z-pole physics, [PhD1,PhD3,PhD4| in List of papers.

Data collected by the LEP experiment enabled the accurate determination of nu-
merous electroweak observables by measuring the Z boson line-shape and of the cross
section asymmetries along with high-precision parity-violating asymmetries at the
SLC [45].

To determine the Z boson properties, measurements of fermion pair production in
electron-positron collisions were conducted at the Z boson pole, i.e., for /s ~ 91 GeV.
To extract the physics related to the Z boson, a typical set of EWPOs is established,
including the total width I'; and partial decay widths I'c , 7, '), I'y ¢ 4,55, the hadronic

peak cross-section o, branching ratios R, R., Ry [125-127]
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I, = Y TZ— ffl, (2.41)
f

oty = olete” — hadrons],_yz, (2.42)
I'[Z — hadrons]
= 2.4
RZ F[Z—>€+€7] ) 4 € U, T, ( 3)
'z q
R, Z = 4d] q=u,d,s,c,b. (2.44)

['[Z — hadrons|’

For instance, for the Z boson decay width, the general SM formula (valid for both
Z and W boson decays) is [89]

L VIGM 2
V=il 121 My
1 m% + m% 1 (my — m2)2

N 2 21 _ = L 2 23m1m2

(2.45)

Up-to-date results for the Z — ete™, utpu~, 777 decay widths can be found at
the high precision SM package DIZET [128], created as an electroweak and QCD li-
brary of the ZFITTER program [125]. The input parameters are defined in the Dizet
benchmark file in [128], the numbers are: I'p+.- = 83.985 MeV, '+, = 83.985 MeV,
I'/+,- = 83.795 MeV. The hadronic vacuum polarization has been calculated with the
flag THVP=5 [129], EW corrections include complete (IAMT4=8) NNLO corrections [64].
As already discussed, the theoretical uncertainty due to missing higher-order terms is
at the level of 0.4 MeV [64], and the experimental uncertainty will decrease in future
FCC-ee Tera-Z measurements to the level of 0.1 MeV or below [PhD4], [70].

The other EWPOs connected to the Z boson are the cross-section asymmetries
measured at the Z pole. For example, forward-backward asymmetry, which is defined

as

O'f[¢9<z}—0'f[6>

2 }

;o
B (P P e

(2.46)

2

where 6 denotes the scattering angle between the incoming and outgoing fermions.

This formula can also be written in an approximate form as a product of two terms

[PhD4], [130]
¥ 3
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where

2Rezt 1 — 4|Qy] sin2 6"
L (Rez)’ 1= 1@l sin® 6 + 8(Qy sin® 6
af

A = (2.48)

Note that the factorization to Ae and Ay in (2.47) is an approximation. In re-
ality, we must account for non-factorizable effects like box diagrams or initial-final

interference, see Fig. 8

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 8: Schematic representation of the ete™ — ff process including typical real
radiation effects, represented outside of the dashed box, as well as exemplary virtual

effects of different perturbative order (including BSM effects) inside the dashed frame.

The correct extraction of vertex form factors from the scattering process is compli-
cated and was defined based on the so-called S-matrix approach. The S-matrix ansatz

in the complex energy plane can be written in the following way

Background

At b o B St (s—5)8 +..., sz= M, —iM Ty, (2.49)

y—Z inter ference

where R, S,S’,... are individually gauge-invariant and UV-finite due to the unitarity
and analyticity of the S-matrix and IR-finite, when soft and collinear real photon
emission is added [131-138].

My, and T'z are the on-shell mass and width of the Z boson, respectively. According
to (2.49), the approximate line shape of the cross-section near the Z pole is given by
o o [(s—M2)?+ M.y~ . Tt is important to note that this differs from the line shape
used in experimental analyses, which is of the form o o [(s — M2)? + s?T'2/M2]71. As

a result, the parameters in (2.49) differ from the experimental mass My and width I'y,
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from LEP by a fixed factor, as found for the first time in a seminal work [139]:

My = Mz/\/l + T2 /M2,
Ty =Ty/\1+T%/M3. (2.50)

Numerically, this leads to a substantial shift in the resonance point: M, ~ My, —
34 MeV, and I'; ~ 'z —0.9MeV. Visible effect of the Z boson resonance shape is given

in Fig. 9. [45]
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Figure 9: The hadronic cross-section as a function of centre-of-mass energy, averaged

over measurements by the four LEP ADLO experiments (Aleph, Delphi, L3 and Opal).
The full line represents the results of model-independent fits to the measurements.

Correcting for QED photonic effects yields the dashed curves, see [45] from where the
plot has been taken.

Physically, note that A has two poles, at s = 0 and sy = sy for the photon and Z

boson exchange, respectively. Thus for proper Laurent series expansion around the Z
boson pole, the photon s = 0 exchange is shifted to the background. This process can

be written in the following way, where only the Z resonance is present [140)]
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Even after accounting for QED photons in the background (the procedure of the
QED radiation effect extraction is also called a deconvolution [65]), defining SM pa-
rameters is challenging, and multiple solutions exist, depending on the precision of
calculations [65]. A common example is the effective weak mixing angle, denoted as
sin? Qﬁ}eﬁ, which incorporates the radiative corrections to the Weinberg angle. First,
it can be defined using the ratio of vector and axial-vector couplings of an on-shell Z

boson interacting with fermions:

O — 1 — 4)Qy sin? 67", (2.52)
ay

where vy and ay are vector and axial-vector couplings respectively and )y is a fermion
charge.
Secondly, it can be defined using the ratio of the two gauge couplings:
g cosby

= 2.53
g sinfy’ (2.53)

where g and ¢’ are the SU(2) and U(1) couplings respectively.
Lastly, it can be represented as the ratio of the masses of two gauge bosons (on-
shell):

2
sin® Oy = 1 — A]ZV%V (2.54)

These definitions correspond to different renormalization schemes and chosen input
parameters [48]. The up to date discussion at the NNLO level can be found in [64,141].
To calculate the EWPOs outlined in equations (2.41)-(2.44), vector and axial-vector
couplings vy and ay need to be known separately. These couplings are built up from
the terms of the perturbative Z boson decay amplitude and taken as an effective form

factor. This can be illustrated as shown in Fig. 10.
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Figure 10: The general formula for the effective Z-boson form factor. Here, fermionic
indicates diagrams with only fermionic loops, while bosonic signifies the remaining.
Planar diagrams can be constructed such that no lines cross, whereas non-planar dia-
grams cannot. These calculations proceed in an order-by-order manner, incorporating

leading terms, next-to-leading (1-loop) terms and so forth.

VHZf I is the effective Z boson form factor.
Vector and axial couplings for the charged current can be found in section 2.2. For
completeness, vector and axial couplings in the neutral sector in the SM for the Z

boson are

T:
vy = —Qfsin2ew+?3, (256)
13

Today’s state of the art is that all corrections to the Z boson vertex are computed up
to the 2-loop order [64,66, 141], see Fig. 11. The demand for computations at higher
order(s) was justified in section 1.3.

In the next chapter basic definitions, notations and examples are discussed needed

for the SM renormalization and calculation of the 3-loop corrections given in chapter
5.
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Figure 11: The past and current state of the art for the Z boson SM vertex correc-
tions. For works connected with 1-loop corrections, see [40-43,92,142-144], for 2-loop
corrections which include fermionic closed loops, see [138,145-152] and for remaining
(bosonic) 2-loop corrections see [64,66, 141].
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3 Radiative corrections

The problem of radiative corrections, which include infinite integrals, appeared within
QED in the 1930s [23], so let us first illustrate the main concepts for this theory, which
will be further extended to the SM framework.

We start with a bare Lagrangian, which means that we introduce a priori unphysical

fields connected with a charged fermion 1 and electromagnetic field Af (photon)

L= 1R B+, (z‘«% oo — m0)¢0, Fopw = 0y Aoy — Ao, (3.1)

This expression contains two free parameters: ey and mg, the charge and mass of the
fermion 1), respectively.

When including radiative corrections, these parameters will, in general, differ from
the observable charge and mass of the fermion. Denoting the latter as e and m, the

relation can be written as
ep=2Zee=(1+0Z)e, my =m+ dm (3.2)

The quantities 6X are called counterterms. Here and in the following, the index “0”
is used for Lagrangian “bare” quantities, whereas the corresponding symbols without
a subscript denote physical renormalized quantities.

To determine the counterterms, one needs to specify a set of renormalization con-
ditions that define what we mean by “physical quantities.” For the charge and mass,
we can find a set of conditions that formally reflect how these quantities are typically

measured in an experiment. We proceed to the SM renormalization now.

3.1 Renormalization

The Standard Model involves a number of free parameters that need to be determined
experimentally. These parameters often have intuitive physical meaning at the tree
level, like masses or couplings so they are directly related to the experimental observ-
ables. Although when calculating the higher-order corrections, this direct connection
is broken. In the thesis, we focus on the UV-divergences for which EWPOs can be de-
termined. In renormalizable theories, such as SM [79], the UV-divergent parts cancel
in relation to physical quantities, allowing meaningful predictions.

There are several schemes used for renormalization. For the purpose of the thesis

we will focus on the so-called on-shell renormalization scheme following the notations
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and definitions in [153,154]. First, we need to choose the set of independent parame-
ters, e.g. charge, masses and mixings {e, My, Mz, My, my,;, V;;} for the SM. Secondly,
we need to separate the bare parameters into two parts - renormalized parameters
and renormalization constants, similarly for the fields. Then, we need to choose the
renormalization conditions to fix the counterterms. Having the counterterms fixed, we
can express the physical quantities in terms of the renormalized parameters. Next, we
choose the input data to get the values of the renormalized parameters. At last, we can
evaluate predictions for physical quantities in terms of input data. The renormalization
conditions can be chosen such that the finite renormalized parameters correspond to
physical parameters in all orders of perturbation theory. The advantage of this scheme
is that all parameters have a clear physical meaning and can be directly measured in
experiments (with the exception of the quark mass). This approach is most commonly
used in the electroweak calculations. Yet, depending on the studies, different renormal-
ization schemes can become advantageous. One of them is the Minimal Subtraction
(MS) scheme, used together with dimensional regularization (see Appendix B). The
principle of this method is to renormalize the integrals by subtracting only the diver-
gent parts of the loop integrals, i.e. poles in powers of 1/e, without subtracting any

finite parts. The renormalization constants Zy;g are of the form

, (3.3)

where a,(g) is a function of the renormalized coupling g. More commonly used is a
so-called modified minimal subtraction (MS) scheme. The difference between these two
renormalization methods is that in MS scheme, besides the 1/¢ poles, we also subtract
a specific universal constant, In(47) — vg, where vg is the Euler gamma constant, that
appears naturally in the dimensional regularization. These schemes are quite simple
and widely used in QCD, but the physical interpretation of the results is not as easy
as in the on-shell renormalization scheme, as the subtracted quantities are not directly
connected to physical observables.

It is sufficient to renormalize the parameters in order to get the finite elements of
the S-matrix, but the Green functions are left divergent. To get finite vertex func-
tions and propagators, we need to renormalize fields as well. Another problem is that
radiative corrections introduce non-diagonal terms to the mass matrices, and so the
bare fields are no longer mass eigenstates. These matrices can be rediagonalized by
introducing matrix-valued field renormalization constants. As a result, we can define

the renormalized fields such that they are the correct physical mass eigenstates in all
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orders of perturbation theory. The choice of field renormalization does not influence
the results for the physical S-matrix. The on-shell approach is presented in detail in

the next sections.

3.1.1 Renormalization constants and counterterms

Let us consider the on-shell renormalization scheme for the electroweak Standard
Model, with a set of independent parameters as mentioned before. Renormalization
constants and the renormalized quantities are defined as follows for all orders of per-

turbation theory

eo=2Zee=(146Z.)e,
MI%V,O = MI%V + 5M5va
Mé,o = M% + 6M%7
Mp o = Mg + 6M,
Mygio0 = My;+ 5mf7iv

Vijo = (UhVU)y = Vi + 6Vy;. (3.4)

The U, and U, matrices are unitary, since Vj;o and V;; are both unitary. We assume
CKM and lepton mixing matrices V;; to be diagonal, as it gives enough accuracy for
our needs (considered already at the two-loop order [64, 66, 141]). All quarks other
than top are assumed to be massless, all leptons are treated as massless as well. Thus,
from now on, we assume Vj; = d;;. The minimum of the Higgs potential is shifted
due to the radiative corrections. To compensate for the shift, one needs to introduce
a counterterm to the vacuum expectation value (VEV) of the Higgs field in such a
way that the renormalized VEV is given by the actual minimum of the effective Higgs
potential. To have all of S-matrix elements finite, the counterterms defined in (3.4)
are enough. Yet, renormalization of the fields is needed to get finite Green functions
as well. The relevance of Green functions is mentioned in more detail in section A.2,
where the charge renormalization constant is considered up to the three-loop order.
Field renormalization matrices are necessary to define renormalized fields, which are

mass eigenstates, thus
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Wi = ZPWE = (14 LZp)WH,

(zo) Rz (z) L +130Z22 102z z

1/2 1
H, = Zy H=(1+ 5(5ZH)H,
= 2R = 0+ SeZEh fE
2, f,R s
R =z FR= (65 + L6z 1R,

(3.5)

In the (3.5) the renormalization constants are expanded up to 1-loop level. Going
beyond, more general expansions are needed, as exemplified in section 3.3.2 for vertex
counterterms including Z — A mixing, and in Appendix A.2 for the case of charge

renormalization constant expansion up to the three-loop level.

3.1.2 Renormalization conditions

The renormalization constants are set by specifying renormalization conditions, which
can be divided into two parts. First, the conditions which define the renormalized pa-
rameters, their choice affects the physical predictions in the finite orders of perturbation
theory. Second, the conditions defined for renormalized fields, which are only relevant
for Green functions. We can take advantage of the freedom in the choice of the latter.
By the convenient choice we can remove the explicit wave function renormalization of
the external particles and also significantly simplify the form of the renormalization
conditions for the physical parameters.

In the on-shell renormalization scheme, all renormalization conditions are defined
for the external fields on the mass shell. The standard definition of the on-shell mass is
the location of the lowest energy pole of the two-point Green’s function. The mass and
field renormalization constants as well as the renormalization constant of the quark
mixing matrix are fixed by the one-particle irreducible two-point functions. One three-
point function fixes the charge renormalization, we can choose the eey vertex function
for this purpose. Below, to stress the physical fields, the renormalized quantities are de-
noted by the same symbols as unrenormalized quantities, but with a hat (a convention
in Dittmaier and Denner works [153, 154]).

Moving on, the first renormalization condition involves the tadpole T', the one-point,
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amputated renormalized Green function for the Higgs field

T= -S-ame- (3.6)

O

which translates into

T=T+6T =0. (3.7)

The consequence of this condition is that we do not have to consider tadpoles in the
actual calculations. This is valid at any loop order. However, 07" is sometimes needed,
for example, in vertex counterterms (for a complete list, see the Appendix in [154])
or as a part of the three-loop contribution to W boson mass renormalization constant
(dTH2 term in (5.40)).

The next step involves the renormalized one-particle irreducible two-point functions

defined in the 't Hooft-Feynman gauge as follows:

Wu w, -
A = P (k) =

. . k ku - k ku -
—igu (k* — M},) — i (gw, — 2‘2> SV (k) —i 22 SV (k?), (3.8)
a, i b,v

—igu (k> — MZ2)6u — i (gw, — ;{g) NP () —img X (R),  (3.9)

where a,b € A, Z and M3 = 0,

:QH = T¥(k) = i(k* — M) + %" (1), (3.10)

1655 (p — ma) + i [po_SLE (%) + po BE @) + (mpaw + mpw ) S5 (p%)] - (3.11)
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One can obtain the corresponding propagators by inverting the two-point functions.
In (3.8) and (3.9), longitudinal and transverse parts are separated, as the transverse
part will be directly connected with gauge boson mass renormalization, see (3.18). In

(3.11), the fermionic self-energy is divided conveniently into chiral and scalar parts.

The renormalization conditions for the two-point functions for on-shell external

physical fields are the following

o) =0 R (FAZ ()= (1)
L (k)e" (k)

oosiz) =0

K2=0

pEavEA (P27 (k)e" (k)
]323% (P (k)e” (k)

(k)

= —ieu(k),

k2=M2

—ie,(k),

k2=0 -
1 H

k2=M% =0, k2 MI%I %(F (k))

R (T4 (p)u;(p)) R R ()T ()

? + mfﬂ Af

m% (Fii<p)ui(p))

ﬁ/ + My

p/2 _ mf,i

k2=M2,

/2
=m= .
p »J

59 :Zuz(p>7

pr=my

R (@) TL0))

2 T iui(p/)v (3'12)

p/2:mf,i

where (k), u(p), u(p’) are the polarization vectors and spinors of the external fields.

From (3.12) one gets the following renormalization conditions for the self-energy
functions
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R (SF4(M3)) =0, R (S94(MZ)) =0,
¥77(0) =0, $44(0) = 0
5 (azg;gﬁ)) o
k2=M2,
0547 (k? O (k2
()| o (]
k2:M§ k2=0
R (SH(ME) =0, R (2 i(fz)) =0,
K2=M2,
TI’LfJ‘éR (ZfL(mf])) + mfjé)? (E{] (mm)) = 0,
my ;R (Zfi’f(mm)) +my ;R (Efj (mﬁj)) =0,
R (S5 (m3) + R (ShHm3,)
+2m3c7i8?92 (R (ELR) + R (SL20) + R (555 07)) -

— 0. (3.14)

It is important to note that for the gauge boson self energies, the longitudinal

unphysical) part drops out for the on-shell external gauge bosons, as can be seen in
gaug

detail in Appendix A.1.

At last, the electric charge is defined as the full eey-coupling for on-shell external

particles in the Thomson limit, which means that for on-shell external particles and

for the zero momentum transfer, all corrections to this vertex vanish

p=p',p?>=p'2=m?

= deu(p)y,u(p).

(3.15)

The self-energy corrections in the external legs contribute to the S-matrix elements

with a factor of 1/2, due to the wave function renormalization, see (3.5).
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The field renormalization is chosen such that the corrections in the external legs

vanish, leading to the following condition

u(p)L (0, P)u(p)|p2=mz = ieu(p)yuulp), (3.16)

for the (amputated) vertex function:

r
4, ehp

Mee no_
I (p,p') = (3.17)
All of the Feynman diagrams in this section were generated using an online Feynman

diagram maker [155].

3.2 Explicit form of renormalization constants

In subsection 3.1.1, the renormalized quantities were defined and they consist of the
unrenormalized part and the counterterms. Counterterms can be expressed by the
unrenormalized self-energies at specific external momenta with the use of the renor-
malization conditions e.g. as defined in subsection 3.1.2.

From the conditions (3.7) and (3.13) we get the Higgs and gauge boson sector

counterterms
5t =—T,
W (1.2
IM3, =R (S (M), 52 = —n (22 ) ,
k) |y
W
O%F” (k°)
5M% =R (E%Z(M%)) ) 0277 =—R (8/{:2 k2:M2’
ZAZ(MZ) EAZ(O)
0Lz = —2R (TJ\J%Z> , 0L 74 = ?\47%’
OXAA (k)
6Zas = ——1 "=
AA akQ k2:07
H (k2
SM3}, = RYH(M3), 62y = —R (W) (3.18)
k2=M?%

An example for the W boson case is given in Appendix A.1. In the fermion sector from
conditions in (3.14) we get
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My,
bimpe = = R [SEE (G ) + 5L (3 ) + 2585 (m3)]
2

37" = M%[ m2 SEE(m3 ) + mpm3 SEE (m? )+
+Hm3, +mi )L (m )], i A,
5Zifj’R = Mﬂ? [ %Ezij(mfc]) + mfszjZfL(mf])%-
+ompmp S5 m3 )] i
Sz = —R (S m)) - md R [ ) + 0 + 25556 |,
2" =~ () — i R [SEH0) + SEU0) + 2200
(3.19)

The charge renormalization constant is determined from the eey vertex. Its renor-

malized function is

L7 (p,p) = —ieQ o7 + ieA55 (p, p). (3.20)

which can be brought into the following form (using (3.18)).

LIS | sw 42(0)

Sw
0z, = —féZ ——07 3.21
Mo, AT o L, ew M3 (3:21)
The equation (3.21) for 6Z, up to the 3-loop level is derived in Appendix A.2.
Finally, let us consider the weak mixing angle on-shell
My,
sin? Oy = s5y = 1 — ST (3.22)

As the sy and ¢y are often in use, it is reasonable to introduce the following coun-

terterms

Cw,o = Cw -+ 5CW, SW,0 = SW + 5SW. (323)

Since these are straightforwardly related to the gauge boson masses via (3.22), at the

one-loop order, we arrive at
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dew - 1 5M3V 5M§ _ 1 ZIW(M%/) E%Z(M%) (3 24)
cw 2\ M M) 2 M3, M3 ’ '
OSw ety dew iy YW(ME)  XZZ(M3)

=g =5 R VRV : (3.25)

With this, we have all renormalization constants at hand (besides the quark mixing
matrix V;; which is irrelevant for the purpose of the thesis).
In the next section, we will show the examples of how to compute the renormaliza-

tion constants using modern tools.

3.3 Examples of renormalization constants computation

In this subsection, we will describe and show examples of how to compute the renor-
malization constants using Mathematica packages FeynArts, FeynCalc and FormCalc
[156—158]. There are no general tools for these calculations beyond one-loop order. We
will review this situation in chapter 4, as our aim is the calculation of 3-loop amplitudes,

in general.

3.3.1 One loop renormalization and counterterms

Both FeynCalc and FormCalc are used together with FeynArts, which is needed for
the creation of diagrams and initial expressions associated with them. Let’s start with
FormCalc as it is more straightforward. FormCalc has an automatic way of computing
renormalization constants, as long as they are well defined in the model file. Most of
the FeynArts models provide files with renormalization constants definitions up to the
one-loop level. In this thesis, we focus on the SM calculations, so we describe them
below.

First, we need to load the packages

In[1]:= << "FeynArts.m";
In[2] := << "FormCalc.m";

Then we need to specify the model which we want to work with

In[3]:= SetOptions[InsertFields, Model -> {SM}];

39



By default, it will be the SM model file, but we can choose to work with other
models provided with the packages or our own modified model. For the latter case, the
easiest way is to use FeynRules [159], which allows for quite simple model extensions.
In this case, all we need to do is replace SM with the name of another model file.
There is no universal tool for full renormalization even at the 1-loop level for BSM. To
our knowledge, probably the most advanced in this regard is FeynMaster [160].

Having the model selected, we can now use the CalcRenConst|[ | function of
FormCalc to compute any of the renormalization constants, for example Z boson mass

squared renormalization constant, i.e. dMZsql in FeynArts notation.

In[4] := CalcRenConst[dMZsql] // Simplify;

The command outputs relevant options used for the generation of the self-energy
diagrams and the corresponding expressions needed for the renormalization constant
computation. At the end, it prints out the result in the form of a list of replacement

rules in terms of Passarino-Veltman integrals

1
48 CW22% 7 SW2
Alfa (-8 CW2° Finite MZ2 + 3 CW2 (Re[AO[MH2] ] + Re [AB[MZ2]]) + 12 MW2 Re[BO1i [bb®, MZ2, MH2, MZ2]] -

3CW2 (4 CW22 (2 MW2 + 5 MZ2) - 8 MW2 SW22) Re[BO1 [bbO, MZ2, MW2, MW2]] +
36 CW2 Re [BO1 [bb0O, MZ2, 0, 0]] - 12 CW2 Re [BO1 [bbOO, MZ2, MH2, MZ2]] +
6 CW2 (9 CW2% - 2 CW2 SW2 + SW2?) (Re[AO([MW2]] - 2 Re[BO1i [bb0®, MZ2, MW2, MW2]]) -
18 CW2 MZ2 Re [B@1 [bb1, MZ2, 0, ©] ] - 24 CW2> MZ2 Re [BO1 [bb1, MZ2, MW2, MW2]] +
2CW2 (- ((9-24 SW2 + 32 SW2?) Re[AQ[Mf2([3, Gen3]]]) - (9 - 12 SW2 - 8 SW2?)
Re[AO[Mf2[4, Gen3]]] - 3Mf2[2, Gen3] Re[BOi[bb®, MZ2, MF2[2, Gen3], Mf2[2, Gen3]]] -
9 (Mf2[3, Gen3] Re[BO1 [bbO, MZ2, Mf2[3, Gen3], Mf2[3, Gen3]]] +
Mf2[4, Gen3] Re[BO1[bbO, MZ2, Mf2[4, Gen3], Mf2[4, Gen3]]]) -3 (1 -4 SW2 + 8 SW2?)
(Re[AB[Mf2[2, Gen3]]] - 2 Re[BO1 [bbBO, MZ2, MF2[2, Gen3], Mf2[2, Gen3]]]) +
2 (9-245W2+ 32 SW2%) Re[BOi[bb0O, MZ2, Mf2[3, Gen3], Mf2([3, Gen3]]] +
2 (9-12 W2+ 8SW2?) Re[BO1[bbOO, MZ2, Mf2[4, Gen3], Mf2[4, Gen3]]] -
3MZ2 (1-4SW2 + 8 SW2?) Re[BO1i [bbl, MZ2, Mf2[2, Gen3], Mf2[2, Gen3]]] -
MZ2 (9 - 24 SW2 + 32 SW2?) Re[BO1 [bbl, MZ2, Mf2(3, Gen3], Mf2(3, Gen3]]] -
MZ2 (9 - 12 SW2 + 8 SW2?) Re[BO1 [bbl, MZ2, Mf2[4, Gen3], Mf2[4, Gen3]]]) SumOver [Gen3, 3])”

(3.26)

{RenConstH st [RenConst] {dMqul -

Here, Alfa is the fine structure constant «, CW2 and SW2 are cosine squared and
sine squared of the Weinberg angle, MW2, MZ2 and MH2 are the squared masses of W,
7 and Higgs bosons, respectively. Finite is a symbol to indicate terms that can be

1

omitted when calculating terms of order e~1, 72, where ¢ is a dimensional regulariza-

tion parameter. Mf2[i,Gen3], where i € {2,3,4} denotes masses of fermions, charged
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leptons, up and down quarks. Then, in the end SumOver [Gen3,3] denotes the summa-
tion of the expression over all possible combinations of flavours and quark generations
to take into account the mixing of quarks in the particle interactions.

In this case, there is only one replacement rule, but in other cases, e.g. for the
sine of the Weinberg angle, dSW1 in FeynArts notation, it computes all the needed
contributions, i.e. W and Z bosons mass renormalization constants and they are all
listed at the end of the commands output.

One can use the ExpandSums function to get an explicit form of the integral, with all
of the fermion contributions and without the leftover summation. At this point, it can
be useful to simplify the expression by neglecting the small masses. In our calculations,
for the level of accuracy needed at the 2- and 3-loop radiative corrections, we neglect
all masses but the mass of W, Z, H bosons and top quark. For further simplification,
in the following result, the cosine and sine of the Weinberg angle are expressed in terms
of My and M.

1
48 MW2 (MW2 - MZ2) r

Alfa (8 Finite MW2? MZ2 - 3 MZ2% Re [AO [MH2] ] + (64 MW2? - 80 MW2 MZ2 + 34 MZ2?) Re [AO [MT2]] -
72 MW22 Re [AO [MW2] ] + 24 MW2 MZ2 Re [AO [MW2] ] - 6 MZ22 Re [AO [MW2] | -
3 Mz2? Re[AB[MZ2]] - 12 MZ2> Re[BO1 [bbO, MZ2, MH2, MZ2]] +
18 MT2 MZ2? Re [BO1 [bb®, MZ2, MT2, MT2]] + 108 MW2? MZ2 Re [BO1 [bbO, MZ2, MW2, MW2]] -
24 MW2 MZ22 Re [BO1i [bbO, MZ2, MW2, MW2]] - 640 MW22 Re [BO1 [bbOO, MZ2, 0, O]] +
800 MW2 MZ2 Re [B@1 [bb0O, MZ2, 0, 0]] - 412 MZ22 Re[BO1 [bbOO, MZ2, 0, 0]] +
12 MZ2? Re [BO1 [bb0OO, MZ2, MH2, MZ2]] - 128 MW2? Re [BO1i [bbOO, MZ2, MT2, MT2]] +
160 MW2 MZ2 Re [BO1 [bb0O, MZ2, MT2, MT2]] - 68 MZ2? Re [BO1i [bbO®, MZ2, MT2, MT2]] +
144 MW22 Re [BO1 [bbOO, MZ2, MW2, MW2]] - 48 MW2 MZ2 Re [BO1 [bbOO, MZ2, MW2, MW2]] +
12 MZ22 Re [BO1 [bb0OO, MZ2, MW2, MW2]] + 320 MW2% MZ2 Re [BO1 [bbl, MZ2, 0, 0]] -
400 MW2 MZ2® Re[BO1 [bbl, MZ2, 0, 0]] + 206 MZ2® Re[BO1 [bbl, MZ2, 0, 0]] +
64 MW2? MZ2 Re [BO1 [bbl, MZ2, MT2, MT2]] - 80 MW2 MZ2? Re [BO1 [bbl, MZ2, MT2, MT2]] +
34 MZ2° Re[BO1 [bbl, MZ2, MT2, MT2]] + 24 MW2% MZ2 Re [BO1 [bbl, MZ2, MW2, szu)]}

(3.27)

{RenConstL'i st[RenConst] [dMqul -

This expression can be plugged into one of numerous analytic/numerical tools such
as LoopTools [158], Xpackage [161,162], QCDloop [163] and OneLOop [164] to com-
pute the Passarino-Veltman integrals and get the final result. This procedure, using
FormCalc is rather simple and it can be repeated for any defined in the model renor-
malization constant.

As for the FeynCalc, its usage is more complex but also gives a better control over
the whole process. To start with, we again need to load packages, now FeynArts is

loaded as an addon of FeynCalc.
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In[1]:
In[2]:

<< ELoadAddOns={"FeynArts"};

<< "FeynCalc.m";

Here, we have to specify the exact process we are interested in, incoming and
outgoing particles and the number of loops. For the Z boson mass renormalization

constant at the one-loop level:

In[3]:= diagsdMZsql = InsertFields[CreateTopologies[1, 1 -> 1,
< ExcludeTopologies -> {Tadpoles}], {V[2]} -> {V[2]}, InsertionLevel ->
— A{Particles}];

Process generation is handled by FeynArts. The {V[2]}—{V][2]} part defines the
incoming and outgoing particle, in this case, V(2] represents the Z boson. Then to
convert the amplitude to the FeynCalc notation, we use the function FCFAConvert
and specify the naive dimensional regularization (NDR) 75 treatment, as described in

more detail in Appendix B.

In[4] := ampdMZsq1[0] =
FCFAConvert [CreateFeynAmp [diagsdMZsql, Truncated -> True],
IncomingMomenta -> {p}, OutgoingMomenta -> {p}, LoopMomenta -> {q},
LorentzIndexNames -> {mu, nu}, UndoChiralSplittings —> True,

ChangeDimension -> D, List -> True, SMP -> True, Contract -> True];

FCSetDiracGammaScheme ["NDR-Discard"];
ampdMZsql[1] = DiracSimplify[#] & /@ ampdMZsql[0];

In[5]:
In[6]:

Then we have to apply the suitable projector to separate the transverse part of the
process in (3.8). The properly normalized gauge boson projectors has the following

form

S2l7) = g |0+ DSl 670 (3.2
Xr(0) = —ll)g“”EW(p =0). (3.29)

Thus, for the Z boson
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In[7]:= ampdMZsq1l[2] =
Plus 0@ FCReplaceAll[Contract[(-MID[mu, nu] + FVD[p, mu] FVD[p,
< nul] /Pair[Momentum[p, D], Momentum[p, D]])*ampdMZsql[1]/(D - 1)1 //
— Expand, SumOver[_, _]1 -> 3];

Finally, the simplifications are done with 1-loop tensor integral decomposition (TID

function), neglecting the masses and expressing the Weinberg angle in terms of My,
and M.

In[8]:

ampdMZsq1 [3]

TID[ampdMZsql[2], q, ToPaVe -> True];

In[9] := ampdMZsql[4] = FCReplaceAll [ampdMZsql[3],
Pair[Momentum[p, D], Momentum[p, D]] -> SMP["m_Z"]"2,
SMP["m_e"] -> 0, SMP["m mu"] -> 0, SMP["m_tau"] -> O,
SMP["m_u"] -> 0, SMP["m_d"] -> 0, SMP["m_c"] -> 0, SMP["m_s"] -> O,
SMP["m_b"] -> 0];

In[10]:= ampdMZsql[5] =
FCReplaceAll [ampdMZsql[4], SMP["cos_W"] -> SMP["m_W"]/SMP["m_Z"],
SMP["sin_W"] -> Sqrt[(SMP["m_Z"]1"2 - SMP["m_W"]"2)/SMP["m_Zz"]"2]]

In[11]:= finresdMZsql = SMPToSymbol [ampdMZsql[5]] // Simplify

The output result agrees with (3.27).

A similar approach can be used for the wave function renormalization constant. Let
us consider Higgs boson wave function renormalization. We know from (3.18) that dZy
is given by the real part of the derivative of the Higgs boson self-energy at p* = M.

First, the difference is in the incoming and outgoing particle; for the Higgs boson, it
should be S[1] (in SM). Next, in the input line In[7], we do not need the projector for
the transverse part. Then we simply take the derivative of the amplitude with respect
to the squared momentum. The rest of the approach is the same as in the previously
described case.

Finally, results for fermion self-energies with general decomposition

S (p) = pPLEL(0%) + pPrER(P?) + myEL(p?), (3.30)
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at any order can be obtained using the following set of projectors

SL(p?) = Tr[Efi], (p* #0), (3.31)
SL07) = TPE 5l £ 0) (3.32)
Shr') = TP 55l 0 £0) (3.33)

For contributions with p? = 0 one needs to take the limit p*> — 0 of the above expres-
sions.

As a side remark, some care is needed in numerical analysis and comparisons with
results like in (3.26) and (3.27), as various programs may differ in the definition of
Feynman integrals. This is important if we use different programs simultaneously. For

instance, the default definition in the discussed later AMFlow or AMBRE packages is

1 dPq
2\ _
Ao(m®) = 75 | et (3.34)
Other programs can add EulerGamma prefactors
2y _ " d"q
Ao(m®) = 5 | e (3.35)
In LoopTools:
1 dPq (1 —¢e)I'(1+¢)
Ag(m?) = / - . 3.36
o) = S5 | e T T(1 + 2¢) (3.:36)

So for Ag(1) we have three different results

Aghorrefactor (1) — (4922784 + 1/ + 1.41184¢ + 0.504361> + . .. (3.37)
1
AOEulerGamma<1) = 14+ -+1+ 1+9 e+ 1+9—@ 82—|—... (338)
€ 2 2 3
= 14 1/e+41.82247c + 1.42178% + . .. (3.39)
AgeoPTool (1) = 14 1/e + 2.64493¢ + 5.04905¢2 + . . . (3.40)

For more on the Feynman integrals definitions and conventions, see remarks in [165].
Throughout our calculations, we use a convention defined by (3.35) and expansion
(3.38).

Similarly to the sketched above self-energy case, vertex amplitudes can be generated

for which similar steps follow. They are needed both in the case of the muon decay (W —
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[ — v electron and muon vertices) and Z boson decay (Z decay to leptons and quarks).
If the electroweak charged vertex with a left-handed current, needed for instance for
the muon decay amplitude, is written in the form V, = C ﬁg(kl)”y#%u,,(/@), then the
C can be extracted using the following projection

1 5
C= Tr{lr]fwvgmp} (3.41)

2D ——

VP stands for the any order amplitude with external u spinors removed. Higher order
results for the C' form factor will be given in chapter 5.

All one-loop renormalization constants relevant for the main calculations of the the-
sis are gathered in the 1ILCT_FAFC.nb notebook in the repository (https://github.
com/k-grzanka/PhD_res) [166]. These renormalization constants needed, following

FeynArts notation, and used internally throughout all the calculations, are

dMWsql dMZsql dMHsql
dZH1 dZW1 dZ771
dZAZ1 dSW1 dCW1 (3.42)
dZAA1 dZel dMf1]3, 3].

3.3.2 Beyond one-loop contributions

Going beyond the one-loop order, we sketch the needed basic manipulations by dis-
cussing vertices and corresponding counterterms. In general, the following expansions
up to the third order of perturbation apply, such as inverse, square root and inverse

square root of the functions
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Z = 1+e62W +£%629 3623 (3.43)

Z7V = 1—-e62W — 2523 — 3620 4 2(62M)2 — 3(62W)2 4+ 2:362M 5232 (3.44)
1/2 Loy Losoo  Lacom Lo e, b 3,03
Z = 14+ =62 4+ 29029 + =262 — —e2(62'7)* + —€°(6Z2")
2 2 2 8 16
1
_ 1535%1)52(2) (3.45)
772 = -tz JLasze JLasse 3255002 0 5 a0
2 2 2 8 16
3
+ 1535%”52@) (3.46)
742 = Lesz® 4 Loz o Loss @) 3.47
ZA = 80274 T 5E02 T 5E04,, (3.47)
s = s+edst) 42653 4 36503) (3.48)
analogous for ¢ and dc(?) = _ 55
c
s o= sl —esT20sM) — 25720502 — £3572550) 126357355 55V 4 2573 (551))2 — 3572 (55(V)3
(analogous for c) (3.49)
572 = 572 —2e57305) — 26257365 — 2e35736503) 4 3257 4(55(V)?
63573052 51 — 423575 (551))3 (3.50)

(analogous for c).

Here, ' flag denotes the order of expansion, s and c¢ are the sine and cosine of
the Weinberg angle. These relations help to find the vertex counterterms beyond the

one-loop level.
Let us consider a four-point vertex in SM, defined as in [154].

VVVV vertex:

Vi Vs,
;{ — 7/620 |:2guygpo' - g,u,o'gup - g,upgl/a . (351)
Vo Vie

At the tree level, coefficients C' of the VV V'V vertices are
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ViVaVsVy C
WAWAW-w- 4

wtw-zz -4 (3.52)
WrW-AZ ¢
WHW-AA -1

All SM vertices with 1-loop counterterms are encoded in the SM.mod in the FeynArts
package. Here we show the verbatim form of the W~W~-WTW™ vertex

cf-v(3l, -v[3], v[3], V[3]] ==
{{((2*%I)*EL"2) /SW"2, ((-4*I)*EL"2*(dSW1 - (dZel + dZW1)*SW))/SW"3,

((2+I)*EL"2%(3*dSW1~2 - 4*dSWix(dZel + dZW1)*SW +

SWk (-2%dSW2 + (dZel™2 + 2xdZe2 + 4*dZel*dZW1 + dZW1~2 + 2%dZW2)*SW)))/
SW~4}, {((-I)*EL"~2)/SW"2, ((2*I)*EL"2%(dSW1 - (dZel + dZW1)*SW))/SW"3,
((-I)*EL"~2%(3*dSW1~2 - 4%dSWi*(dZel + dZW1)*SW +

SW# (-2xdSW2 + (dZel"2 + 2*dZe2 + 4*dZelxdZW1 + dZW172 + 2%dZW2)*SW)))/
SW~4}, {((-I)*EL"2)/SW~2, ((2*%I)*EL"2*(dSW1 - (dZel + dZW1)*SW))/SW"3,
((-I)*EL~2%(3%dSW1~2 - 4*dSWi*(dZel + dZW1)*SW +

SWk (-2%dSW2 + (dZel™2 + 2xdZe2 + 4*dZel*dZW1 + dZW1~2 + 2%dZW2)*SW)))/
SW~43}},

According to (3.51), on the right side, there is a list with three entries corresponding
to the three entries in the kinematic vector. Each component is again a list where the
first element is the usual (counter-term order 0, or tree-level) coupling, the second, the

counterterm order 1 coupling, and so on.

These relations can be obtained using relations (3.43)-(3.50), expanding all four
fields in a given vertex to the desired order in e together with expansion of the e?

factor and C' coefficients. We get, here up to the third order in e
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Tree
C(WWWI/V

(1)
C'WWWI/V

2
@i —

3)
Cwwww

1
= (3.53)
1 68(1) 1
5 (2529 —2——+ 25259) : (3.54)
1 2 2
> (62) + 202 + 4520525 + (625)) + 202

2
1 (3 (6sM
- u — 265 — 465sWs 20 —45sWsZ20 ||, (3.55)
S S
1
(2620622 + 2528 12 (520)" 62 + 462262
S

2
2020 (625)) + 4020623 + 202562 + 202
1 4(550)° 6asmss@ 6 (5sM) 520
( -ty +
S S S S

D)2 57
6(050) 32 —285®) — 465520 — 255 (52(1))2
s e e

465523 — 455520 — 85sWsz M5z

2
265 (52Y)) —455”52&?) , (3.56)

where the number in superscript brackets indicates the order of correction. In this

case, the procedure is rather simple; we expand the functions in the ¢ flag, denoting

the order of the expansion. It gets a little bit trickier when we consider fields mixing,

as in the A — Z case, for instance, considering the WTW~AZ vertex. In this case,

one needs to actually consider three different scenarios: the initial WW AZ vertex and
WW AA and WW Z Z vertices, as the photon and the Z boson can be transformed into

each other. In the end, we need to sum up the results as follows

Civwaz +1/2 (CI(/KZ)WAA + Ci(/[i/)WZZ) (3.57)

Taking all of the terms into account, the final results are
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ree ¢
CwWivaz = g’ (3:5%)
0 c @ 16s (1) (1) (1)
Cliwaz = <[220 —— 00w + 5025 + 502,
1 1 1c? 1
2 2
3(0s)" (02V) 52®
@ _ | ( B A A 4 s7Wsz) 4 (570 ?
Cywwaz 5 9 ] + 2 ToZa0% +( e)
571 5 7(1)
o vaiz B i o
1 1 1 1 1
4 ‘ 2
9 2
(022') oz | (55)  oshozflh o5
8 2 cts? cs? c?s
) PROPIAR 2050620 5sWsz) B c6ZWsz)
2¢2s c2s c?s 5
comiezy  cozll 6oz o707y
96 %25 2¢%s 4s
5620628 562 56285z sszozly (3.60)
4c 2¢c ¢ 2c ' |

The three-loop result is not presented here due to its size.

The complete derivation with detailed steps for the discussed vertices can be found
in a file Vertices_ CT.nb in repository [166]. For our purposes, we have extended
FeynArts 1-loop SM.mod model file with necessary higher order counterterms. Al-
together, there are 118 2- 3- and 4-point vertex counterterms for all SM particles,

including Faddeev-Popov ghost and Goldstone fields.

As an example of higher order counterterms relevant for the chapter 5 calculation,
we present the W boson propagator as well as the charged current vertex at the two-

loop order

w w

NRANRDANRNNAS = 02 (K — M) — oMy — 628 sV (3.61)
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1
(028 + 0730 +62P) + 1LRC| .

(3.62)

Here 1LRC stands for 1-loop renormalization constants, numbers in parentheses
indicate the loop order and the index T indicates the transverse part of the propagator.
For the higher-order calculations, we also need to include mixed contributions of
loop integrals with counterterms. These can be treated similarly to the 1-loop pro-
cedure outlined in section 3.3.1. Consider a three-loop contribution from W boson

self-energy integrals composed of one-loop integral with two 1-loop counterterms, see
Fig. 12.

Figure 12: Exemplary one-loop diagram with two one-loop counterterms insertions

generated with FeynArts.

In our calculations, we are finally interested in contributions of the O(a?«,) order.
In the case of this diagram, the strong coupling comes from one of the top quark mass
counterterm insertion dMf1[3,3]. This counterterm is the only one-loop counterterm

that contains a term of the order O(«y), it comes from the following diagram

g
t Cpxg?*(2—3D + D?) x Ag[M}]
—>—§t p—— = dMfl1[3,3] = — G2s M sm2s(31D) (3.63)
t

Of course, for mixed EW-QCD effects, we must also consider electroweak contributions
to dMf1[3,3] of the O(«) order.

FeynArts treats the diagram in Fig. 12 as a box diagram with four propagators.
The corresponding integral is the following
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1
I = .
k3 % ((ky — p1)? — M?)3

The TID FeynCalc function can translate it to a form of the Dy Passarino-Veltman

(3.64)

integral. This we can express back in terms of Ag and By integrals, using Integration by
parts (IBP) reduction. The integral can also be computed analytically or numerically
using tools described in section 3.3.1. Going beyond the 1-loop level, we use IBP
reductions directly.

Using the same approach, we can generate and simplify expressions for the integrals

composed of a two-loop integral with a one-loop counterterm, see Fig. 13.

Figure 13: Exemplary two-loop diagrams with one-loop counterterm insertions gener-
ated with FeynArts needed for O(a?ay)

Notice that the diagram on the left in Fig. 13 and similar diagrams with 1-loop
vertex counterterms do not contribute at the O(a?a,) order. As just discussed in
the case of the diagram in Fig. 12, there are no nonzero 1-loop vertex counterterms
proportional to the strong coupling at this order. The other diagram, on the right side
of Fig. 13, in contrast, has a gluon explicitly and thus contributes at the O(a’a;) order.
In the 2-loop case, though, we cannot express the integrals in terms of 1-loop Passarino-
Veltman integrals and one of the existing 1-loop numerical packages. To compute
integrals beyond 1-loop level, e.g. corresponding to diagrams in Fig. 13, we can use
methods described in the next chapter, such as sector decomposition, Mellin-Barnes
method or AMFlow. Similarly, we proceed to calculate pure three-loop contributions.

The approach outlined in the present chapter for creation and evaluation of Feyn-
man amplitudes using FeynArts with FeynCalc can be used for calculations at any
loop order. The automated procedure for numerical calculation of multiloop integrals
extracted from investigated amplitudes using both pySecDec and AMFlow will be de-
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scribed in sections 5.1.1 and 5.1.4, respectively. However, before giving details of the
concrete calculations in chapter 5, in the next chapter, we discuss the status of the main
methods and tools developed in recent years for the calculation of multiloop Feynman
integrals. Results analogous to (3.42) at the two-loop level necessary for the full three-
loop calculation can be found in 2LCT.txt in repository [166]. In our calculations, we
have excluded the contributions that have already been computed, i.e. diagrams with
a gluon exchange and two closed fermionic loops as well as diagrams with three closed
fermionic loops [167,168] to avoid the double counting in the final merging of all the

available results that will be included in phenomenological studies.
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4 Multiloop calculation methods

Analytic computation of Feynman integrals can be rather difficult beyond the one-loop
level, especially when corresponding diagrams include many massive propagators and
external legs (many kinematical variables) [169]. As we discuss SM multiloop calcula-
tions up to the NNNLO (3-loop) order, we rely on numerical techniques. Thankfully,
many numerical /approximate methods of evaluation have been developed and imple-

mented in publicly available programs. To begin with, we can list the following

 Sector decomposition (SD)

— pySecDec [170,171]

— FIESTA [172]
o Numerical Mellin-Barnes (MB) method

— MB [173]

— MBnumerics [174] (with automatic generation of MB representations: AMBRE
[175,176], MBcreate [177], method of brackets [178])

« Differential equations (DEqs)

DiffExp [179]

Seasyde [180]
— AMFlow [181]

— Numerical Differential Equations with Euclidean Boundary Transport
(DEqsEBT) [PhD1]

LINE [182]
o Integration By Parts (IBP), used with DEqs

— Kira [183-185]

Fire [186-188]

LiteRed [189]

— Reduze [190, 191]
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The above are the main methods used nowadays, see discussion in [165]. However,
there are more exploratory ideas on numerical calculations. The pace is for fast and
stable numerical implementations. Here we list some of the ideas developed in recent

years

Numerical Loop-Tree Duality

— cLTD [192]

— Lotty [193]

Tropical sampling - Feyntrop [194]

Taylor expansion in Feynman Parameters - TayInt [195]

Multi-Dimensional Integration with Quantum Adaptive Importance Sampling

We cited only a few examples of exploratory directions with public packages. There
are also new ideas and techniques like direct numerical evaluation of multi-loop inte-
grals without contour deformation [196] or a quantum algorithm for multi-dimensional
integration with quantum adaptive importance sampling [197].

Now we will shortly introduce the main methods which are used in getting numerical

results in the next chapter.

4.1 Sector Decomposition (SD)

The method can be shown on an example of the simple two-dimensional parameter

integral

1 1 -1
o —1—ae  ,—be o
I = /0 dx/o dy x Yy (x+ (1—2) y> : (4.1)

Such integrals appear in Feynman parametrization of virtual amplitudes as well as in
real phase space integration [169]. Before settling the problem, let us first briefly review
the general parametrization of Feynman amplitudes, which include such integration
regions. For simplicity we focus on multillop scalar integrals G[1], for general tensor

integrals see e.g constructions in [175]

1 deky ...d%y,
il = Gy | @t 4
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A single Feynman propagator D; is of the form
2

L E
D =q¢?>—m? = [Z cé/{:l + Z dfpe] —m3Z, (4.3)

=1 e=1
where k; and p, are internal and external momenta, respectively. The ¢, d¢ € [—1,1]

are integer coefficients and depend on a particular topology.

To proceed further, we introduce a generalized Feynman parameter representation

Dnl DTL2 DnN - F 1‘\ (44)
1 P27 Uy (n1)...T'(nn)
n 1
et N Tl - — L — )
d /d ! N ,
/ o TN .Qlel + ...+ QJNDN)N”

with N, =ny + ...+ ny.

Let us now consider the momentum dependent function
mQ(f) = ZElDl + e + xzDz —|— e —|— ZL‘NDN = k’LMZ]k] — QQJ']{?]' + J, (45)

where M is an (Lx L)-matrix, Q = Q(x;,pe) — an L-vector and J = J(z;x;, m, pe, * De,)-

Before integration over loop momenta, one has to perform several preparatory steps:
o Shift momenta in order to remove linear terms in k,
k—=k+M1'Q=m?>=kMk—-QM'Q+J (4.6)
Shifts over internal momenta leave the integrals unchanged.

o Wick rotations — transform Minkowskian space into the Euclidean for all loop

momenta:
ko — iko; kj — kj(1<j<d—1)=k — —k* d'%k — idk.
» Diagonalization of the matrix M:
EME = (V(@)R) V() MV () 'V(e)k, k) =V(2)k
VMV = My, (VI=V"1),

kMk = k(2) Mgiagh( Z ik (x

The operation leaves integrals unchanged. After Such manipulations, the function

m? has the following form:
L
>kl - QMT'Q + J.
i=1
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e Rescale k;:

L
ki — agki = d'%; — (a;)"?d%; and [] oy = det M.

i=1

Finally, we obtain

Grll] = (=) (5)"(det M)_d”i/dxl de/ . Dk ...Dkp, _
11 F(na) (Z k§+QM1Q_J>
i=1
(4.7)
. dk
with Dk = ey

Now the integration over loop momenta can be done in a simple way

Dki...D (N, - 4L 1
iL/ kl kL - ( & ) dL (4'8)

(i e 2“))% V) ()

-i( > kfw?(@) L,
/ Dky ... Dkpe (— = (—i)H2emi @) (4.9)

with p?(z) = QM~'Q — J. The final result (Feynman parametrization) is

(—1)™T (N, — o U () No—d(L+1)/2
Gr[l] = ~ ( )/de] Ss(1 —sz ;) N, aLji (4.10)
11 T(n:) =t

where we introduced two Feynman graph polynomials U and F

m? = kMk —2Qk + J < U = det M, (4.11)
F=—detM J+QM*Q. (4.12)

An example of how F' and U polynomials can be obtained is given in Appendix C.

Coming back to the integral in (4.1), it contains a singular region where the singu-
larities in x and y are overlapping. The aim of this method is to divide the integration
range into two (or more) sectors, in which the singularities for x — 0 and y — 0 are
factorised (see Fig. 14).

I = /01 dx /01 dy x=170e gt (:E +(1—2x) y)l O —y)+O6(y —)].
(1) (2)
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Y

Figure 14: Sector decomposition schematically.

The following substitutions can be made y = x ¢ in sector (1) and = = yt in sector

(2) to remap the range of the integration into the unit square and get:

1 1 -1
I = /dmx’l’(“”’)e/ dt (1—1—(1—95)15)
0 0

1 1 -1
+ /0 dy y =t (athe /0 dtt 17 (1+(1—y)t> : (4.13)

In this form, we can see that the singularities are factorized in a way that they
can be read off from the powers of monomials in the integration variable, while the
denominator goes to a constant when the integration variables approach zero.

In order to get complete factorization of the singularities, iteratively, the same
concept can be applied to N-dimensional parameter integrals over polynomials raised
to powers. Such more complicated integrals appear in the case of multiloop Feynman
integrals.

The automatic SD approach to the three-loop self-energy integrals considered in the

thesis is discussed in detail in section 5.1.

4.2 Mellin-Barnes (MB) Method

The method is based on the following relation

z

(4.14)

1 1 1 c+i00 B
(A+ By  T(\)2mi /H-oo 2T+ 2)T(=2) 755

where the poles of Gamma functions I'(—z) and I'(A + z) are separated by the inte-
gration contour in the complex plane. A and B are complex numbers that fulfill the
larg(A) — arg(B)| < m condition, for details see [165].

This relation can be applied to physical problems, for example we can rewrite the

massive propagator as discussed originally in works by A. Davydychev, B. Arbuzov, E.
Boos, V. Smirnov, see e.g. [198-200]

(4.15)

1 1 1 +ioco
(p? —m2)*  T(a)2mi /—ioo dzT(a+2)0(=2) (p2)ets
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However, a real breakthrough in the application of the MB method to Feynman integrals
came with works by Smirnov and Tausk, who applied the MB formula (4.14) to Symanzik
polynomials in (4.10), which results in analytic evaluation of two-loop planar and non-
planar box diagrams [201,202].

In general, MB applications cover basic research areas:
» Real (soft, collinear) and virtual corrections
o Analytical and numerical solutions.

All these issues have been extensively discussed in the textbook [165]. One of the
key features of the MB approach (similarly to the SD approach) is its focus on an
individual Feynman integral, which can become advantageous. In the context of this
thesis and multiloop calculations, MB was crucial for the completion of 2-loop Z decay
EWPOs (8-digit accuracy was demanded for numerical evaluation of MB integrals in
Minkowskian region) in conjunction with the SD method [64, 66, 141].

As a simple example of how the method can be applied in real calculations, let’s con-
sider first real radiation and typical phase space integration for the following massless

integral with kinematics p? = p3 = p2 = 0 [203]

1
/d¢3<pl’p2’p3’Q) (pr - p2)(p1 - p2+p1 - p3)

It can be shown [204] that in d = 4 — 2¢ dimensions the integral is proportional to

(4.16)

/01 dm/olx dy  y (1 _$_y)_€3c(951—|—g/)’ (4.17)
which, by change of the variables y — (1 — )y, can be brought into the form
! ! —1-¢ 1-2¢, ¢ —e 1
/0 dx/o dy = 5(1 —xz) =y (1 —y) o (4.18)

Now we can use the Mellin-Barnes formula (4.14) to get the MB representation

/_-::o dZF<1 B 5)F(_21>F<;1<;__1)31;§_5 - ZI)F(ZI B 5>. (419>

This 1-dim integral is obtained by applying in addition the following (first) Barnes
lemma (1BL)

dzT(a+2)['(b+2)(c—2)T(d—z) =

. (4.20
0—ioo I'la+b+c+d) (4.20)

/zo+z‘oo F(a+c)T(a+d)T(b+ c)T'(b+d)

wherea +b+c+d<1, a,bc,deR.
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In this form, the integral (4.19) can either be expanded in ¢ or evaluated either

numerically or analytically, as discussed in [165].

Knowing the general idea behind the MB representation, we can proceed to more
complex examples connected with multiloop problems. The level of complexity, at a
given loop order, depends on the number of virtual massive particles in the Feynman
integrals. Let us discuss an example for the 3-loop studies of the fermionic class of
diagrams. In Fig. 15 (left) a single-scale six propagator two-loop integral is shown,
which has been discussed in section 2.1 in [141]. This is one of the difficult cases
for sector decomposition. Its MB representation is 3-dimensional and it can be treated
accurately with the integration package Cuhre [205,206]. Typically, for a 3-dimensional
integral to get an absolute accuracy of 1078, with a sample of 107 points, Cuhre needs
a few minutes on a medium-sized 1-core notebook. Roughly, we may assume that 102
points are needed per dimension. Consequently, to take into account about 10® points
will already take hours. Inserting a top-quark loop to the Z propagator in the left
diagram of Fig. 15 results in the 3-loop fermionic diagram shown in the right part of
the figure. Fermionic insertions increase the dimensionality of the MB representation
by one, and the corresponding result generated by the Mathematica package AMBRE

v.2.1.1.m for the scalar integral corresponding to Fig. 15 is

Figure 15: An example of a 3-loop fermionic Feynman diagram with a self-energy

insertion derived of the two-loop diagram on the left.
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MBrig. 15 = —/dzl/sz/dzg/dz4(—s)’35’3 (—Mf/s)z3 (—]\4%/5)z4 (4.21)

F(—Zl)r(—ZQ)F(—Zg)F(—Z4)F(2€ — 21— 20+ 23+ 24+ 2)
F(]_ — 2€)F(1 — 21>F<1 — ZQ)F(—2E — 223 + 2)F(-38 + 21+ 20 — 23 — 24)

X F(Z4 + 2)F(—E — Zl)F(—€ — ZQ)FQ(_E — 23+ 1)F(€ + zg)F(zl + 29 + 1)

X Te+z+z+ ) (—2e4+21 —253— 24— )I(—2e+ 20 — 23 — 24 — 1).

As expected, such MB integrals are quite unstable in the physical region, e.g., s =
MZ%. One of the reasons is the kinematical factor in the first line of (4.21). There
are several methods to make the integral stable (shift and deformation of integration
contours, transformation of variables). The Mathematica package MBnumerics.m can
be used for that, as discussed in [176,207-209]. The result for the point s = MZ +ic is

3.548726835333682 (4.7 - 107 !1) — 4.630478414501253; (6.1 - 10~11)
€
— 7.5448035410152805 (2.4 - 1077) — 31.14924308603089i (2.4 - 1077). (4.22)

MB(s = M) =

In brackets, the absolute error of the calculation is given. The maximum number of
sampling points for Cuhre was set to 107.

It is interesting to note that for some cases the standard integration (without any
manipulation of the integrations paths) with MB.m can work also in Minkowskian regions
using transformation or mapping of the infinite integration region (—oo, 00) into a finite

1

one, [0,1] with trigonometric functions, t; = tan (W(JEZ — 5)); instead of logarithms,

t; =In (1?:}0)’ as implemented in MB.m [173]. This changes the asymptotic behavior
of the integrand and makes the numerical integrations more stable.

Typically, if we would like to get an accuracy of 1071Y for 3-dimensional integrals
with the deterministic integrator Cuhre of the package CUBA [206], about 10° points
are needed, and the numerical evaluation will take days. For the same accuracy and
4-dimensional integrals, it would take months on a 1-core computer. These are some
rough estimates of the present boundaries of calculations. Some other interesting MB
representations which were explored for the purpose of the 3-loop SM self-energy cal-

culations in the present thesis can be found in [PhD2] in List of papers.
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4.3 MB versus SD

In general, MB works well for hard threshold, on-shell cases, not many internal masses.
On the other hand, SD is more useful for integrals with many internal masses (no need
for a larger number of sector decompositions). Before we proceed to the presently
most robust method of multiloop calculations by differential equations, let us compare
MB and SD approaches taking an example of the 2-loop non-planar integral in Fig. 16
with one internal mass only, which in addition equals the square of the external four

momenta.

Figure 16: Nonplanar two-loop vertex V611im with one massive propagator which mass

M coincides with external invariant energy.

The numerical result for the constant part €° of this integral is

» FEuclidean results (constant part in ¢)

Analytical :  —0.4966198306057021
MB(Vegas) :  —0.4969417442183914
MB(Cuhre) : —0.4966198313219404 (4.23)
FIESTA : —0.4966184488196595
SecDec : —0.4966192150541896

» Minkowskian results (constant part in ¢)

Analytical : —0.778599608979684 — 4.123512593396311 - ¢
MBnumerics : —0.778599608324769 — 4.123512600516016 - ¢
MB + thresholds : —0.7785242512636401 — 4.123512600516016 - ¢
SecDec : big error [2016], —0.77 — i - 4.1 [2017],
SecDec : —0.778 — ¢ - 4.123 [2019]
pySecDec + rescaling : —0.778598 — i - 4.123512 [2020]

(4.24)
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Numbers in blue denote the accuracy of the result. The integral was evaluated at
s = M2 =1+ where ¢’ is a small parameter, here &' =4 - 1077, To get the correct
sign of the imaginary part of Feynman integrals in calculations, the same 9’ prescrip-
tion is assumed everywhere. The analytical result can be found in [210]. The MB running
file MB_V611m. sh for MBnumerics.m and configuration files SD_V61im_generate.py and
SD_V611im_integrate.py for the pySecDec evaluation are for the scalar integral which
corresponds to Fig. 16 available at [211].

The MB+thresholds method for which the result is given in (4.24) relies on an
appropriate grouping of the F' polynomial terms (see Appendix C) for the MB transfor-
mation, namely, the F' polynomial for a given Feynman diagram can be written as a

sum of two parts

F=FR+U> zm. (4.25)

i=1

Fy(z) corresponds to a diagram with all massless propagators. It depends on kine-
matic invariants. The second term U(z)Y"; m?z; depends on the masses of internal
particles. We can construct the MB representation by not expanding the second (in blue

colour) term

U(w)Nrd(LH)/z H ( ) >Zi U(x)Nrd(L+1)/2+Zi 2
(Fo(z) + U(z)Y; max;) V2 4 Fo ()N a2 5

1

G(X) ~ (4.26)

This approach gives optimal dimensionality, but at a price: we lose information
about physical and pseudo-thresholds. By a physical threshold, we consider a kinematic
point where the F' polynomial starts to be negative. For the pseudo-threshold, one of
the terms in F' becomes negative. Typically, we can separate and collect x;z,x) terms
with a common Y (m? — s) dependency in F. There is a physical threshold at s = 0
and pseudo-thresholds at points s = > m?. For m? = s, this term vanishes, and the
F' polynomial with non-negative terms can be resolved numerically without contour
deformations like in the Euclidean case directly with MB.m.

The discussion of the integral by the pySecDec team (2017) can be found in [170].
Rescaling for the 2020 SD result in (4.24), with additional investigations for the purpose
of precision studies done in this thesis, will be discussed in chapter 5.

Finally, we should note a remarkable progress by the pySecDec team described
recently in [212]. The point is that knowledge of Landau poles and expansions by

regions makes it possible to avoid contour deformations. The new result is?

2S. Jones, private communication
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Ivenm = € 2(40.000000000000000 + i - 0.0000000000000000)
4+ ¢3(+0.0000000000000000 + 4 - 0.0000000000000000)
+ e 3(+1.2337005501361702 + 4 - 0.0000000000000000¢)
+ ¢ 2% (4+7.0283541660394319 - 1076 +4 - 0.0000000000000000)
+ e 1(+2.8902545096590662 + i - 3.8757845850374752) (4.27)
4+ e71(43.1043864641637521e — 12 + 1.2989348865275077 - 10719)
+  (+0.77859960898646108 + i - 4.1235125933366232)
+  (+3.6966843561201167 - 10~ +i - 1.2914986997032820 - 10~ 7).

As we can see, there is a huge progress in precision for the used method as well as at

the speed of calculation (declared one to two orders of magnitude).

4.4 Integration by parts and Differential Equations (DEqs)

Integration by parts reduction is an important part of most of the multi-loop calcu-
lations nowadays. The IBP identities in D dimensional spacetime are used for the
reduction of multi-loop Feynman integrals to the basis of master integrals.

Let us consider a Feynman integral with L loops

L D
Pl 1
/H — -, (4.28)
PRI, Dy

Jj=1

where «; are integer indices, denominators D; are given by

L L
D= > A, -+ Bl - I+ E (4.29)
j>k>1 i=1

i.e they are linear or quadratic functions of external momenta p; and loop momenta ;.
The well known IBP relation [213,214] has the following form

-y %L 9 (L T1p (4.30)
— ) Wi g, \MHLT ) '
where m = 1,...,L and ¢, is a linear combination of external momenta and loop

momenta. Using the IBP identities, one can find a set of master integrals (MlIs), which
are the basis of a given integral family. It has been proved in [215] that the number of
master integrals is always finite. Thus, one can rewrite a Feynman integral as a linear

combination of master integrals
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[[Oéi, ceey Oén] = Z C’L'Iia (431)

where [; are the MIs and «; are the integer indices of denominators.

There are various algorithms for the IBP reduction, such as Laporta algorithm
[216], finite-field interpolation [217-220], direct solutions IBP recursive relations [221],
intersection theory [222], module intersection [223], the algebraic structures of IBP
relations [224-226], n expansion [227]. There is also plenty of public codes for the IBP
reduction, such as KIRA, REDUZE, LiteRed, FIRE, AIR [1837191,2287230].

The idea of solving Feynman Integrals using differential equations appeared in the
1990s in papers by Kotikov and Remiddi [231-234]. The basic idea behind the use
of differential equations in connection to IBP reduction in loop calculations is the
following. Having a basis of master integrals of a given integral family, one can notice
that their derivatives can be expressed as a combination of Feynman integrals within
the same family with different exponents of propagators. These can, again, be IBP
reduced back to the original set of master integrals, and thus we obtain the derivatives
of master integrals as a linear system of differential equations.

Consider a Feynman integrals family with m master integrals put into a vector
f = (f1, .-, fm)- Let the Feynman integrals depend on a set S, which consists of squares
of internal masses and kinematic invariants, thus, squares of the sums of external

momenta. The related system of differential equations can be written as

cﬁ:<§p%@>ﬁ (4.32)

seS

where A, are the so-called partial derivative matrices. Knowing that the total differ-

ential should vanish, d*> = 0, we obtain the integrability condition

s, A, — 05, A, + [As,, As,] =0 for all s1,80 €S, (4.33)

The choice of the so-called canonical basis can significantly simplify the differential
equations. The concept was first introduced in [235]. Considering a general shift of
basis B = T~! f, where matrix T can depend on internal masses, ¢ and kinematic

invariants, the partial derivative with respect to variable s takes the following form
9
Js
In [235] it was observed that if T fulfills

B=[0sT™H)T+T'A,T|B. (4.34)
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(0sT )T + T 'A, T =cA,, (4.35)

for all internal masses and kinematic invariants s € S and A, does not depend on ¢,
the differential equations are considerably simplified. It is supposed that such a choice
of T matrix is always possible.

The canonical basis for the integrals, that can be expressed in terms of multiple

polylogarithms, can be written in the form

dB =cdAB, A=Y Ajlog(l). (4.36)
leA

In general, finding a canonical basis is a key step in constructing solvable differential
equations (both numerically and analytically). One of the features of this construc-
tion is that solutions constitute uniform weights for HPLs (harmonic polylogarithms)
solutions (if they exist). This is especially important when a system of differential
equations includes more coupled MIs, e.g. in [236] DEqgs with up to 6 MIs appeared
(two-loop Bhabha scattering in massive QED). These systems have been solved only
after the canonical basis was implemented for planar Feynman diagrams [237]. There
are many public programs for such construction like Libra [238,239], epsilon [240],
Fuchsia [241], Canonica [242], Initial [243]. Nowadays, the solutions go beyond
HPLs (harmonic polylogarithms) and include elliptic functions and possible general-

izations. For some latest reviews, see [244-246].

4.5 Numerical Differential Equations with Euclidean Bound-
ary Transport (DEqsEBT)

As will be discussed in the next chapter with numerical results, our aim is to go one
step above the present status of EWPOs calculations presented in section 1.3 and tables
Tab. 1 and Tab. 2, i.e. we aim at the calculation of O(a?ay) contributions needed for
the muon Ar parameter and Z decay observables.

The methods described earlier of sector decomposition and Mellin-Barnes represen-
tation were used for the calculation of the complete SM 2-loop corrections to Z boson
production and decay [64, 66, 141]. However, these methods require large amounts of
computing resources and do not always converge to the required level of accuracy (or
have failed completely in many cases), so that a straightforward extension to more
loops and/or legs is practically not possible at the current state of the methods, see

further discussion in section 5.1.2. As for the three-loop calculations, we aim for at least
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3 digits of accuracy for the final result for any practical application. This, based on
the experience gathered in [66] is expected to translate to at least 8-10 digits accuracy
for individual loop integrals®.

Thus, in [PhD1] we evaluated for the first time the most difficult three-loop tensor
self-energy and vertex integrals in the SM framework at the precision level required by
future collider physics analysis.

As I spent a considerable amount of time during the PhD studies for a thorough
investigation of the DEqs method, I describe this issue and the worked-out approach
with basic results in more detail.

As already discussed, for many families of Feynman integrals, one can choose a
particularly simple “canonical” form of master integrals [235]. These, in turn, in many
cases, can be solved in terms of multiple polylogarithms straightforwardly. In general,
not all Feynman integrals are of polylogarithmic type and finding a closed set of analytic
functions in terms of which DEqgs can be solved may become more difficult. To avoid
this problem and tackle a wider class of integrals, one can evaluate a set of master
integrals by numerically solving a system of differential equations either in terms of
kinematic parameters [247-249] or in by introducing an auxiliary mass flow variable
[227,250,251].

The numerical method we used in [PhD1] relies on the iterated series expansion
approach [252,253] extended to be fully automated. To do this, DiffExp [179] was
used, which needs a basis of master integrals resulting in a finite system of differential
equations as an input. The basis is constructed in an automatic way.

To introduce the method, let us consider a basis of master integrals (MIs), F(x,e),
depending on the scale x in dimensional regularization, with D = 4 — 2¢ space-time

dimensions. Differential equations of the following form can be derived:

(Z:ﬁ(x, e) = M(z,e)F(z,¢), (4.37)

where N (x,¢) is a block-triangular matrix and each of the blocks is connected with a
sector of integrals. With these sectors denoted by ﬁ (x,¢), the following decomposition

of DEgs can be done:

a
dx

3The estimate takes into account the number of diagrams at the level of 10° and higher number of

filz,e) = My(z,¢) fi(z,e) + Bi(z,€)di(x,¢€), (4.38)

corresponding scalar and tensor Feynman integrals. Also, the loss of digit precision is expected due
to numerical cancellations between individual loop integrals. For a way how to estimate higher orders

uncertainties, see [PhD4] in List of papers and tables Tab. 9, Tab. 10 in chapter 5.
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where M;(z,¢) is a diagonal block of M (z,e) corresponding to the sector i, and
Bi(x,€)g;(x,e) captures the off-diagonal terms. Now we can expand the integrals and

matrices in €:

[e.9]

filw,e) =Y (.)€,
j=—k

M;(z,e) = i M9 (z,e) e . (4.39)
§=0

The system can be solved order by order in €. The system of differential equations
in (4.38) settles the master integrals up to the boundary conditions. The convenient
choice of the boundary terms, for our approach, are master integrals which are finite
in the dimensional regulator €. To find this MIs representation, we use the package
Reduze. These boundary conditions can be efficiently evaluated in the Euclidean region
using sector decomposition or MB methods. Since these integrals result in a small
number of sectors and there is no need to avoid Minkowskian thresholds by the contour
deformation, we employ pySecDec for the calculation. This computation can be done
with high accuracy.

The system of DEqgs, on the other hand, is derived using Kira. Having bound-
ary conditions evaluated numerically and the system of DEqs derived analytically, we
transport the result from Euclidean point to the Minkowski point with an excellent
precision using the method of series expansions of the DEqs system [247,252,253] and
DiffExp. For the purpose of this thesis and the discussion which follows, we call the
approach worked out in [PhD1] as Differential Equations with Euclidean Boundary
Transport (DEqsEBT).

A scheme of the DEqsEBT method is presented in Fig. 17. We may choose different
Euclidean points in which we compute the boundary terms numerically. To estimate
the numerical error of the method, we can compute the difference between two (or more)
results for the same final point in Minkowski kinematics obtained from the different
boundary points. The uncertainty of the final results estimation depends on the error
of the boundary conditions computation.

The most important novelty of our work is the construction of a framework for
the application of the DEqs transport method to the calculation of physical processes.
This method is based on two key features: (a) an algorithmic procedure for finding an
integral basis for which the DEqgs system is finite, and (b) a prescription for analytically

continuing the series solutions across physical thresholds. With the availability of these
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DiffExp DiffExp
Av(sD) Aa(5D) As(sD) RIf)

Figure 17: Illustration of the DEqsEBT method. The boundary conditions for the
integral f; are evaluated at one or several Euclidean points Ay, where the integral
can easily be evaluated numerically with high precision using e.g. pySecDec. These
boundary value(s) are then transported to the physical kinematic point of interest,
using solutions of the DEqs system (4.38) derived with DiffExp, with the final result
indicated in the figure by the red dot.

procedures, the feasibility of any cutting-edge calculation is only limited by the avail-
ability of the numerical boundary conditions and the integration-by-parts reductions,
but no further analytic studies are needed.

Our method was developed in parallel to and independently of the papers which
appeared practically at the same time [180,181]. Due to the complexity of calculations,
it is desired to have several competing technical implementations, allowing cross-checks
for these very complex calculations. In particular, our aim was to develop an approach
that is not tailored to a particular process but that can be applied to a wide variety of
problems.

To illustrate the benefits of our numerical DEqsEBT approach compared to the com-
putation of each point individually, for example, with auxiliary mass flow methods, we
take a scan over the kinematic phase-space of the two-loop box diagram, reproduced
here in Fig. 18. A corresponding Feynman integral is a part of the O(a?) corrections

to massive eu scattering [254]

R R DD
]Fig. 18[D, {az}7 ) T, 1 ] / [((h . pl)z]al [q% _ m%]ag
" 1 [(q2 = p1)?] 7 [(qn — p2)?’]
(1 — p1 +p3)? —m3]%[(q1 — g2)* — mF]® [(q2 — p1 + p3)?]®[(q2 + p2)? — m3]®0[g3]e

(4.40)

_ dPq, 2 _ .2 _ .2 .2 _ .2 _ 2 _ 2 2
where g, = [ 7% and p{ = p; = mj, p; = pi = m3, pips = (s —mi —m3)/2,

p1p3 = (2771% - t>/27 pP2p3 = (5 +1— m% - m%)/2.
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This 2 — 2 scattering example is more general than the main 3-loop numerical
results discussed in the next chapter for up to 3-loop self-energy and vertex Feynman
diagrams.

P1 my 0 my P3

my my

my

Figure 18: Two-loop box diagram with four scales: s, t, my, ms.

With input parameters s = 2, t = 5, m? = 4 and m3 = 16 we obtain
Irig 18[2,1,1,1,1,1,1,0,0, s,t,m}, m3] =
+ 0.000328707579/62 — (0.0014129475 — 0.0020653306 i)/
— (0.005702737 — 0.000485980 i) + O(e). (4.41)

The Ipig 15 integral family involves 55 master integrals. Here and in all the following
results, we show all significant digits, i.e. the numerical error only affects digits beyond
the ones shown in the equations.

Since the DEqsEBT strategy deals with the thresholds in an automatic way and
system of differential equations with a basis of finite master integrals, we are able
to cover the full physical phase space by performing the DEqs transport along the
differential variable ¢, as discussed originally in [179]. The result is shown in Fig. 19.

&0

.
box2ID4[2, 1, 1,1,1,1,1,0, 0]
s=2, mi=4, m5=16 4
—— Real part
Imaginary part

il il i il
t
-4 2 N\ 2 4

Figure 19: A plot of the finite part box21D4 of the integral Ipi, 15 evaluated in D =
4 — 2e. The plot range is t € [—5, 5] containing 456 points.

The integration-by-parts reduction and boundary terms need to be evaluated only

once before sampling any number of phase-space points. The transport along the t axis
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crosses one threshold region for this case, and it can be carried out with DiffExp in
30 minutes on 1 core. Subsequently, the finite basis results are transformed back to a
basis in D = 4 — 2¢ to arrive at the desired physical result. The numerical evaluation
of this result for any single phase-space point requires only a few seconds. Thus, it is
possible to efficiently evaluate a large number of phase-space points. Such a strategy
for fast phase-space sampling is not available for methods where the DEqs transport
is performed in terms of an unphysical or complex variable, such as auxiliary mass
flow [181,227,250,251]. Thus, the DEqsEBT is worth further tests and developing in

future.

The part that needs the most computing resources in the DEqsEBT approach is the
IBP reduction with Kira and numerical boundary condition evaluation with pySecDec.
The transport from Euclidean points to the Minkowski region is automated, very fast
and deals with thresholds. The approach developed in [PhD1] is not uniquely tied to
using pySecDec for the boundary conditions, but any other sector decomposition tool
or other numerical method can be used. The point is that in the Euclidean region, the
integral is free of singularities and thus one has robust numerical convergence. More
digits of precision could be achieved by simply increasing the number of integration
points (assuming that one does not reach the limit imposed by the machine precision).
In our strategy, knowing the boundary conditions numerically is not a backup solution
but a primary use case: it is important to stress that the capabilities of the differential
equations method to reach new state-of-the-art computations are merely limited by the
availability of the numerical boundary conditions and the integration-by-parts reduc-
tions, when following our strategy. No further analytic studies are involved. In practice,
a set of +id-prescriptions has to be given to DiffExp in order to cross singularities and
branch-cuts. In the DiffExp paper [179], it is not fully specified how to obtain such
prescriptions in an automated manner. For that, we consider all unitarity cuts across
a diagram topology [255], and for each cut we obtain a linear polynomial of the form
s — M?, where s is the square of the momentum flowing across the cut, and M? is the
square of the sum of the masses of the cut propagators. Each polynomial is assigned
a +id-prescription and given to DiffExp, which allows for the automated crossing of
the unitarity cut. Interestingly, we do not search for anomalous thresholds [256,257],
which cannot be found by unitarity cuts. This was sufficient for our applications as
we did not observe such thresholds during the transport from the Euclidean to the
physical region. In general, DiffExp will give an error if a singularity is encountered
for which a delta-prescription is not provided. This way, we manage to fully automate

the question of crossing thresholds. In previous studies, it was not discussed how to
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perform the basis choice and threshold crossing in an automated fashion. Let us note
that recently identification of Landau poles was applied to SD in [212], see sections 4.3
and 5.1.3. For more on recent applications of Landau poles to the analysis of multiloop
Feynman integrals, see [258].

Concerning the run time needed to evaluate MIs within DEqsEBT, at the moment we
are focusing on self-energy and vertex integrals, thus let us discuss the vertex defined in
Fig. 24 for which a numerical solution will be given in chapter 5.2. First, DEqs must be
prepared for DiffExp and the major bottleneck is the run time of Kira. For the vertex
in Fig. 24 we need 4 hours to construct the DEqgs system on a 12-core, 2.7 GHz Intel
Xenon processor cluster with 128 GB of RAM. The second part is the computation of
Euclidean boundary terms,which we evaluate with the sector decomposition program
pySecDec. Since the boundary terms are finite integrals by construction and are free
of thresholds in the Euclidean region, the Monte-Carlo (MC) or quasi-Monte-Carlo
(QMCQ) scaling rules apply straightforwardly. With QMC, we expect to require O(10'°)
points to reach an accuracy of 10 digits for an arbitrary Feynman integral, whereas
presently unrealistic O(10%°) points are expected to be needed for pure MC [259].

With 107 points, we ran the computation on a machine equipped with a 16-core
Threadripper Pro 3955WX. Two different points in the Euclidean region were chosen,
and both took approximately 3 days to complete. The convergence of the numeri-
cal integration appeared better than expected by the approximate O(1/N)-estimate
for QMC. In particular, the maximum relative accuracy estimated by pySecDec was
2.2 - 107 among all the integrals in the basis.

The final part of the computation is the transport of the boundary terms to the
Minkowski regions. The run time of this part of the computation highly depends on
the individual application of the transported result. In our case, we are interested in
the evaluation of the Feynman integral at one particular point. With DiffExp this
is accomplished in about 3.5 hours on a single CPU core for the discussed vertex in
Fig. 24. Note that once the computation with DiffExp is finished, the integral is
available for a fast evaluation (in terms of milliseconds) at an arbitrary point along the
line of the transport from Euclidean to Minkowski point.

The numerical error estimation has two main ingredients: the numerical series ex-
pansion of the differential equation system with DiffExp and the numerical evaluation
of the boundary terms with pySecDec. The numerical error from the series expansion
can always be rendered negligible compared to the error from the boundary terms by
evaluating the expansion to sufficiently high order. On the other hand, the numerical

errors of the initial boundary terms can usually be directly mapped to the final result.
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However, instead of relying on the error estimate from pySecDec, we verify the accu-
racy by carrying out separate transports from two different initial boundary points to
the same final Minkowski point and taking the difference as an error estimate. This
cross-check was sufficient for the examples presented here. Also, if necessary, it is rel-
atively straightforward to increase the accuracy of the boundary terms by using more
Monte-Carlo integration points, since the SD integrand is well-behaved in the Fuclidean
region.

Though in [PhD1] we have proved that the DEqsEBT method we developed and the
obtained accuracy for MlIs evaluation are sufficient for the final precision needs for the
Tera-Z precision physics, the results which will be discussed in the next section for
O(a’ay) precision EWPOs will be obtained mainly with the AMFlow package [181].
This method gives easily higher than 10-digit accuracy. Other methods like MB, SD, or
just described DEqsSEBT serve us with additional cross-checks. For our purposes, the

AMFlow package appeared to be the most efficient, thus it deserves special attention.

4.6 AMFlow

AMFlow [181] is a Mathematica package for Feynman integrals computation with the
use of the auxiliary mass flow method, which is based on IBP and differential equations.
Let us follow the conventions used in [181] when describing the method. Consider

a general Feynman integral within the dimensional regularization scheme:

1(7,5,¢) / ﬁ dPl; Dt Dy
V,S8, &)=
) baie i D/2 (Dl +i0+)u1 "'(DK+iO+)VK’

where v;...vg are integers and vg + 1...vy are non-positive integers, § is a list of all

(4.42)

kinematic variables including Mandelstam variables and particle masses, D = 4 — 2¢
is a spacetime dimension, [; are loop momenta, and L is the number of loops. Now we

can define an auxiliary integral family, putting auxiliary parameter 7 to all propagators
of (4.42)

L le D_VKJrl . _DfuN
[(7,5,2,1) = / i K+l N . 4.43
(V,S,é‘,??) izl_‘[iWD/Q (Dl_n)yl"'(DK_n)VK ( )
The physical result can be easily recovered in the following limit
I(7,5,e) = lim I(7,5,e,m). (4.44)

n—10~
The auxiliary integrals family can be computed conveniently when 7 approaches in-

finity. By the region analysis [260,261], when |n| is very large, the only contributing
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region is the one with ' ~ O(,/7) and so, we can expand every propagator in the

following way

1 _ 1 i(y-)i (_2l-p+p2—m2>” (4.45)
((C+pP=—m?—n)y  —n) 5 i 2=

where (v); = I'(v + i) /T'(v) is the Pochhammers symbol. After expanding all of the

propagators this way, what we are left with are combinations of the vacuum integrals

of the equal mass, which have been studied widely in the literature [262-267]. Though,

auxiliary integrals I,ux(7, §,e,n) can easily be obtained. Then the remaining step is

to recover the physical result, as a result of analytic continuation.

To perform the analytic continuation, we need to set up and then solve a set of
differential equations. Auxiliary integrals can be expressed as a linear combination of
master integrals, and then we only need to do the continuation for the master integrals.
Let us denote the master integrals vector as faw(§, e,n). By the integral reduction, we
can also get the set of differential equations in the following form

0= SR

a—nlaw(s, e,n) = A(e,n)Zauz(5,€,m). (4.46)
These differential equations can be numerically solved with the use of the series expan-
sion for any generic, fixed kinematic configuration s — sy. Note that it is reasonable
to choose sy as some simple rational numbers if possible, as the computational time
depends heavily on the choice of sy. It is similar to solving differential equations with
respect to kinematic variables numerically, which can be used for the flow of parameter
n from oo to the physical value of i0~.

As for the analytic continuation, first we have to define a path connecting points
n = oo and n = i0~, characterized by a set of points {19, 71, ..., }. The series expansion
is then performed on them in order. After the choice is made, the flow of auxiliary
mass is performed in three main steps. First is to expand the integrals around n = oo
and estimating at 7 = 7n9. Then, expanding at n = 7; and estimating at n = 7,4, for
1t =0,...,[ — 1. Lastly, expanding at n = 0 and matching at n = n; to determine the
unknown coefficients in the formal asymptotic series. As a result, it is possible to take
the limit n — 0~ for the expansion at 7 = 0 to retrieve the physical results.

This method is efficiently implemented in the AMFlow package for Mathematica. In
section 5.1.4 it is described how the package was used for the three-loop computation

within the automated scripts.
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5 Calculations at the three-loop order for the SM

muon and Z boson decays

In this chapter, it is shown how we split and calculate the full two-loop O(aay) and
three-loop O(aa;) terms for W, Z boson self-energies and Wiy vertex. As mentioned
in subsection 3.3.2, to avoid the double counting in the final merging of all the available
results that will be included in phenomenological studies, in calculations we exclude
simpler, factorizable contributions that have already been computed, i.e. diagrams
with a gluon exchange and two closed fermionic loops as well as diagrams with three

closed fermionic loops [167,168].

We break the genuine 3-loop contributions into parts that can be evaluated and
cross-checked individually. The final results for each part are presented. The procedure
for amplitudes evaluation is an extension and continuation of what was outlined at the
one-loop level in section 3.3. With each loop order, the complexity and the bookkeeping
of calculations grow rapidly. Our approach, based on FeynArts and FeynCalc, later
connected with numerical packages, mainly AMFlow, is one of the three approaches
developed in recent years in the working group to which I belong. These independent
studies include calculations at the University of Silesia in Katowice. As mentioned
before, it is based on FeynArts and FeynCalc and AMFlow or previously pySecDec and
MB for numerics. The translation of integral notations from FeynArts with or without
simplified algebraic manipulations of Feynman integrals for the numerical calculations
by pySecDec and AMFlow is described in sections 5.1.1 and 5.1.4, respectively. Most of
the suitable transformations were prepared in FORM, Python and Mathematica scripts
by me. Examples of such studies are given in sections 5.1.1, 5.1.2, 5.1.4, 5.2 and
appendices D and F. For the 3-loop order results, other automations connected with the
calculation of derivatives of self-energy amplitudes over squared momenta are needed
for charge and wave function renormalization, as defined in section 3.1.2 and 3.1.1. As
an example, let us consider a derivative of the By one-loop Passarino-Veltman integral

over the external momentum p

2
9 5
Op, Op+

o(pz, may, m2)

0°By 0By >
= 4p* + 2D ——
(aw )

P2=0 B o(p?)
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Then

iBo(p2 my,ma)| = 5 e < 1 >
o(p?) T T eny 2D 0pudpt \[@? —mi] [(g+p)? —m3] /| sy
1 9 <_ 2(qu + Pu) >
2D Opu \ [¢®> —mi] [(¢+p)* —m3]? /| .y

“ l <‘ ¢? — m? K?i - m%]2>
' <[q2 T I(ES >]

where (---) denotes a loop integral and ¢ is a loop momentum. For 1-loop derivatives

used directly with FeynArts, see the file 1ILCT.nb in repository [166]. Beyond one-
loop, we derived recursive relations for general 2- and 3-loop Feynman integrals in
Mathematica.

In the treatment of topologically equivalent diagrams/amplitudes, we relied on
the method developed in [268] for the identification of Feynman integrals based on
Symanzik polynomials defined in Appendix C, adjusted to our needs.

The second approach is by A. Freitas, based on FeynArts, FORM [269], TVID2 [270]
and with basic algebraic amplitudes simplification, which result in the sets of Yint
multiloop tensor integrals worked out analytically or numerically with high accuracy,
see section 5.1. We should mention that TVID2 is presently limited to the calculation
of a class of planar three-loop self-energy master integrals with arbitrary masses, with
12 master integrals (no dotted propagators) and 15 MIs with dotted propagators. For
the 2-loop case, there are 6 MIs, which are enough to calculate 3-loop counterterms
with one and two-loop Feynman diagrams discussed below.

The last, third approach to evaluation of amplitudes is based on the DTAGEN C++
generator of Feynman diagrams and amplitudes by M. Czakon, developed originally
for calculation of radiative corrections with Majorana fields [271,272]. The package
was improved recently by J. Usovitsch to include additional automation tools, e.g.
generating higher order counterterms.

It appeared that independent cross-checks of intermediate 1- 2- and 3-loop calcula-
tions based on the just described three approaches helped to eliminate errors, starting
from such trivial problems as the proper normalization of integrals in various programs,
as briefly discussed in section 3.3.1, equations (3.37)-(3.40). The independent cross-
checks of the results are necessary at various levels, i.e. amplitudes, semi-numerical

results, with lower order renormalization constants kept symbolically and on the pure
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numeric level. In this way, we can check all the intermediate results and track for
possible errors while extending the calculations to the three-loop level.
In the next section, the genuine three-loop Z and W boson self-energy diagrams

treatment will be described in detail.

5.1 Bookkeeping for the Z boson self-energy 3-loop diagrams

The following conventions for naming the integrals were used throughout the the-
sis and our in-house calculations. We keep similar conventions to those used for
the complete two-loop calculations within our working group. We work on a list of

YInt[{dd[mom,mass|},{dn[mom]}] with notation explained in Fig. 20.

1. yints. = lists of integrals in YInt form.

N

N

N
I

Z boson self-energy

3. ta = diagrams with top quark and photon

4. th = diagrams with top quark and W/Z/H

5. 1h = diagrams with light quark(s) W/Z/H

6. la = diagrams with light quark(s) and photon
7. merc = Mercedes star topologies

8. pl = planar ladder topologies

9. np = non-planar topologies

10. s12 = topologies with two separate sub-loop bubbles
11. nsl = topologies with two nested sub-loop bubbles
12. sl1 = topologies with one sub-loop bubble

13. tlsl = topologies with a two-loop self-energy subloop

14. The integrals themselves have the header "YInt"

15. dd[pp,mm] is a propagator with momentum pp and mass mm

16. dn[pp] is the scalar production pp~2 in the numerator

Figure 20: Three-loop Z boson self-energy integral classes naming conventions. Blue

coloured names indicate classes calculated with pySecDec
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The list of all self-energy classes that have been calculated using pySecDec consists
of all combinations of the topologies and particle contents marked with blue colour in
Fig. 20, and it is listed below

e yints.zz.lh merc yints.zz.lh _np yints.zz.lh_pl
e yints.zz.ta_merc yints.zz.ta_ np yints.zz.ta_pl

e yints.zz.th_merc yints.zz.th_ np yints.zz.th pl

The results of all genuine three-loop W and Z boson self-energy calculations using
both pySecDec and AMFlow are collected in repository [166].

The exemplary diagrams for topologies - merc, pl and np are depicted in Fig. 21

merc
O] @
Tt - P ]
O e ——— O
N\ 4
\\\ k1 —k2.0] Vs

y
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b{\ N /M

L &1 —kahim T3 MT] /
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pewr e _
r —pi O [ k3,0 [k1 - j2,0] . O B 8]
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o ki + Pt T} o
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@ W@
o N
o pi o . [uz'}-mié.. h =0 —p3 ®
.[.;-‘1'_"K2+-D1_._M_'ﬂ . gr -

e @

Figure 21: Exemplary diagrams representing three-loop Z boson self-energy topologies

merc, pl and np respectively.

All of the bare three-loop self-energy integral classes for the W and Z bosons were

computed with AMFlow.
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Throughout the pySecDec calculations the following approximated mass values were

used:

My =1, My =+V0.78, My =188, M, =+/3.6 (5.2)

Other masses were neglected in our calculations. The mass approximation is a typical
procedure while testing the methods.

All of the parameters used throughout the pySecDec calculations are listed in Tab. 4,
see pySecDec Documentation for a detailed description of parameters. The QMC
integrator was used with iterative decomposition method and contour deformation (for

cases when it was necessary), no split option was necessary.

IntegratorQOptions:

"verbosity=2,
minn=10%*6,
maxeval=10%*6,
epsabs=10**-8,
epsrel=10**x-4,

transform="'korobov3d"'"
IntegrationParameters:
"number_of presamples=10%**7,

deformation_parameters_maximum=0.01,

deformation_parameters _minimum=10%*-7"

Table 4: The parameters used for the pySecDec calculations.

A short explanation of the settings and parameters for the pySecDec calculation,
quoted from the pySecDec documentation

o verbosity - sets the amount of the output messages generated during integration.

e minn - minimal number of QMC latice points

o maxeval - the maximal number of integrand evaluation
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o epsabs - sets the desired absoulte accuracy for the numerical evaluation

o epsrel - sets the desired relative accuracy for the numerical evaluation

e transform - the periodizing transform applied before the integration

o numer_of presamples - Number of samples used for the contour optimization.

o deformation parameters_maximum - maximal value the deformation parameters

A; can obtain

o deformation_parameters_minimum - minimal value the deformation parameters

A; can obtain

Although pySecDec, MB, and AMFlow are well suited for single integral calculation
or, in the case of AMFlow, for a list of integrals sharing the same propagators, it is non-
trivial to make the calculations in a fully automatic manner for a bigger list of integrals,

as the run setup necessary for the computation becomes complex and time-consuming.

5.1.1 pySecDec automation

To understand the difficulties one encounters during automation of pySecDec calcula-
tions, it is important to know what the minimal set of information we need to provide
to the program is, what the conventions are, how to run the program and finally, how
to access and store the results in a convenient way.

pySecDec is interfaced via Python scripts, whereas internally for the algebraic part
it uses Python and FORM and for the numerical part it is based on C++ code.

The general steps for the calculations are:

e Prepare two python scripts, following the names used in pySecDec examples,

generate.py and integrate.py.

o Run the generate.py script, resulting in a subdirectory named as specified in

the script.

o Call make -C <name> where <name> is the name of the previously created di-
rectory. It builds the code and produces a library for the numerical calculation

for the integral.
o Run the integrate.py to perform the numerical computation of the integral.
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To run the pySecDec calculation, first, we need to provide a definition of the integral,
its internal and external lines. Internal lines can be defined in two different ways. First,
by specifying the so-called graph. It is a list of vertices, to which the propagator is
connected, for each propagator, and the propagator mass. As for the external lines,
we need to specify which momenta is attached to which vertex. The other option is
to provide a list of propagators in the 'momenta? — mass® form along with the list
of powers associated with each of the propagators. I decided to use the latter, as it
was more convenient to construct from the integrals in the YInt form described earlier.
Secondly, we need to specify loop momenta and the replacement rules to be used for
our calculations. Keep in mind that it is not yet a place to provide numerical values
for masses; it is to provide a set of symbolic replacements for the external momenta,
defining Mandelstam variables or specifying vector replacements. Then, we need to
specify the symbols for masses and Mandelstam variables, if they are real or complex,
and to later associate numeric values with them. One may also specify additional
prefactors, numerators, whether or not to perform contour deformation, which is needed
if the F' polynomial is smaller than 0, and the requested order of expansion in the ¢
regulator.

All of these are needed just for the preparation of the integral library and performing
sector decomposition. Luckily, some settings could stay fixed for all integrals. The list
of propagators, their powers, the name of the integral and whether contour deformation
is needed has to be specified for each integral separately.

The next step is to prepare the integrate.py script. For this, we need to specify the
path of the integral library, created in previous steps, choose integrator and integration
options, such as number of integration points, demanded accuracy of the integration,
etc., numerical values of the parameters, e.g. masses and finally, output file and for-
matting. Most of these settings do not have to be changed for different integrals, only
the input path and output file.

The following setup was prepared to automate the whole procedure:

1. Generic generate.py and integrate.py files, that contain the structure of the
files needed for pySecDec with placeholders, that are later substituted with the

input for a given integral.

2. Generic Mathematica script translating YInt (YInt[{dd[mom,mass|},{dn[mom|}|)
notation to pySecDec format of propagators and their powers (including numer-

ators) and assigning integral names, by the integral family name and its number
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in the list. It also saves the complete list of integrals of a given family in both

YInt and pySecDec format to the output directory.

3. Control script, written in Python, passing all the chosen options for pySecDec
calculation to Mathematica script described above, creating all pySecDec files for

given classes of integrals. It also creates the structure of result files:

- Results/

- Name_of _integral family/ - separate directories for each integral fam-
ily
- AllIntegrals.txt - list of all integrals in the class, in pySecDec
and YInt format

- MathScript_familyname.m - Mathematica script, as described in

point 2 with all the input already set for the given class of integrals
- Euclidean/ - directory for the results in Euclidean kinematics
- Minkowskian/ - directory for the results in Minkowskian kinematics

- results.out - textfile containing all the numerical results for the
class of integrals and kinematics

- numerical results/

- INT_N.in - Definition of the N-th integral in YInt and pySecDec

format
- INT_N.out - pySecDec numerical result for the N-th integral
- pySecDec_files/

- Subdirectories for each integral containing all the pySecDec
files needed for the computation as well as the output/log files

for each of the commands.

4 Python script to run pySecDec computation for all the integrals for the given
classes.

5 Mathematica notebooks to create the result tables.

Having prepared this setup is almost enough to run the pySecDec calculations
smoothly, in an automated manner. The only remaining issue is the error handling.
In general, errors could come up for two main reasons. One, in case of integrals with

many propagators and high tensor rank, for example, 8 propagators and 3 inverse
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propagators, during the generate.py run it could happen that the memory necessary
for the sector decomposition exceeds the memory available on the machine (128GB
in our case). If that happened, it would get stuck, without any error message, unless
the whole automated script was killed. The other possibility was when the contour
deformation option was enabled, but the deformation parameters for the calculation
were not sufficient, and the code failed to find the contour and printed out the error
during the integrate.py script run. As for the second error, the workaround is to
simply try tuning the contour deformation parameters. It does not stop the whole
automated script, but requires additional manual work. For the fix, one only has to
rerun the last step of the whole process, i.e. the numerical integration for the integrals
that were not calculated. Although the first issue is a bit more problematic in its nature,
inspecting the process showed that it happens more or less after a given runtime, simply
skipping the integral after this time solved as a workaround, to keep the calculations
running. Yet, it does not serve as a solution to the problem. These integrals could not
be solved directly in pySecDec, these would have to be either treated with IBP first,

or reduced by hand, as described in the next section.

5.1.2 pySecDec benchmarks for 3-loop SE calculations

Result tables for all of the classes calculated in Minkowskian kinematics are available
in repository [166] in the pySecDec_ results/Tables/Complete directory.

$Failed means that the calculation was not handled till the end so either it exceeded
6h computation time for sector decomposition part (this was the time after which the
integral got stuck anyways on our machine, so we set a time limit for this one part to
avoid waiting for results that will not come anyways), or there was some issue in latter
steps of calculations.
Result tables for only the scalar integrals are available in repository [166].

Result table with comparison between pySecDec results and MB results for lh__merc

scalar integrals can be found in repository [166].

The last three integrals in the full ta_np class (INT33-35) mentioned above failed
to calculate straightforwardly. Reducing one tensor rank by cancellation of the denom-
inator with numerator terms appears to be helpful so that the resulting set of integrals
can be calculated. For instance

k% * k% * (kg —|—p1)2

198 = = )2 — M) (1 — D7)+ (kr — k)® — M) % (ks — )

2*

(k3 — M7) % (k1 + p1)? # (k1 — k2 +p1)? — MP) = (ks + p1)* — M)

can be written as
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1 2 3

2 2
(k1 +p1)° —2kipr — pT ) * ki = (k2 +p1)? i
(k1 — k2)? — M)+ (k3 — M) * (k1 — k3)? — M?) * (ko — k3)? (54)

133 =

(k3 = MZ) (k1 + p1)2 % (k1 — k2 +p1)? — M?) * (ks +p1)? — M?)

Three parts explicitly

(1) * k2 * (kg +p1)?

P R A (R = M) * (s — o) — ) (ha — (5:5)
(k3 — M)+ (k1 — ko +p1)? — M) * ((k3 + p1)? — M?)
133, = (=2k1p1) * kT * (k2 4 p1)? .
((ky — k2)? = M) (K — M)+ (ks — ks)? — M) (kz — ks )2 (5.6)
(k2 — MP) % (k1 + p1)2  ((kn — bz + p1)2 — M2) % (ks + p1)? — MP)
133 — (=p1?) % ki * (k2 + p1)? .
U (b — ko)? = M2) 5 (K3 — M)+ ((ky — ks)® — M?) # (ky — k3)? (5.7)

(2 = DMP) * (k1 + p1)? * ((kr — Kz + p1)? — M2) x (ks + p1)? — M)

Having this, we can cancel the red part in one of the three 'new’ integrals; the
other two parts are -1 and -2 ranks, respectively, from the integral we have started
with. With this simple method, it seems to be possible to go around problems with
(at least) some of the tensor integrals. Below are the results for all 3 integrals arising

from reducing the INT33 tensor rank calculated in the Minkowskian region

1331y = £73 1 8.00833340104159497 + (1.08726560064887988 + 10~ ")
72 —19.9282296580690748 + (1.07082843736891324 % 10~°)

e! 1 51.9407417049247329 + (4.63507929766674586 + 10~9)

€Y1 —113.229130870223855 + (0.0000239977999079303774)

I33() = e~% : —0.749999999523622618 & (1.53778428499841512 * 10~ ?)
€72 :1.98325397728214048 + (1.76703999135918654 % 10~ ") 59)

e~ —5.34792922577319274 + (5.96767220253102382 * 10~ 7)

€92 16.1903791677231688 + (3.17038081118347636 + 10~ )
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333 = % : 0.500000000037367887 + (9.63062578009716486 « 10~ '°)
£7% 1 —1.34994707164775152 + (3.96306924219847208 % 10~°)

e1: 3.28236060528419493 + (7.76426881841271045 % 10~°)

Y . —8.58702962662703762 + (4.18780226715803424  10~7)

(5.10)

Summing up the results, we get:

133 = 3 : 8.25833340052785 + (1.08741699147935 + 10~7)
£72 1 —20.5615365637035 =+ (1.08603335002679 * 10~°) -
e~ 1 54.0063103254137 + (4.67398326888917 % 1076) '

( )

€% 1 —120.83248041132 4 (2.42099378724373 x 10~°

For comparison, the results from AMFlow

I33aMFlow = £ @ 8.2583286861392348848637038466942913482628.629706735702637
£72:20.56150931157661547265464838419469778461¢28.283889658405894
e~ 11 54.0062399615379701064459432979402546159628.175914822351462
e 1 —120.83232615870302441002083276369940799245°28.11234603800177

(5.12)

As a test of this method, the same calculation was done in the Euclidean region.
The results for each part and the full result are

1331y = £ 1 7.59166680844217545 + (9.85655572039133668 + 10~°)
e72 1 —20.7058822437051866 + (8.62058895228057950 * 107 7)

)

)

5.13
e~ 1 55.2775401005482223 =+ (4.15341994614910242 * 10~° (5:13)
9. —121.760015759083217 + (0.0000207199076949497914
I33(2) = £~ % 1 0.749999999972988496 =+ (1.76033786105748168 + 10~7)
e72: —2.19181726801324261 = (1.93793666215441322 + 10~ ") (5.14)
e~1:5.96700462011761790 =+ (6.70983596045038024 + 10~ ") '
Y1 —16.1689301802892835 + (3.56517086852064105 * 10~°)
1333 = £~* : 0.500000000729866834 £ (8.92942843833251899 x 10~ '7)
e72 . —1.48898936314846209 = (3.00880392952002667 * 10~°) (515)

e 3.72341477857426462 4 (9.76640126664948071 * 10~%)
Y : —8.78511422350637972 + (4.25952817276685563 + 10~ 7)

Summing up the results, we get
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133 = 73 : 6.34166680773932 + (9.8585319410272 * 10~°)
£7% 1 —17.0250756125435 + (8.84085297929827 107 7)
e 1 45.5871207018563 + (4.20840284366895 * 1079)

¥ 1 —96.8059713552876 + (2.1028705476361 * 10~°)

(5.16)

The next set of tests was to choose the best setup for our integrations in pySecDec,
including the choice of the integrator that should be used. Looking into the Tab. 5,
one can easily see that the QMC works best for the exemplary integral from the (h_pl
family given in (5.17). The advantage is noticeable for all classes of integrals in our
calculations, and the analysis is an extension of our work that was described in [PhD2]
in List of papers. Not only does the integrator give the best accuracy for any number
of points, but also, if we look at the error shrinking when increasing the number of

points, it is much better than for other integrators.

(KT) * (k1 — ko)? + (K3) * (k1 — k3)? — M) * (k3) * (k1 +p1)? * (ko +p1)? * (k3 + p1)?
(5.17)

Hed-01
thet501

[k1 = K3,MW] Ik1 -|k2,0]

[k3¥p1,0] [k2.4+p71,0]

FHed 401
Kr=+P159]

Figure 22: Feynman diagram corresponding to integral given by (5.17).

Number of integration points

Integrator 10° 106 107 108 10°

QMC v1.6.4 | 4.047% 1075 | 1.645% 1073 | 8.266 x 107! | 3.894 % 10712 | 7.678 x 1013

QMC v1.5.2 | 1.214% 107! [ 1.629% 10~* | 4.939 %106 | 7.484 %1077 | 4.131 % 1011

Vegas v1.5.2 | 2.898 %1073 | 6.770 % 107* | 2,135 107 | 6.746 * 10~° | 2.137 % 107°

Divonne v1.5.2 | 1.62% 1072 | 2.697«107* | 5.309 % 107° | 1.147«107° | 2.564 % 106

Table 5: Comparison of absolute errors given by different integrators within pySecDec
for the integral given in (5.17).
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The computations were performed within Euclidean kinematics (s = —1) using
pySecDec version 1.5.2; extended by the update from the latest version 1.6.4. The
huge upgrade in performance is due to the better optimisation of the integrand code
and the updated, faster implementation of the old integrator library. A majority of
intermediate results were obtained using the older pySecDec version 1.5.2, which was
the most recent version available at the time of computation. Through a comparison of
different integrators within the same version of the software, it was observed that the
QMC integrator has better scaling with respect to the number of integration points,
outperforming other integrators. Consequently, the QMC integrator was used in the
pySecDec computations. Furthermore, an analysis of QMC accuracy in the latest
pySecDec version reveals significant improvements over the older version.

As mentioned earlier, the desired accuracy for each individual integral is O(10717).
Using pySecDec version 1.5.2, computation of a single integral varied between 10 min-
utes and a day, with an average of a few hours per integral to get the accuracy as
presented in Tab. 6, which was often not sufficient. With all the improvements of
the pySecDec it is still not enough to compute each integral with demanded accuracy.
Roughly estimating, assuming that pySecDec is soon capable of solving each integral
with the accuracy that we need and the computation of each integral takes around
1 hour, there are O(10?) self-energy integrals for W and Z bosons, which sum up to
O(100) days of computing time just for the self-energy integrals evaluation. When con-
sidering vertices, there are in total O(10°) integrals, more demanding than self-energy
integrals, which makes the complete pySecDec computation still virtually impossible,

at least using resources we have presently in our disposal.
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Family Name All | 6 digits | 8 digits | 10 digits | <8 digits
yints.zz.lh__merc | 67 6 1 1 40
yints.zz.ta_merc | 18 12 5 1 13
yints.zz.th__merc | 154 65 15 0 117

yints.zz.lh_np 76 ) 0 0 29

yints.zz.ta_ np 35 14 3 0 29

yints.zz.th_np | 125 35 7 0 79

yints.zz.lh_ pl 18 0 0 0 10

yints.zz.ta_ pl 8 ) 1 0 7

yints.zz.th_ pl 45 14 ) 0 28

Table 6: The table presents the number of integrals with at least 6, 8, 10 digits, as well
as integrals with less than 8 digits of accuracy. The number of integrals from 8-digit
and <8 digit columns may not add up to the whole number of integrals, since failed
integrals are not counted here. Parameters and masses used for pySecDec calculations

as discussed before. Explicit results can be found in repository [166].

5.1.3 Numerical results for chosen 3-loop SM Z boson decay integrals with
DEqsEBT, SD and AMFlow

In this thesis, we developed some methods based on SD and DEqs towards the evalua-
tion of the 3-loop SM calculations. Examples below prove that we are able nowadays to
approach this level of precision towards the determination of Tera-Z EWPOs, which
should be the next step after completion of the analysis for the O(a?ay) order, see

section 5.3.

Let us consider the example of three-loop non-planar representative integrals with

top quarks and W, Z internal masses shown in Fig. 23,
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Figure 23: Three loop self-energy non-planar integral defined in (5.18). Z and t stand
for the massive SM Z gauge boson and the top quark, respectively.

defined by (5.18) and (5.19), respectively,

Irig 23| D, {a;},p*, M7] = /96}1@%@6]3

1
(g1 + )2 (1 — g2)* — ME)%2[(q1 — q2 + p)? — M]3
1 (7] [(q2 + p)?] ™0
X [~ M (g — ) — M (g — o710 [ — Mo (g + p? — M 018
2 2 _ A2 or M2] = D1D¢Dq3
Fo sl (o) M2 = Miy 01 N) = | 0 B i —
x o . (5.19)

[(q2 — g3)? — M2]*a[g5]o[(q1 + p)*]e[(q1 — g2 + p)*]*7[(g3 + p)?]*=

Diagram on the left in Fig. 23 includes the top quark, which circulates through six
propagators. These integrals are computed with at least ten digits of accuracy in the
Minkowski point around € = 0 for D = 4 — 2¢ with DEqsEBT

IFig. 23t[1a ]-7 17 17 1a 17 ]-7 17 _27 _17 M%7 MEQ] =

8.27490485938 /% — 34.9869281045 /% 4 102.43077689 /¢ — 253.5072352, (5.20)

Ipig, a4 — 26, 1,1, 1,1, 1L 1 1 1, =1, =2, M7, M{] =

9.47745432492 /&% — 40.4955852564 /¢* 4+ 116.63419570 /¢ — 273.3763275, (5.21)

IFig. 23t[]~7 17 17 17 ]-7 17 17 17 07 _37 M%? Mtz] =

19.8715753165 /¢ — 74.436608700/ 4 239.02713087 /¢ — 540.2221570. (5.22)
Note that the tenth propagator in (5.18) is linearly dependent and can be written in

terms of the first nine propagators. We included it as an auxiliary propagator to the
definition to improve the readability of the final results in (5.20)-(5.22).
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The non-planar integral in (5.19) consists of eight propagators with only one massive
W or Z boson internal line. The other, massless propagators come from neglecting all
particle masses other than the gauge boson masses, the Higgs boson and the top quark

mass.

This example, for the parameter point p? = M2 and M, = Mz, belongs to a group
of integrals which are difficult to evaluate with SD due to threshold effects (see previous
discussion in section 4.3). Using pySecDec with 107 integration points, we obtain a

result with less than two digits of precision

IRy 2[4 —26,1,1,1,1,1,1,1,1,0, M7, M7] = 0.460 — 19.164 i + (0.298 + 0.281 7).
(5.23)

Increasing the number of integration points does not improve the accuracy substan-
tially. On the other hand, pySecDec can deliver accurate results for Euclidean pa-
rameter points, p*> < 0, which are used as boundary terms for our DEqsEBT method

described in section 4.5. We thus obtain stable and precise results at the physical point

IFig. 23WZ[4 - 257 17 ]-a ]-7 17 17 1a ]-7 17 07 M%: M%]
— —0.000000000 — 19.1262302 7 + (151.51529 — 150.40641 i) £ + O(?),  (5.24)

IFig. 23WZ[4 - 267 17 ]-7 ]-7 17 17 ]-7 ]-7 17 07 M%a M\%V]
— (5.1112260 — 18.5692007 7) + (194.660753 — 78.842016 1) £ + O(c2).  (5.25)

For the comparison, the corresponding constant parts of the results obtained with
AMFlow are

Ip w4 —2,1,1,1,1,1,1,1,1,0, M2, M7]
= 0.00000000000000 — 19.12623029908009 i + O(¢), (5.26)

Iléglgng[zl —2e,1,1,1,1,1,1,1,1,0, M3, My
= 5.11122637142328 — 18.56920074255880 i + O(¢). (5.27)

We can see they agree with good precision.

The integral family Igi, 23wz (5.19) involves 30 master integrals and is considered

simple in the context of our method.

The next example is a family of 3-loop vertex integrals with one massive top quark
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Figure 24: Three loop planar vertex diagram which corresponds to the integral in
(5.28). W, Z and t stand for the W boson, Z boson and top quark, respectively.

and two massive W boson propagators, see Fig. 24, defined as

DD pDqs
(45 — Mg ] [g5]e

IFig- 24[D7 {ai}7p2’ MI%IN MtQ] - /
1
1@ (- p)21 (@ — p)?)[(as — p)® — M ]
(@1 = g3)°] (g1 — p2)*] " [(q2 — p2)?] 2
(g3 — p1)?)% (g2 — q3)% — M [(q1 — g2)?]%”

where p = p; + po and p? = p3 = 0. These integrals also appear in so far unknown

X (5.28)

O(a’ag) corrections to Z-pole electroweak precision observables, constituting their
most difficult parts.

With pySecDec we are unable to obtain a numerical result for the Minkowski point
p? = M2. The problem already starts with the contour deformation, which is necessary
for SD with Minkowski kinematics, and which fails to complete in a reasonable time.
Similar to the SD method, the MB technique fails to deliver high-accuracy results for
the considered integrals for p* = M2.

Using our DEgsEBT method, the calculation requires the numerical evaluation of
77 master integrals with Euclidean kinematics, p?> < 0, for the boundary terms. For
the purpose of the present example, they have been evaluated with pySecDec to 10-
digit accuracy. After the transport to the physical point p* = M2, we get at least
eight significant digits for integrals of the family (5.28) up to tensor rank-3 (i.e. —3 <

ajo + a11 + a2 < 0). We here give numerical results for one rank-3 case

[Fig. 24[17 17 1a 17 17 17 1a 17 17 _17 _17 _17 M%? M\%V? MtZ] =
0.0833333333/2% + 0.636273147 /2% + (0.63462699 + 0.77044487 i) /e
+ (5.5847828 + 6.1606031 1) + O(e). (5.29)

The corresponding AMFlow result
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Ipgoi1,1,1,1,1, 1,1, 1,1, =1, =1, =1, M7, M, M7] =
0.08333333333333 /2 + 0.63627314842142 /¢

+ (0.63462697873037 + 0.77044487418377 i) /e

+ (5.58478329673337 4 6.16060310556605 7) + O(e). (5.30)

5.1.4 Complete calculations with use of AMFlow - automation and results

In this section, we present our in-house method of automation of the AMFlow calcula-
tions using the list of integrals generated using FeynArts and further simplified with
FORM. These algebraic simplifications were done to prepare the integrals for further
computation with TVID2, but also for pySecDec and MB methods, and make individual
integrals easier to compute. For instance, decreasing the rank of tensors by manipula-
tion between numerators and denominators, as exemplified in section 5.1.2. Yet, the
AMFlow individual integrals, in our studies, are not difficult to calculate, and to an ex-
tent, these simplifications would only slow down the overall calculations. To reverse the
situation, we find integrals originating from the same Feynman diagrams and compute
them together, saving up a lot of computational time, as we do not recompute the same
integrals many times. Such reversed engineering for the calculation of alternative sets
of simplified integrals served us as an alternative, independent check of calculations at
the 3-loop level.

Analyzing the results presented in the previous subsections, one can see that the
methods used for the complete two-loop calculation for the Z boson decay are not
sufficient to compute each of the 3-loop self-energy integrals for the Z and W bosons.
It is especially noticeable, taking into account the desired level of precision for this
calculation, which is O(1071%) for each integral. For some of the integrals, one could
play around and increase the precision of calculation by, for example, including more
points in Monte-Carlo computation, but this would not solve the issue completely. I
have prepared a script that creates a minimal set of integrals that need to be calculated
for a single class (e.g. ta_np) of the SE integrals. It can be generalized, for instance, for
3-loop vertices, with small adjustments. It takes into account all possible momentum
shifts and speeds up calculations significantly. It is then connected with AMFlow for
the numerical evaluation.

The automation goes as follows:
» Load a list of integrals (YInt[{dd[mom,mass]},{dn[mom]}] form)
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o Run the following steps in a loop (unless there are no integrals left unprepared

for AMFlow calculation):

(1) Split the list of integrals into sublists of topologies which can possibly fit into one
basis of propagators, inspecting U and F' polynomials. (for now by hand, later

on automated.)

(2) For each sublist, we take integrals with the largest number of propagators to cre-
ate the initial basis constructed from these propagators. Three-loop self-energy
diagrams include maximally 8 propagators in the denominator, yet for IBP re-
duction, we need one auxiliary propagator in the basis. This is obtained with
AMFlow function ToCompleteExplicit. The resulting list of 9 propagators forms

our initial basis.
(3) Set the family name that is needed by AMFlow, associated with the basis.

(4) Check if all masses for the given integral are the same as in basis. If yes, we
proceed to the next step. Otherwise, we skip the integral and repeat step (4) for

the next integral.

(5) Trying to shift momenta in propagators for the integral to the basis. The proce-
dure for shifting is described individually later and depicted in Fig. F

(6) Save the list of integrals that were expressed in terms of the basis in AMFlow
notation (i.e. j[familyname,powers|*coefficient, where powers is a list of powers

of basis propagators) to a file.

(7) Remove the integrals from step (4) from the list of integrals and use the remaining
integrals as a new list of integrals that we will try to resolve back in step 1. Again,

it will result in a new basis, and the iteration continues this way.
o All of the bases created in the loop are also exported to the file.

o Feed the target integrals to the AMFlow for the numerical result with 30 digits

accuracy.

The shift of momenta in propagators, mentioned in point (5) of the above loop, is

done in the following way:

(1) Check if the mass configuration for the integral is the same as in the basis. If

yes, proceed to step (2). Otherwise, proceed to the next integral.

92



(2) Check if all of the propagators of the integrals are not already in the basis, without
the shifts.

(3) Create a list of replacements for all possible scalar products that can appear in

the numerator, in terms of basis propagators.

(4) We set the replacements for each of the loop momenta as follows:

/ﬁ — k101 —+ kQCQ + k'303 + p1cy
]{72 — k‘105 + ]{3206 + ]{3307 + pics
ks — kicg + kacig + kzci1 + picio

Coefficients ¢1, ..., c12 may only take values from the set {—1,0,1}. Dismissing
the combinations of coefficients resulting in the determinant of the Jacobian equal

to zero.
(5) Create a list of all possible shifts.

(6) In a parallel loop, we take possible shifts, apply them to the integral propagators
and check if they are all contained within the basis. If we find a shift that works
(no matter if optimal by any criteria), we just break the loop and move to the
next integral. It is done this way not to waste too much time searching for an
optimal shift, which cannot save up a lot of time compared to any other shift,
whereas searching for shifts naturally takes a relatively long time, as for each
integral we have to check ~ 2 * 10° shifts.

Running the script results in creation of the following files:
e bases.m - List of bases used in the calculation

e ReplacementRulesX.m - List of replacements from YInts -> j-ints that we calcu-
late with AMFlow for X-th basis in the list.

o targetintsX.m - Union of all the j-ints needed to represent each of the YlInts - our

target for AMFlow calculations for X-th basis in the list.

o jintsNumResX.m - List of the numerical replacement rules for the j-ints associated
with the X-th basis in the list.

e YintsNumResX.m - List of replacements from YlInts -> numbers for the X-th

basis in the list.
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Input used for the AMFlow calculation:

AMFlowInfo["Loop"] = {k1, k2, k3};
AMFlowInfo["Leg"] = {pl, p2};
AMFlowInfo["Conservation"] = {p2 -> pl};
AMFlowInfo["Replacement"] = {p17~2 -> s};
AMFlowInfo["Cut"] = {0, 0, 0, 0, 0, O, O, O, O};
AMFlowInfo ["Numeric"] = {s -> 1};
AMFlowInfo["NThread"] 6;

masses = {MZ -> 1, MW -> 401925/455938, MT -> 433000/227969,
MH -> 312750/227969};

These results of automatically computed integrals with use of the AMFlow were later
compared and cross-checked with pySecDec results whenever available. The results

from both methods agree up to the accuracy of the pySecDec results.

Nr The difference [AMFlow - pySecDec] pySecDec error
-5.43749x10°° 1.01754x 1078
1.38627x1071° 8.17054 x 10~1°

-13 -13
3 9.44875 x 10—8 _ 1.84586):310 + 1.77638 % 10-7 + 1.75412x310 +
eps eps
1.27918x10-8 + 3.9239x10~? 1.26893x1078 + 1.18177x1078
eps? eps eps? eps
-13 -13
4 ~7.56094x 108 - L0 — 2.24571x 1077 4 L2020
eps eps
4.64121x107° + 7.06215x10~° 5.72647x1077 . 7.01857x1078
eps? eps eps? eps
8 8
5 4.96074x107° + LEEDX0— 8.45188x 107 4+ LEEBXI0
~-13 —12
6 0.000017525 4+ 24145210 _ 0.0000123162 4+ 234B=10—
eps eps
3.7912x1077 . 3.79687x1076 4.32369x1077 + 1.96153x10°8
eps? eps eps? eps
-12 -12
7 -0.0000384912 4 23216x10_ _ 0.0000211711 4 210120
eps eps
9.29772x1078 + 8.83155x10~7 3.00071x10~7 + 2.9724x1075
epsz eps epsz eps
-9 -9
8 -3.73028x 1077 - B0, 2.88821x 107 4 L0
eps eps
1.14596x10"7 _ 1.82801x10~7 1.56947x10~7 . 3.80607x10~7
eps2 eps epsl €ps

Table 7: Comparison between the difference of AMFlow and pySecDec results and

pySecDec absolute error for the zz.ta np class of integrals in Minkowski kinematics.
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One may notice that the masses used in pySecDec calculations and AMFlow calcula-
tions do not match perfectly; this is because AMFlow needs rational numbers, whereas
pySecDec can take any number format. Either way, for the comparison of the results,
we choose to repeat the AMFlow calculations with the masses used in pySecDec (see
(5.1)), rationalized with the use of the Mathematica Rationalize[] function, up to
107'% accuracy. The comparison of the AMFlow and pySecDec results is shown in the
table in Tab. 7. The comparison shows that the results obtained with both methods
agree up to the pySecDec error. The two conclusions that can be drawn out of it are
that, first of all, pySecDec error estimation is correct. Secondly, the system for the
automated AMFlow calculation produces correct results.

The whole computation of nine integral classes mentioned before took less than two
days on our computational server with use of the AMFlow, which is much shorter than
pySecDec computation.

Later, the rest of the integral classes mentioned before in Fig. 20 were calculated. All
of the results of AMFlow and pySecDec computations are available in repository [166].

The example of output in a table form for zz.ta__merc class is presented in Tab. 8.
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zztamerc numeric results

Nr Integral AMFlow result
1 Yint[dd[q1, MT], dd[p1 + q1, MT], dd[q12, 0], dd[q2, MT], dd[g3, 0], dn[q13]] 0
163.57304741099069659015951388  + 2203025300ISIC00II0100000095
eps
2 Yint [dd [ql’ MT]’ dd[pl * ql’ MT]’ dd[qlz’ MT]’ dd[qz’ 0]’ dd [q3’ MT]’ dn[q13]] 23.306495739560551952819731455 + 140.164064318762578459123683107
eps? eps
3 Yint[dd[pl +q1, 0], dd[q12, MT], _11.0039577621517827257861068109 4 2:A0411380631018857079947632302
dd[q13, MT], dd[q2, MT], dd[q23, 0], dd[q3, MT]] i
Yint[dd[q1, 0], dd[q12, MT], dd[q13, MT],
4 —0.608279109793909194035386135723
dd[q2, MT], dd[pl + q2, MT], dd[q3, MT], dd[pl + g3, MT]]
Yint[dd[q1, MT], dd[p1 +q1, MT], dd[q12, MT],
5 [dd[q ! [PL+a ! la ] —0.519972210687215334935771964897
dd[q13, 0], dd[p1 + g2, 0], dd[q23, MT], dd[q3, MT]]
2.40509893109142240371861925005
. Yint[dd[pl + g1, 0], dd[q12, MT], dd[q13, MT], 58.132875588086001485252596913  + T +
9.33774502376603727775062403083 40.8968336721263124671659738057
dd[q2, MT], dd[q23, 0], dd[q3, MT], dn[q1]] eps? + eps
0.333333333333333333333333333333
; Yint[dd[ql, 0], dd[q12, MT], dd[q13, MT], dd[q2, MT], ~4.6018364233711249649398604006 4 SIS
0.32497526561608210707528330199 1.1477786245997947854558992900
dd[pl +q2, MT], dd[q3, MT], dd[p1 + g3, MT], dn[p1 +q1]] e + ps
0.333333333333333333333333333333
. Yint[dd[q1, 0], dd[q12, MT], dd[q13, MT], dd[q2, MT], —8.7826776567873808097900841508  + T
0.34169140105058455959138336468 1.11650918058982903612551228799
dd[p1 + g2, MT], dd[q3, MT], dd[p1 + g3, MT], dn[q23]] B e— e
Yint[dd[q1, MT], dd[pl +q1, MT], dd[q12, 0], dd[q13, MT],
9 ddlq ! [pL+a ! la ! la ! 0.0253971319862545979816966943738
dd[q2, MT], dd[p1 + g2, MT], dd[q23, MT], dd[q3, 0]]
0.166666666666666666666666666667
" Yint[dd[q1, MT], dd[p1 +q1, MT], dd[q12, MT], —4.6923521676516987512592889256  + T
0.170845700525292279795691682339 0.89158792362824785139608947733
dd[q13, 0], dd[p1 + g2, 0], dd[q23, MT], dd[q3, MT], dn[q2]] e e
0.166666666666666666666666666667
i Yint[dd[q1, MT], dd[p1 +q1, MT], dd[q12, MT], dd[q13, 0], -4.0300443384878752920376832006  + SRR
0.170845700525292279795691682339 0.89158792362824785139608947733
dd[pl +q2, 0], dd[q23, MT], dd[g3, MT], dn[pl +q3]] T + S
30.3686295587697887125514464160
b Yint[dd[p1 +q1, 0], dd[q12, MT], dd[q13, MT], 747.57091283083952956447577106  + T
95.247036404840873895306067735 419.263612142285339294420170609
dd[q2, MT], dd[q23, 0], dd[q3, MT], dn[q1], dn[q1]] pove + pos
5.22686452884951147410390516677
1 Yint[dd[q1, 0], dd[q12, MT], dd[q13, MT], dd[q2, MT], -42.822351154790168833453214335  + SIS IEEIEAIT
2.73718445461397328484691 77398 22.638856071098197071911807034
dd[pl +q2, MT], dd[g3, MT], dd[p1 + g3, MT], dn[pl +q1], dn[pl +q1]] e e
9.62039572436568961487447700021
1a Yint[dd[q1, 0], dd[q12, MT], dd[q13, MT], dd[q2, MT], ~53.371687689813984986663620677  + St BN -
4.5834090650866934443267977501 19.818592969747337515734987274
dd[pl + g2, MT], dd[g3, MT], dd[p1 + g3, MT], dn[p1 + q1], dn[q23]] e e
11.7754946554571120185930962503
15 Yint[dd[q1, 0], dd[q12, MT], dd[q13, MT], dd[q2, MT], 23.438338173460835113014018121  + T
22.9520038431884034524670799498 103.371391661611171922383879977
dd[pl +q2, MT], dd[q3, MT], dd[p1 + g3, MT], dn[q23], dn[q23]] = e
1 Yint[dd[q1, MT], dd[p1 +q1, MT], dd[q12, 0], dd[q13, MT], {1420557116257027668092848066227 -
dd [qz’ MT], dd[pl +q2‘ MT], dd [q23’ MT], dd [q3’ 0]’ dn[pl +q3]] 0.Z9187400535977::30938732755569 }
4.33392312940998920650758368759
= Yint[dd[ql, MT], dd[pl + q1, MT], dd[q12, MT], dd[q13, 0], 10.950106744226336204591939683  + T
7.0447127357753444134312655685 38.9441775910801767729397344278
dd[p1 +q2, 0], dd[q23, MT], dd[qg3, MT], dn[q2], dn[q2]] S
4.37558979607665587317425035426
Vint[dd[q1, MT], dd[p1 + q1, MT], dd[q12, MT], dd[q13, 0], {9.734099286725759909477481965 e
18 dd [Pl . q2, 0], dd[q23, MT], dd[q3, MT], dn[qZ], dn[pl + q3]] 4_0590142504009841764849551284 + 22.6133783945402;:6356445516450 }
eps’

Table 8: AMFlow result table for the zz.ta_merc class of integrals as defined in Fig. 20.

5.2 Towards complete 3-loop results for the 7 decay EWPOs

After all of the W and Z boson self-energy contributions are calculated, the next step
would be to add the contributions coming from the three-loop Z boson vertices. This
is a much bigger and more complex task, as estimated in [PhD4]. In this section, a
brief overview of the issue and some preparatory studies are presented. One of the

contributing diagrams and its numerical result was already discussed in section 5.1.3.

96

106:2103703170



Z—bb
2 loops 3 loops
Number of topologies
14 211
Number of diagrams 2383 490387
Bosonic 2012 374296
1 Fermionic loop 371 (4) 108804 (76)
2 Fermionic loops 0 7287 (6)
QCD 185 39041
EwW 2198 451346
Planar 2250 (13) 424362 (183)
Non-planar 133 (1) 66025 (28)
Number of configurations 101 721
Configurations with FL 27 352

Table 9: Classification made with respect to massive particles (H, W, Z, t), appearance
and the number of fermionic loops inside. Numbers in brackets refer to the number
of topologies in which those appear. QCD stands for diagrams where gluons appear,
EW is the remaining part. The number of configurations with FL. describes how many

different internal particle configurations also contain at least one closed fermionic loop.

We have generated vertex diagrams for the Z — ete™, ... and Z — bb decay in the
framework of SM using aITALC [273] at the two- and three-loop level. These diagrams

have been split into classes, taking into account different features, such as
» topologies,
o number of closed fermionic loops,
o whether they contain gluons,
o planarity,
e couplings,
e massive internal particles.
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The numbers of diagrams for all of them are collected in Tab. 9 and Tab. 10.

Z — ete, ...
2 loops 3 loops
Number of topologies
14 211
Number of diagrams 2012 397690
Bosonic 1711 305293
1 Fermionic loop 301 (4) 86790 (76)
2 Fermionic loops 0 5607 (6)
QCD 1 1228
EwW 2011 396462
Planar 1914 (13) 350709 (183)
Non-planar 98 (1) 46981 (28)
Number of configurations 69 449
Configurations with FL 27 313

Table 10: Classification made with respect to massive particles (H, W, Z, t) appearance
and the number of fermionic loops inside. Numbers in brackets refer to the number of
topologies in which those appear. QCD stands for diagrams where gluons appear, and
EW is the remaining part. The number of configurations with FL. describes how many

different internal particle configurations also contain at least one closed fermionic loop.

The classification was done using a script written in Python, in which one needs to
specify the file generated by alTALC for a given process as an input. As an output,

one gets a directory containing

« List of particle configurations

o List of different coupling configurations

» List of topologies with two closed fermionic loops

» List of topologies with at least one closed fermionic loop

o List of numbers of diagrams in the input file for each particle configuration
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o List of numbers of diagrams in the input file for each coupling configuration
o Analogous lists for each topology separately

e A summary file containing all above information for each topology, with the

structure as shown below in Fig. 25.

These lists can be further used for the calculation of the diagrams sharing the same

features.

Topology 191

Couplings list: ['ebgs2', 'e7gs0', 'elgs6', 'e3gsd']
Bosonic: 9286

1 Fermionic loop: 7462

2 Fermionic loops: 1890

EW diagrams: 16795

QCD diagrams: 1843

Figure 25: Summary of the features of diagrams in exemplary topology for the Z —

ete™ process.

As we can see, the total number of diagrams at 3-loops equals approximately 4 - 10°
for leptonic Z decay and half a million for Z decay to quarks, whereas, for the self-
energies, it was O(3 * 10%) integrals for each of W and Z bosons. The vast majority
amounts to the electroweak corrections (bosonic) and planar topologies. This explains
why, usually, for any higher-order process at a given order, we start with less demanding
diagrams which include fermionic subloops. At the moment, factorizable fermionic 3-
loop SM contributions to the EWPOs are known [167, 168, 274]. We discussed the
ability of numerical solutions for massive 3-loop SM vertex diagrams in section 5.1.3
and an explicit example for a genuine 3-loop Wiv vertex at the O(a’ay) order will be
given in the next section. Here, we only estimated the size of the future complete work
needed for the evaluation of genuine 3-loop Feynman diagrams. We start this task in
the next section with the calculation of non-factorizable 3-loop SM (mixed QCD-EW)

corrections.

5.3 Results for the W and Z boson mass renormalization con-
stants and the W /v, vertex at the O(a’a,) order

Let us first consider the two-loop diagrams, with no counterterms, as in Fig. 26.
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Figure 26: Diagrams for the two-loop d M3, with no counterterms included.

To compute these integrals, we use AMFlow as it allows for quick and precise eval-
uation. The numerical result for these contributions can be evaluated with arbitrary

precision. For the purpose of the thesis, the accuracy is shown only up to 107

8B Miy|e_ra = CaClr (—0.6744862802 + 0.4050613223 /¢ — 0.1537414874/62> oo
(5.31)
where « is the fine structure constant, oy is the strong coupling constant, C'y and Cr are
Casimir operators kept symbolically for convenience during expression manipulations
and results comparisons.
The above and numerical results given below and in repository [166] are obtained for
taking special, rationalize for the purpose of numerical evaluations, non-zero masses,

scaled to the Z boson mass

401925 433000 312750
455938° T T 2279697 T 297969

My=1, My = (5.32)
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Next, we account for the counterterms, one diagram with a two-loop counterterm
and all 99 remaining diagrams are composed of a one-loop diagram with a one-loop

counterterm, see Fig. 27 for exemplary diagrams.

4 5 6
G G H
w o w o w T W w T W
H % H Q0 X g0 ¢ *x e
7 8 9

Figure 27: Two-loop diagrams for the §M3 with the counterterm insertions. The

complete set of 99 diagrams can be found in repository [166].

As mentioned before in section 3.3.2, these can be expressed in terms of Passarino-

Veltman integrals. The result is

5 M2 | _ 3e2MMZAMf1(3,3) (D — 3)Miy + M?) R (Bo(Miy, 0, MP)) — Ag(M?))
CT W Ip? =M, 1672 M2, (M2, — M2) ’
(5.33)

where dMf1(3,3) stands for the 1-loop top quark mass renormalization constant coming

from diagram 6 in Fig. 27. This renormalization constant contains the «y factor, it is
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also the only one-loop renormalization constant of the order O(ay) in the SM. Inserting

the values of Passarino-Veltman integrals

Ag[M3Z] = 1+1/e+1.82246703¢ + 1.42178139¢* + 0.54449888
(5.34)
Bo[M7,, 0, M7] = —0.16666204 + 1/ + 1.40016276¢ — 0.26638219s>
— 0.39697889¢%, (5.35)

the final result is

OCF M| ope = €*dAMIL[3, 3] (0.26327664 — 0.16188588/c — 0.30891168 5). (5.36)

Together, the two parts in (5.31) and (5.33) account for the total two-loop O(acv)
contribution to § Mg, .

As we go into higher orders of perturbative series, i.e. higher loop orders, the
complexity and the number of contributions grow rapidly. In general, at the three-loop
level, we follow the same principles as at the lower orders. The splitting into different
parts is done by our choice and convenience, and can be done arbitrarily. Here, let
us begin with the bare three-loop W boson SE diagrams, analogous to contributions
discussed in chapter 5.1 for the Z boson. Numerical result of the order O(a?ay) for

this contribution is

O My pmrsz, = oz2ozs< — 17.9159811373 — 0.2005725404i + (5.3959246294

+0.22017540441) /& +(1.5546940358 + 0.0i) /e* + 0.1138227954/53> CuCr. (5.37)

Families for the corresponding diagrams and identified equivalent topologies (see ap-
pendix G) are given in a file dMWsq3_ 3loop_diags.nb in repository [166].
Let us continue with the three-loop diagrams composed of a two-loop diagram with

a one-loop counterterm of the O(a?a;) order, see exemplary diagrams in Fig. 28.
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w d w s w b

Figure 28: Three-loop diagrams for the § M3, with the one-loop counterterm insertions

and internal gluon. The complete set of 81 diagrams can be found in repository [166].

Note that these diagrams contain the internal gluon. The corresponding numerical

result is

O Miy|ocrz, = Cr aag [dZWl (2.02346 — 0.416155¢ 4 1.21518/¢ — 0.461224/52)

+dZel (—4.04692 + 0.83231i + 243037/ — 0.922449 /)
+ASW1 (8.5718 — 1.76292i — 5.14778 /e + 1.95284/2?)

+dMF1[3, 3] (—4.7895 + 2.31302/¢ + 0.485658 /&) ] :
+ & CF aa, {dSW1(—6.9900 — 0.096214) + dZe1(3.30013 + 0.045427)

+  dZW1(1.65007 + 0.022714) + dMF1[3, 3]7.72012] (5.38)

where dZW1 is 1-loop W boson wave function renormalization constant, dSW1 denotes

the renormalization constant of sin 6y, at the 1-loop level and dZel is the 1-loop charge
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renormalization constant and from dMf1[3,3] we only take part proportional to «, so
the final contribution is of the desired O(a?ay) order.

Another contribution of a similar kind is three-loop diagrams with one-loop coun-
terterm, this time without the gluon in loops. In this case, Fig. 29 shows only a part

of all 907 contributing diagrams.

f t
Ol v
t e ,,¢,,M t
w H W G w._ W
t G
1 2 3
t t b

4 5 6
W b b W
7 8 9

Figure 29: Three-loop diagrams for the § M3, with the one-loop counterterm insertions
without the internal gluon. The complete set of 907 diagrams can be found in repository
[166].

The corresponding numerical result, obtained with AMFlow is:

0 Miy |2 pr2 = €t AMI1(3, 3] |0.0103140074 /% — 0.1191549032 /¢

v

+ 0.2515969524 — 0.5383272738 ¢|. (5.39)

The next step is to include the two-loop order counterterms. We split them into two

parts, with one two-loop counterterm and two one-loop counterterms inside. These
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we further divide into bosonic and fermionic parts, where fermionic means that there
is a closed fermionic loop in the diagram, whereas bosonic is the remaining part, see
Fig. 30 and Fig. 31 for the bosonic and fermionic diagrams with two-loop counterterms

insertions, respectively.

G G H
w.oTwow T W W W
H ® H G° %G c %G
1 2 3
G° u_ u_

w o wow W w W
G‘\®'(G “v‘@')“v uy,” ® Uz
4 5 6
u. u_ uy
w -~ w ow T wow W
uz* % ‘uy uz* ® ‘uz ut s u
7 8 9

Figure 30: Three-loop bosonic diagrams for the §M2, with the two-loop counterterm

insertions. The complete set of 75 diagrams can be found in repository [166].
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Figure 31: Three-loop fermionic diagrams for the § M3, with the two-loop counterterm

insertions. The complete set of 24 diagrams can be found in repository [166].

The corresponding numerical results for bosonic and fermionic three-loop with two-

loop counterterms contribution are presented below.

O3 Myl eona, = (dMHsq2 (~0.0107623) + AMWsq2 (0.0312278 — 0.0187213 /)
+  dMZsq2 (0.0495707 — 0.0291803 /<) + dSW2 (0.2378212 + 0.4242118 /<)
+  dTH2(0.0007809 — 0.0038039/<) + dZe2 (—0.1833895 — 0.1713158 /<)
+  dZG02 (—0.0071026/¢) + dZGp2 (—0.0027838 — 0.0110389 /)
+ dZW2 (~0.0916948 — 0.0856579/<) ) ?, (5.40)
0 ME | o wz, = dMIf2(3,3) (0.26327663 + 0.16188588/5) e2. (5.41)

The complete results in (5.40) and (5.41) should have terms up to the £? order. They

are given in repository [166]. Here one can see the dependence of the result on two-
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loop W, Z and H boson mass renormalization constants (dAMWsq2, dMZsq2, dMHsq2),
electric charge renormalization constant (dZe2), sin of Weinberg angle renormalization
constant (ASW2), two loop Higgs boson tadpole (dTH2) and two loop Goldstone field
renormalization constants at the two-loop level (dZG02, dZGp2) in bosonic case. For
the fermionic contribution, the dependence is only on the top quark mass renormaliza-
tion constant at the two-loop level (dMf2(3,3)). The last part that has to be included
for the O(a?ay) order are the three-loop diagrams with two one-loop counterterm in-
sertions, 5,5;’), 5](;;). In this case, the bosonic part is zero, there are no contributions to
this order of corrections, and we only have fermionic diagrams that we have to take

into account. These diagrams are presented in Fig. 32.

té\FW bﬁw Wﬁt
w w w

t
w w w b
b

4 5 6

Figure 32: Three-loop fermionic diagrams for the § M7, with the two one-loop countert-
erm insertions. From many diagrams generated with FeynArts, the only non-zero con-
tributions at O(a?a,) come from top-quark diagrams where one contribution includes

a gluon, see (3.63). The complete set of diagrams can be found in repository [166].

The corresponding result is again expressed in terms of the Passarino-Veltman
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integrals and various one-loop renormalization constants:

SO ME, =0, (5.42)

3
58 f, -
3’ ME (MP — M) (M7 + (D — 2)M§,) Do[ M, 0,0, M, 0,0, M7, M7, M?]dMf1(3, 3]

8(D — 1) MZ,m2s%,

—3e?Ag[M?] ol o ) , )
128 (D — 1) MZM2, (M2 — M2) 253, (4asw1n? (M? — M3, ) (dZW1 (M? — (D - 2) Mfy )

+4(D = 1) MdMfL[3,3]) — s (dZW12MZ (M7 — My ) (M2 — (D - 2) M7, )

+8 (D = 1) dZW1M; (M2 — M3, ) dMf1[3,3] + 2( (=18 + 8D + D?) M{

— (42 +40D = 11D? 4 D) MM, + (D — 4) (D — 2)* My, ) dMf1[3, 3]
+4dZel MP (ME — M3, ) (dZW1 (M7 = (D - 2) M) +4(D — 1) M;dMf1[3,3]) ))

N —3e?Bo[M3,, 0, M?]
128 (D — 1) M3, (M7 — M3,) w2s3,

# (M2 + (D = 2)M§, ) +4(D — 1) My (M7 + (D = 3) My ) dMf1[3,3])

(- 4dsw1 (MP — M) (dZw1 (ME - M)

tsw (dZW12 (M2 - M&V)2 (M2 + (D —2) M, ) +8 (D — 1) dZW1M, (M? — M)

# (M2 + (D — 3) M7, ) AMFL[3,3] +4(3(3D — 7) My + (36 — 29D + 5D%) M? Mg,

— (8- 4D + D?) My, )AMfI[3,3)" + ddZel (M7 — M) (dZW1 (M7 — M)

# (M2 + (D —2) M3, ) +4(D — 1) My (M7 + (D - 3) My, ) dMf1[3,3]) ) ), (5.43)

where dZW1 is W boson wave renormalization constant at the one-loop level. The
other contributions are connected to renormalization constants of sin 6,,, electric charge
and top quark mass at the one-loop level. Note the presence of the Dy function in
(5.43). However, the appearance of this function in the expression is artificial as a
direct transformation of 4 propagators for top quark 1LCT in diagrams 6 and 8 in
Fig. 32. This DO function can be eliminated by IBP relations (for diagrams 6 and
8, Feynman integrals include the top propagator with the same momenta flow to the

power 3). IBP reduction gives (we used FIRE package)

—4+ D)(—2+ D)(3M? — M2))

Do[M2,. 0,0, M2, M2.. 0,0, M2 M2, M? :( ¢ W Ao M?

0[ Ws Vs Yy W Wi Vs Yy t to t] 8Mt4(MtQ_M5V)2 0[ t}
(=4 + D)(-=3 + D)

2(M¢ — Mg)?

Bo[M3y, 0, M?].

(5.44)
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Thus, 5;32)]\/[31/ is a function of Ag[M?] and Byo[M%, 0, M?] only.

Notice that diagrams 6 and 8 in Fig. 32 are, due to symmetry, identical. At the two-
loop level, it is not very important to take it into account. Already at the three-loop
level, it becomes relevant, and identifying identical diagrams can speed up calculations
significantly. See the Appendix G for details. To show the possible speed up, let us
consider a bare 3-loop W boson self-energy. In the initial list with integrals simplifi-
cations between numerators and denominators (see example in section 5.1.2) needed
for partial analysis and comparisons results using TVID2 package, there are in total
3064 individual integrals that have to be evaluated. Instead, identification of topolog-
ically identical diagrams reduces the initial number to 796 diagrams in 155 families.
This means, in the end, we need to run AMFlow calculation only 155 times, instead
of 3064 times. Saving of good shifts of momenta into some variable and starting to
search shifts from there, and not from ~300 000 of all possible shifts (first search we of
course start from all possible combinations) speeds generation of target integrals up to
seconds. Altogether, the complete calculation for the considered genuine bare 3-loop
W boson self-energy takes about one day (using 4 threads of average server CPU, in
our case, this number is limited by the number of Wolfram licenses available), about
one order of magnitude better than without consideration of topology symmetries To
clarify, the final number of diagrams is achieved by finding topologically identical dia-
grams, the number of families, though, comes from our own script SEFlow described in
section 5.1.4 and schematically in Appendix F. A diagram family consists of a diagram
with the highest propagator count and all diagrams obtained by removing some of its

propagators.

Having all the lower-order renormalization constants already calculated and put into
the parts described before in this section, we can sum up all the contributions from

different parts to finally get the three-loop W boson mass renormalization constant of
the order O(a?ay).

The analogous results for the M2 can be found in repository [166].

Let us now consider the three-loop Wy, vertex, beginning with the one-loop dia-

grams with two-loop counterterm insertions as in Fig. 33.
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Figure 33: Exemplary three-loop Wy, vertex contribution of one-loop diagram with
two-loop counterterm insertions. The complete set of 33 diagrams can be found in

repository [166].

Since these diagrams only need one-loop integration, the intermediate result is com-
posed of the products of Passarino-Veltman functions and the two-loop renormalization
constants. The numerical result, with the renormalization constants kept symbolically

is

WwHeT = 2| —0.0656957 AMWsq2 — 0.0308292 dMZsq2 — 0.0423301 dSW2
+ 0.00515558 AZAA2 + 0.00421067 dZAZ2 + 0.0603508 dZe2
— 0.00171594 dZGp2 + 0.000404491 dZW2 + 0.00421067 dZZA2
— 0.00973314dZZ72 + E (—0.498292 dSW2 + 0.00474943 dZAA2
— 0.00506416 dZAZ2 + 6.240497 dZe2 + 0.0613905 AZW?2
— 0.00506416 dZZA2 + 0.011493 dZZZ2)] (5.45)

Note that for the result to be of the order O(a*a,) we need the renormalization con-
stants at the O(aay) order. The complete results in (5.45) should have terms up to
the €2 order. They are given in repository [166].

Next, we consider two-loop diagrams with one-loop counterterms for the three-loop

W ey, vertex. An exemplary diagram is shown in Fig. 34.
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Figure 34: Exemplary three-loop Wy, vertex contribution of two-loop diagram with
one-loop counterterm insertions. The complete set of 348 diagrams can be found in

repository [166].

The corresponding numerical result at the O(a?ay) is

W't = 64(—0.0558686 £ +0.0292356 — 0.017415 /g> dMf1[3, 3] (5.46)

Note that the result is proportional to the top quark mass renormalization constant,
which is the only one-loop renormalization constant of the O(«y) order, see (3.63).

For the genuine three-loop vertex Wy, we have 604 diagrams generated by FeynArts,
exemplary diagrams are presented in Fig. 35 and the corresponding numerical result

for the genuine 3-loop vertex at the O(a?ay) order is

Wiy, = (—0.0032240421 + 0.0012580235/ — 0.0004342680/=2) a’a, . (5.47)

The result includes the standard prefactor €372, and it normalized by the division of

the final result by the tree-level diagram, i.e.

- €

Wiy = —— 5.48
Y \/§sin HW ( )

The Wiy, vertex form-factor result in (5.47) has been obtained within the NDR
scheme and does not include genuine 3-loop integrals from diagrams with subloop

O(aay) triangle which should be computed with PV regulator A, see appandix B.
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Figure 35: Exemplary three-loop diagrams for the Wy, vertex with the gluon at the
O(a?ay) order. The complete set of 604 diagrams can be found in repository [166].

5.4 Remarks on the implementation of higher order SM radia-
tive corrections to the global analysis of the electroweak
data

Beyond the SM models include new particles which couple with SM particles weakly.
With new 3-loop fermionic and bosonic results for the SM corrections 6}32M5V and
(5;3,3]\/[% at the O(a’ay) order, more refined analysis and phenomenological studies for
models which go beyond the SM are possible. On top of that, as discussed already
in the Introduction, the present discrepancy between the foreseen experimental and
the actual theoretical capabilities is a serious problem because it is bigger than the
accuracy of the planned experimental setups; see Tab. 1. Thus, further calculations
are needed, see Tab. 2, justifying our studies and calculations of the O(a?«;) order

corrections.

Ultimately, calculated higher-order corrections are encoded in special libraries,
which should be merged with Monte Carlo generators [275,276]. A new EW Griffin
library [277] is constructed differently from the Zfitter/Dizet EWPOs library, which
has been used widely since the LEP times. For the recent version of Dizet, see [128].
The Griffin library aims at a universal description of the SM higher-order corrections ap-

plicable for precision studies at future lepton colliders, with gauge invariant corrections
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at the amplitude level, extendable to new corrections and new physics contributions.

The p parameter introduced in (1.4) includes the discussed in the previous section
corrections 55:32 M}, and (5}32 M?%, thus they can be implemented in future studies includ-
ing fits to the BSM parameters. Such refined investigations go beyond the scope of the
thesis. There are dedicated studies for the global analysis of electroweak data in the
SM (see e.g. [71]) where a complete set of EWPOs SM corrections up to 2-loop order
worked out in [64,66, 141] are already included.

The p-parameter defined as p = MZ%VS‘QGBV equals to one at the tree level in SM.
In general, it depends on the scalar sector and on the scalar multiplets’ vacuum ex-
pectation values v; of some neutral scalar fields h;. The unity at the tree level is due
to gauge boson mass relations in the SM (1.9) and the SM spontaneous symmetry

breaking mechanism, for which the textbook relation reads [49]

X T(T + 1) = (T)?] v}
- 2% T507 '
For the SM Higgs doublet with the hypercharge Y = 1, weak isospin T = % and the

third isospin component T3; (as well as for scalar multi-doublets and singlets), the p-

(5.49)

parameter is naturally equal to 1. In this case, the model has a custodial SU(2) global
symmetry [278]. In the SM, this symmetry is broken at the loop level when fermions
of the same doublets have different masses [36] and by the hypercharge group.

The SM tree level p-parameter discussed in (1.4) and section 2.2 on the muon decay

gets modifications due to radiative corrections, which change My, M and s%,

M?2
2 w 2
= il U ) 5.50
SW ( M% )tree + SW ( )
M32 SW(MZ)  D4(ME) M32
— 1 . w 2 T wJ T Z = 1 . w 2 A ) 5‘51
M2 + ( M3, M?2 M2 +cwp. (5.51)

In the SM, this correction due to the top-quark is substantial (at the percentage
level) while the correction due to H® is moderate (logarithmic behaviour, screening
theorem [279])

Ap = 5 ; [1+Apt+ApH+ ] (5.52)
8272 T '
3V2M2G

t — 726 ® *

Ap TR (5.53)
3G, M2, s> M?2

ApH ~ —TEEW PWge 8 o Moy >SS My 5.54

g 8v2ar? oy My e >34
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Thus, Ap is one of the key parameters considered in the precision physics calcula-
tions. It is one of the so-called oblique corrections [280] (self-energy corrections) which
is also used to parametrize BSM radiative contributions through S, T', U parameters,
which are defined as follows [280]

a8 = dshch, [DF(0) = (cy — shy)/ (swew)ITZA(0) — TT*4(0)]
of = SW(0)/My, — S77(0) /M3,
oU = sy, [IYW(0) - ¢, I1#%(0) — 2swewT1?4(0) — 53, 1144(0)| . (5.55)

The II in the above equations states for the derivative of self-energies over momenta
squared, same as in (2.35). Let us note that the definition of the oblique corrections is
not unique [281].

Finally, we remark that there are two different approaches to the SM and BSM
tests. The bottom-up approach focuses on studying discrepancies between experimental
results and the SM predictions without assuming the form of the underlying theory
(read: effective theories are considered). However, the SMEFT theories discussed in
recent years, based on functional matching for constructing EFTs with heavy fields
of UV-complete models, often do not include BSM renormalization and no validation
for observables [282]. As discussed recently in [283], decomposition into SMEFT and
non-SMEFT operators in a complete renormalization scheme is not unique. Thus, tests
of the SM and its extensions are non-trivial and need further efforts in order to tackle
the fine details needed for demanding precision of foreseen collider experiments.

The top-down approach is based on the specific Standard Model extensions (see e.g.
discussion of specific BSM models in [271,284] and importance of model-dependent Ap
on derived SM and BSM parameters in [284]). In both bottom-up and top-down
approaches Ap parameter and the 3-loop self-energy results derived in the last section
will certainly improve the precision of underlying investigations and global analysis,
which is an important issue in the context of demanding precision of Tera-Z physics

discussed in the Introduction.
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6 Summary and outlook

Whether SM based theoretical predictions can be made accurate enough to meet the
demands posed by the emerging progress in collider technologies is a key issue for the
entire field of high-energy physics research at the high-energy and luminosity frontiers.
The piece of calculation addressed in this thesis is an important part of the massive
project for improving these predictions. Presently, theory is still much behind the
experimental demands [PhD4]. The key technique is the derivation and calculation
of a huge number of Feynman integrals with unprecedented precision. Integrals that
stand behind the Feynman diagrams are, together with a renormalization procedure,
at the core of the technical difficulties, which increase rapidly with the number of
legs and loops involved in calculating contemporary QCD and electroweak processes
[PhD2, PhD3, PhD4]. Thus, steady progress in particle physics needs new ideas and
crafting ever-changing theoretical tools and techniques of calculations with the rapidly

growing complexity of the integrals.

In the thesis, I present the considerable progress made in the development of meth-
ods and tools for the multi-loop Feynman integrals evaluation, as well as results needed

for the three-loop mixed QCD-weak contributions to the muon and Z boson decays.

Concerning the development of methods, in [PhD1] the calculation of the intri-
cated multiscale SM 3-loop self-energy, vertex and box Feynman integrals has been
undertaken using differential equations with Euclidean boundary transport. The most
important novelty of this method is the construction of an automated framework for the
application of the DEqs transport method to the calculation of physical processes. This
automation is based on two key features: (a) an algorithmic procedure for finding an
integral basis for which the DE system is finite, and (b) a prescription for analytically
continuing the series solutions across physical thresholds. With the availability of these
automated procedures, the feasibility of any cutting-edge calculation is only limited by
the availability of the numerical boundary conditions and the integration-by-parts re-
ductions, but no further analytic studies are needed. This method was developed in
parallel and independently of the AMFlow. Having several competing methods is cru-
cial, as it allows for cross-checks for these very complex calculations. The method and

its usage are described in detail in sections 4.5 and 5.1.3.

In the thesis, I have also tested at the 3-loop level the capabilities of the sector de-
composition as well as Mellin-Barnes methods [PhD2,PhD3], see sections 4.3, 5.1.2 and
5.1.3. These methods were used successfully in previous studies for the complete two-
loop calculations of the Z boson EWPOs [64,66, 141] . For the three-loop self-energy
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calculations of the W and Z bosons, they turned out not to be sufficient. For numerous
integrals, the MB and SD methods could not fulfil the accuracy needs or even get any
result at all. There was a need for either an enormous improvement in these methods
or a new method capable of solving the three-loop integrals for the Z boson and muon
decays. I have been working on improvements that could result in better accuracy and
easier computation of encountered Feynman integrals using pySecDec, including rescal-
ing and, for a short time, on Taylor expansion of integrands as presented in appendices
D and E, respectively. With emergence of the AMFlow and the DEqsEBT approaches,
I became familiar with numerical approaches to differential equations and soon it be-
came evident not only that the gaps, where MB and SD methods failed, could be filled,
but also the overall accuracy of the computation was brought easily up to 30 digits for
all individual integrals, exceeding the accuracy needs for the calculations. I have also
tested that these newly developed methods and tools are sufficient to deal with the
three-loop Z boson decay vertices, as this is a natural continuation of our studies, see

section 5.1.3.

Despite having the accurate integral evaluation methods available, to efficiently per-
form the calculations of several thousand Feynman integrals, only for the self-energy,
there was a burning need for automation. Even more so, for the calculation of Z bo-
son decay vertices, where there are O(10°) diagrams collectively to be evaluated for
different decay modes as shown in section 5.2. I have prepared scripts to automate
the process from the list of input integrals up to the numerical results with two inde-
pendent methods, using pySecDec and AMFlow, as described in sections 5.1.1 and 5.1.4
respectively. The former served for the benchmarking tests of pySecDec capabilities
as well as cross-checks of the results, while the latter was used for the complete, three-
loop W and Z bosons self-energies calculation. The scripts I developed can be used
not only for the W and Z bosons’ self-energies at the three-loop level, but also for the

upcoming calculations of Z boson decay vertices and others.

Besides working on the development and tests of the tools for numerical evaluation
of Feynman integrals and their automation for our in-house setups, I also worked
on the preparation of an independent setup to generate expressions for counterterms
starting at one- and two-loop level, see sections 3.3.1 and 5.3. This setup is made in
such a way as to be compatible with the automated numerical methods mentioned
before. This was done to make another set of cross-checks in this complex project.
With this setup ready, not only can we compare numerical results for the individual
integrals, partial contributions from single integral classes or full results, but also we can

compare expressions symbolically at intermediate steps of calculations. These cross-
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checks are extremely important in such a project, where bookkeeping for each step
of calculations is one of the most important issues, especially since the methods and
tools can sometimes give a false result that cannot be identified without the method
of verification, such as another independent approach.

All of the aforementioned numerical results for the three-loop W and Z bosons
self-energy and one- and two- loop renormalization constants used for Z boson and
muon decay studies are added into the publicly available repository [166].

The impact of the three-loop O(aa;) calculations considered in the thesis for the
discussed processes is under study. The numerical values obtained for genuine 3-loop
corrections in chapter 5.2 were obtained for the central values of My, My, My, M,
masses as defined in (5.32). To get an estimate of parametric uncertainties, a grid
over input values should still be done, repeating results for a wider range of mass
parameters, as was worked out for the 2-loop case in [64]. Also, genuine 3-loop integrals
from diagrams with subloop O(aay) fermionic triangles should be computed with PV
regulator A, showing convergence of the cut-off parameter A with increasing A, see
appendix B. Then, the discussed corrections will be coded in Dizet [128] and can be
used for BSM analysis and global fits, as was the case of NNLO EWPOs corrections
and global fits [71]. In addition, IR-finite boxes and QED boxes, with Fermi model
contribution subtracted [117] beyond 1-loop level, should be worked out.
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Appendices

A Renormalization examples

A.1 W boson mass renormalization

Let us show how to get the gauge bosons’ mass renormalization conditions and their

explicit form on the example of the W mass renormalization constant, i.e.

OM3, = R (S (M) (A.1)

The bare, unrenormalized W boson propagator is defined in the following way

prr——— 1 _pw_ & pw_ 1 (—g“” TR )
‘ pP-MET pr—EeMRt T pr— MR P2 —EME )
A.2)
where
(T3 LV
PR =g — PP and P = L (A.3)

p? p?

We find the inverse of the propagator (Dgy')* knowing that D * D™! =1

DE” = aP}¥ + bPl”, (A.4)
L P £ Py | (aPr+bPp) =1
_ j— a — 1.
pP-MyT Mg )
Finally, it results in
p® — M
(Do )" = —(p* — M) Pp” — %Pﬁ”. (A.5)
With the following substitution
1 3
A=————— and B=-——">—,
P — Mg, p? — €My

we can write the propagator and its inverse in a compact way

(D)™ = AP + BPM™, (A.6)
v Yo L
(Do )" = S P + 5P (A7)
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The tree-level propagator has two poles, when p = M7, and p = (M7, Mass of the
particle cannot depend on the gauge parameter . Thus, the experimentally measured
mass comes from the transverse part of the propagator.

A similar approach can be applied to the renormalized propagator

D = Do+ DoSDo + - -~ = Dy=D, (A.8)
1

D= =aPr+bP A9

D()_l - DOEDo—l att + L ( )

where the self-energy can also be decomposed into transverse and longitudinal parts

S = S PR 4 S PR (A.10)

Using the D * D=1 = 1 relation again, we find:

1 §
D — _ phv _ phv. Al
PP—MG+Sr T pr—EME &y (A1)

Following the same reasoning as for the tree level, we see that the observed mass is

connected to the transverse part of the propagator, and its longitudinal part cannot
contribute to the loop corrections.
The renormalization condition for W boson mass in (3.4), My, = Mg + dMy,

becomes

SMy, = Y. (A.12)

If we take the real part of the self-energy, we get the renormalization constant form as
in (3.18).

Alternatively, as discussed already in section 2.3 for the Z boson case, coming from
the propagator pole sy, the mass and decay width of the W boson, the pole and the

on-shell mass and width of the W boson are
so = Moy — iMyTw, (A.13)

My = Mw Ty = Tw (A.14)

) w .
/14 Tw /M3, /14 Tw /M3,

The massive two-point function of the W boson with radiative corrections included

becomes
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D(p?) = p* — 50+ Er(p?) — 5M€v, (A.15)

where (5M3V is the mass counterterm. As for sy being a pole of the propagator, it is
required that D(sg) = 0, which leads to the following conditions

§Myy = RXp(My — iMTy), (A.16)

_ 1 .

Ty = —SSp(My — iMyTw). (A.17)
My

By inserting the (A.17) into (A.16) recursively and expanding in next orders of
perturbation, we arrive at the W-mass counterterms at one, two and three-loop level
[285]

—~—2 -2

72 J—
My = R Zwe)(My)

72 —
5MW(3) = R ZW(3)(M )

2

— S [3 T ] R (1]} (a20)

The lower index T is dropped for the self-energy ¥ to avoid the index cluttering.
Similarly, we can approach the Z boson mass counterterm, though the mixing with

photon results in extra terms in comparison to (A.16) and (A.17)

A.2 Charge renormalization constant

For the derivation of the charge renormalization constant we will use the Ward identity

and (amputated) Green functions.

G(¢;,...) — complete Green function with boson fields,

¢ = By, Wi — gauge field,

D;G (¢, ...) —amputated Green function for gauge field,
D;; =< ¢;¢; > —propagator of the ¢;¢; fields

Transition from gauge fields to renormalized physical fields A,,,,Z, is described by the
U matrix:
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¢i = Ui ;.
Then

Dij = U U Al = (UD'UT),,
G(0i,...) = UpG(d,...). (A.21)

The amputated diagram is described by the following function

D;'G(¢),...) = (UD'UY) ;' UsnG (s - - ),

D G(¢),-..) = (UT)F (A5 G, - ), (A.22)
W) ey | o (A.23)
thotho B ") amp 1/10%14# amp

where vy, B, Wj are unrenormalized whereas Z,,, A,, are renormalized.
For further simplification, let us consider right-handed fermionic fields only. Then,
wrighﬂ/zrightwlj‘ = (0 and from the construction of the SM we can assume that bosonic

coupling to fermions, both right- and left-handed, depend on the same constant e.

Yotz 0
e _ , (A.24)

R R, R
Yoo Ay o 0 Vo By

amp
where 9[? is right-handed unrenormalized amputated fermionic field, and the amp
subscript indicates that that these are amputated.

We can now use the Ward identity for the zero-momentum boson

“R 05y (p)
(@D(])%Q/)(I)%Bu)amp =0 anu ) (A.25)
where S5' is the unrenormalized fermionic propagator, g1 = eg/co. Let
Yo = Z;/Qw - for the unamputated fields, (A.26)

then
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< thotho >~ Sz' = Z5' S5k
(V0v0)amp = Zp" (1)) amyp - for the amputated fields. (A.27)

Since on-shell renormalization vertex is ©%(p?) = 0 and (2F) =0 so

— 1Yy, A28
@pu K ( )
where Sp' = —i(p —m — 5(p?)). Assuming that the photonic vertex is the same as in

QED ¢ A, = —iey, for all renormalized fields.

1/)%2 0
! t=UT ,
W/)Au _iglfyuzlzl
QZJJZ 0
l=uT . (A.29)
—1eyy, —191Vu

Now we only need to find the U matrix.

W3 Z
“l=ul| ", (A.30)
B, A,
/2 51/2
Co —So Z Z
U= 7 = U, Uy, (A.31)
5o o Z1/2 Z1/2
71/2 Z1/2 o So
UT = (U.U,)" =ULUL = | 77 , (A.32)
Zé/AQ Zfl‘/j —So C

/2 1/2 1/2 1/2
Zé/j Co — Zil/AZSO Zé/AQSO + Zil/AQCO

where sg, ¢y are unrenormalized sin fy and cos 6y, respectively. For the charge renor-

malization constant, we only need the Uj,. From (A.29) we get
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—teY, = —1g1Vu (sOZé/A2 + COZXZ) : (A.34)

SO

e S
1= (;z;/j + Zj/j) | (A.35)
0

Finally, the charge renormalization constant has the following form

+ s
Z. 22 205 g2 g A.36
( AA T et oclzA ( )

Expanding at the 1-loop level

(140620 Lo Wy (L 0N 1o 0y _
+0zY) 1+§5ZAA+(3+55 ) - = ) g9z ) =1 (A.37)

After simplification, neglecting the higher-order terms

1
1= 6210 =1+ 26243 + 2352921, (A.38)
C

and finally

1
62" = ~502) - 2%522. (A.39)

€

Following the same procedure, at the higher orders, we get the following expression

of the charge renormalization constant

2 1 ¢ 1 D\2  SwW (2 1 1
028 = (020) = 3020+ 5 (240) — 500758 — 5 0WoZEs . (A0
w
] 1
629 = —2628) - 252 + 2620570 + 162006784
Cw
1 2 1 1 2
o (95170251 + 0510 Z))
w
3 1 3 3sw 2 1
o) ) - B ot
w
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B Divergences handling and the v5; problem

One of the major issues that has to be dealt with, while calculating loop integrals, is the

divergences. Consider a simple one-loop scalar integral with zero external momentum.

PE1
= | Gy (B1)

where k denotes loop momentum. We can see that the integral is divergent when
k* approaches either infinity or zero. These are the ultraviolet (UV) and infrared (IR)
divergences, respectively. It is clear that any quantity given by a divergent integral is
ill-defined and so these integrals have to be regulated. The standard method to achieve
it is by the method of dimensional regularization [286-288]. The idea of this scheme
is to replace the integral over loop momentum in four dimensions by a D = 4 — 2¢
dimensional integral, where ¢ is a new parameter that can be non-integer as well as
even a complex number. In the end, the result of the integration is a function of ¢, and
we want to recover the result when D — 4. Original integral divergences appear as
poles in 1/e, which can be systematically subtracted or absorbed via renormalization.
The integral in D = 4 — 2 dimensions keeps all the standard properties of integration
such as linearity, translation invariance and scaling behaviour [289,290]. This approach
also preserves gauge invariance and Lorentz symmetry. In principle, both UV and IR
divergences can be treated with dimensional regularization. See e.g. [291] for a detailed
discussion as well as the way to treat integrals with both UV and IR divergences with
dimensional regularization.

Besides dimensional regularization, there are other schemes to regularize the infini-
ties appearing in Feynman integrals. One of them is the cut-off method, in which we
limit the range of loop momenta integration by a hard cut-off, k* < A then calculate
the integral in D = 4 dimensions and expand the result into power-log or Laurent
series in a parameter r which is a ratio r = (masses and external momenta)/A. As
a result, the terms in the expansion with positive logarithm powers of A account for
the divergent part. Although this scheme of regularization may be appealing for its
conceptual simplicity, it turns out to be quite problematic in practice, as it breaks the
Lorentz invariance of the theory and the additional energy scale A dependence can be
non-trivial.

Another important issue that has to be taken into account when calculating Feyn-
man integrals is the behaviour of 75 in D # 4. The 75 in D = 4 dimensions has two

properties that cannot simultaneously be preserved when going to eg. D = 4 — 2¢
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dimensional space, when working with dimensional regularization. First, the anticom-

mutativity relation

{¥5,7.} = 0. (B.2)

Secondly, the cyclicity of the Dirac trace

Tr(Yuy - Vozn¥5) = T (Vg - Voo V5Y01) = T0 (Vs -+ Vo V5 Vpa Vo) = -+ (B.3)

For this reason, multiple approaches, aiming to avoid these issues and still obtain
correct results, exist. Among the most commonly used schemes are: Naive Dimen-
sional Regularization (NDR) [292], Breitenlohner-Maison (BMHV) scheme [286,293]
and Larin’s scheme [294]. Each of them has both good and bad sides, and at the
moment, there is no simple solution to the 75 problem that can work in any theory at

any loop order and in an automated manner.

Throughout the thesis and computation, the NDR scheme for v5 was used. In this
approach, we assume that the properties of 75 naively extend to D dimensions. It
is very easy, fast and convenient to use, especially in non-chiral theories, vector-like
theories. On the other hand, while using this scheme, any diagrams contributing to
closed fermion loops with traces of an odd number of 75 as in Fig. 36 are ill-defined and
this approach leads to ambiguities for the diagrams related to the Adler-Bell-Jackiw
anomaly [295,296].

In these cases, where NDR scheme fails, we use another approach for the integral
regularization i.e. the method by Pauli and Villars (PV) [297]. It works for the UV
divergent integrals and follows from the idea behind the origin of UV divergences, i.e.
the virtual particles carry enough energy to transform spontaneously into any state, yet
the theory is designed in such a way that can only describe effects up to a given energy
scale. So, the formalism fails to account for the effects of possible contributions from
heavier fields that still do contribute to physical processes. The basic idea of Pauli-
Villars regularization is to introduce additional fields that mimic physical fields, but
with a very large mass A > (other masses and momenta). The new fields effectively
modify the integrals in a way that the divergent parts at high energies drop out. This

regularization scheme preserves the Lorentz invariance and Ward-Takahashi identities.
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Figure 36: Exemplary three-loop Wy, vertex with a closed fermionic loop that is

treated with Pauli-Villars regularization in our calculations.

We apply the PV approach in cases such as in Fig. 36, where NDR leads to the
anomaly. We apply the Pauli-Villars regularization with different values of regulator
A for internal gluon to see if the integral converges for large values of A, which is the

case.

C Symanzik polynomials

The functions U and F' in (4.11) and (4.12) are called graph polynomials. They are

polynomials in the Feynman parameters and have the following properties:

e They are homogeneous in the Feynman parameters, U is of degree L, F' is of
degree L + 1.

o U is linear in each Feynman parameter. If all internal masses are zero, then also

F' is linear in each Feynman parameter.
e In expanded form each monomial of U has a coefficient +1.

U and F' are the first and the second Symanzik polynomials of the graph, respectively.
These polynomials can also be derived from the topology of the underlying graph.
To explain the graphical method of graph polynomial construction, one needs to

introduce some basic definitions first:
o Spanning tree T' of the graph G is a sub-graph with the following properties:

— T contains all the vertices of G
— the number of loops in T is zero

— T is connected

T can be obtained from G by deleting L edges (L — number of loops in G).
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o Spanning k—forest T for the graph G has the same properties as T, but it is not
required that a spanning forest be connected. Instead, we require that it should
have exactly k£ connected components.

F can be obtained from G by deleting L 4+ k — 1 edges.

If T is the set of all spanning forests of G and Ty is the set of all spanning k-forests of
G then

T =J 7w (r —number of vertices).
k=1

Each element of 7 has k connected components (773, ...,Ty). With Pr, we denote a set
of external momenta attached to T; for a given k—forest. Depending on the “direction”
of external momenta (whether they are incoming or outgoing), they enter the Pr, with
a different relative sign.

The graph polynomials U and F' can be obtained from the spanning trees and the
spanning 2—forests of a graph G as follows:

U= > 1] = (C.1)

TeT1 €i¢T

pe- 8 (I a)(Sa)(5n)ivEam ©o

(T1,12)€T2 i & (T1,T2) pi€Pr p;jE€Pr,

Fo+ U zms. (C.3)

i=1
A simple one-loop example of how to find Symanzik polynomials is given in Fig. 37.
Cuts of internal lines (lines removed in Fig. 37) are made according to Egs. (C.1) and (C.3)
such that:

o U: (i) every vertex is still connected to every other vertex by a sequence of uncut

lines; (ii) no further cuts are made without violating (i).

o F: (iii) the cuts divide the graph into two disjointed parts, such that within each
part (i) and (ii) are valid, and at least one external momentum line is connected

to each part.

Regarding Fig. 37, let us note that the delta function §(1 — Z z;) in (4.10) in any
1-loop diagram goes over all variables z;, so U = 1. This feature i IS used in the so-called
loop-by-loop MB representation construction [175].

Let us note that F' and U polynomials can be obtained algebraically using MB.m or
the Mathematica module, which can be found in [298].
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b1 b3
Basic 1-loop box diagram

D2 yZ

T2

T4 ‘ ‘ ‘ ‘ U=x1+x9+x3+ 24

3

Trees contributing to the U polynomial for the 1-loop box diagram are drawn above.

‘ ‘ F:t'$11‘3+8'$21‘4

2 - trees contributing to the F' polynomial for the 1-loop box diagram are drawn above.

Figure 37: Graphical construction of F' and U Symanzik polynomials. Kinematic
variables ¢ and s are defined as t = (p; — p3)? and s = (p; + p2)?. External particles

are considered massless.

D pySecDec with rescaling

The following theorem (CW) has been considered by Cheng and Wu in a work on proton
scattering [299].

Theorem D.1. For the Feynman parameter representation in (4.10), the Cheng—Wu
(CW) theorem states that the same formula holds with the delta function 6(1 — g: ;)
replaced by -
) (Z x; — 1) : (D.1)
i€Q
where § is an arbitrary subset of the lines 1,..., L, when the integration over the rest

of the variables, i.e. for i ¢ Q, is extended to the integration from zero to infinity.

This theorem is key to minimizing the number of terms in Symanzik polynomials
for Mellin-Barnes representations [165].
In short, Cheng-Wu’s theorem states that a Feynman integral remains invariant

under the rescaling of the Feynman parameters by an arbitrary number, i.e.

Q; — )\Oél', dozz- — )\dOé,L (D2)
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This feature may turn out very handy in the case of pySecDec calculations, if one
can find a set of rescaling parameters that make computation more efficient.
We have selected three benchmark integrals to test if we can find any rules or

features of the integrals that can help us select a helpful rescaling®

2F = ! (D.3)
T k% % (ki 4+ p1 +p2)? * (k1 — k2)? % ((k1 — ko + p1)? — M2) * (ko)? x (k2 + p2)?’
2L, = ! (D.4)
TPR 62 5 (ky — k)2 % (k1 — k)2 * (ko — k3)2 + (k3 — 1) % (k1 + p1)2 * (k2 + p1)?’
I35 — 1 .
SPR 525 (ky — k)2 % k2 % (kg — k3)2 % (ko — k3)2 % (k2 — 1) % (k1 + p1)2 * (ko + p1)2

(D.5)

First, I2 the two-loop, non-planar triangle diagram, with one massive leg, for the

Z boson decay, see Fig. 38 and discussion in section 4.3. This particular integral was
very problematic for the pySecDec and was computed with the MB method at first.
Then pySecDec developers added a ’split’ option that can help avoid problems with

singularities at Feynman parameters x; = 1. The U polynomial for this integral reads

U%L =X3% T5 + T3 * Ty + To* X5+ To* Ty + T1 % Ts + X1 %Xy +

T1 % XT3+ T % To + Tg * Ty + To * T4 + Tg * T3 + To * Ta. (D.6)

It creates a lot more sectors and slows down the calculation a lot, so it should only be
used if the standard approach fails to converge. For this particular example, it solved
the computational problem, but due to the fact that it is so much slower, the accuracy
that one could aim at, in a reasonable computational time, leaves a lot of space for

improvements, and it serves as a benchmark example for pySecDec from then on.

Second I35, and third I35, integrals are the scalar, self-energy integrals for the Z
boson from the Th_merc class, see Fig. 38. Both of them could have been calculated
with the standard pySecDec approach (no split needed), but with very poor (1-digit)
accuracy, so it leaves a lot of space for possible improvements. The U polynomials for

these integrals are

4This work has been done together with Stephen Jones from the pySecDec group during my visit
to CERN .
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s=M; 0 0

Figure 38: Feynman diagrams corresponding to integrals in equations (D.3), (D.4) and

(D.5) respectively.

U%%R = X4 % Ty *xTg+ T3 * Ty * Tg+ Tg*xTy*x T+ Lo * Ty *xTg+
Lo * Ty * Tg+ Lo % Ty * g + Lo * Ty * LTy 4+ Lo * T3 * Ty + L1 * Ty *x Tg +
T1 % Ty * Ty + X1 % T3 % Tg+ T % T3 * Ty + T *T3g*xTy+ T1*To*Tg+
X1 % Lo % Ty 4 X1 % Lo % Ty 4+ T * Ty * Tg + Lo * T3 * Tg + To * T3 *x Ty +

To* T * Tg+ Lo * To*x Ty + Tg* Ty *Ty + To*xTq % Ty + Tg* T * To, (D.7)

Uglé/R = T5*xTg* Ty + Ty *Tg* Ty + Ty *Ts % Tg+ T3 *Tg* XLy + Ty *Ts* Ty +
X3k Ty *k Ty 4 T3 % Ty % Tg 4 T3 % Ty % Ty 4+ Lo % Ty % Tg + To * Ty *x Tg +
X9 * T3 * Tg + Lok Ty * Ty + Lo *x T3y * Ly + L1 * Ty % Ty + XT1 * Ty *x Tg +
L1k Ty Ty + X1 % Ty %k Tg+ X1 *Ty % Ty + T *Tg*xTy+ T *T3g*xTg+
X1 % T3 % Ty 4 T % To % Ty 4+ L1 % To *x Ty + T % To *x Ty + T * Ty *x Ty +
Xo* Ty *x X7+ Xk Ly *x Ty + T * T3z % Ty 4+ Lo * T3 *x Ty + To * Lo *x Ty +

T * Ty * Ty + To * To * T3 + To * Ty * Ty + To * T1 * Ty + 1o * 1 * x3. (D.8)

At first, we tried to see if it was possible to increase the efficiency (decrease com-
putation time/increase precision) for the 2L, as the one that had the fewest Feynman
parameters that could have been rescaled. Starting from trying to multiply each of
the Feynman parameters by some random number and then decreasing the number of
rescaling parameters from 6 down to 1, we observed better performance when, min-
imally, two parameters were changed. This was a good starting point for a broader
analysis of what particular values of rescaling parameters increase the computation
efficiency, and then if we can find out the rules to choose the rescaling parameters in
other cases. The scan of the 2-dimensional parameter space was done, resulting in
Fig. 39.

130



Triangle2L

0.9 4 .
.o
e
o 500
0.8 1 .
o
e
0.7 1 :{. 400
e 5
e
0.6 . o g . x .:- . 300 g
o BNy S a I3 <
oy a
0.5 | .'z ° 3
. : —~
. 200
0.4 1 ".:""
ind
-'. 100
0.3 i il

T
20 40 60 80 100
rl

o 4

Figure 39: Scan over the two rescaling parameters space to find the point at which we

minimize the error with a set number of integration points.

The scan showed that the following values of the rescaling parameters give the best

results:

rl = 2.26327557652, r3 = 0.649642611183. (D.9)

The tests performed on some representative integrals considered in the thesis helped
improve the rescaling method. However, it seems that presently pySecDec is more
efficient using Symanzik polynomial analysis without contour deformations [212], as

discussed in section 4.3.

E Taylor expansion of multi-scale integrals

To reduce the number of scales in the integral, they can be Taylor expanded as described
and applied in [300,301] in more general contexts. We have also tried this approach
in [PhD2]. Tt is beneficial for IBP reduction, MB and SD methods. To test the approach,
we apply it to the integral corresponding to the diagram in Fig. 40. We choose to
expand the integrand at My, = My, then the expanded W boson propagator takes the
form
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Figure 40: The exemplary integral in which a W boson propagator was expanded
as shown in (E.1). An artificial integral was also considered, where the W boson
propagator was replaced by the Higgs boson propagator and then expanded in My =
My.

The goal of this approach is to end up with integrals that can be evaluated faster
and with better accuracy. Indeed, instead of one difficult integral, we end up with
several simpler integrals, and the approach can be applied recursively if necessary. For
both considered integrals, with W and Higgs bosons, we studied the convergence of
the series. The results are graphically presented in Fig. 41 and Fig. 42 for W and
the Higgs boson, respectively. One can see that the result converges when more terms
of the expansion are included. These terms were all evaluated in the Minkowskian
kinematics, i.e. for s = 1. Each point of the plots represents the integral value with

another expansion term included.

The integral with the W boson propagator converges faster than the second one,
with the Higgs boson. The simple explanation of this fact is that the difference between
My, and My is smaller than for My and M. Yet, for both integrals, we can achieve
a good convergence of the result. In the case of the integral with the W boson, it is
enough to include 9 terms of expansion to achieve O(1078) accuracy, whereas for the
integral with the Higgs boson, including 21 terms of expansion leads to the O(107%)
accuracy. The final result depends strongly on the accuracy achieved for individual
integrals in the expansion, which is, in principle, higher than what we can get for the

original integral.
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Figure 41: Numerical result for the integral corresponding to the diagram in Fig. 40

expanded at My = My including sequential terms of expansion as in (E.1).
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Figure 42: Numerical result for the integral corresponding to the diagram in Fig. 40

with Higgs boson instead of W boson, expanded at My = My including sequential

terms of expansion analogous to (E.1).

F The scheme used for AMFlow automation

To illustrate the workflow of the AMFlow automation, two flowcharts are presented
below. First, for the general scheme of processing the integrals up to the numerical
results, the second depicts how the integrals are matched to the basis, i.e. to find
integrals originating from the same Feynman diagram, including all possible momenta

shifts in the integral.
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G Identification of equivalent Feynman integrals

As mentioned in section 5.3, generating multiloop amplitudes, for instance, by FeynArts,
we can get many integrals that look different but are actually mathematically equiva-
lent due to symmetries or redefinitions of loop momenta. The goal of the algorithm is
to recognise when two integrals are the same or are so-called topologically equivalent.
The algorithm is based on the structure of the U and F' graph polynomials. U and F
polynomials do not depend on the momenta flow of propagators, and for two equiva-
lent diagrams, the polynomials must be the same up to permutation of the Feynman
parameter indices. As a reminder, see section C: The U polynomial (First Symanzik
Polynomial) encodes the topology of the graph (i.e., how loops are connected), and
the F' polynomial (Second Symanzik Polynomial) encodes both the topology and the
kinematics (external momenta and masses). The canonical labelling algorithm for
polynomials—especially in the context of Feynman integrals—aims to assign a unique,
standardized representation to each integral based on its U and F' graph polynomials.
The algorithm performs a permutation of the Feynman parameter indices and, among
all permutations, selects the one that gives the lexicographically smallest polynomial
representation. The algorithm can be used for the sum as well as for the product of
U and F polynomials. From the package® TopoID [303,304], we used only the part
which computes the canonical form of a given polynomial. Our approach works in the

following way

SFor the original concept, see [268], also [302].
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1. take Feynman propagators corresponding to a diagram from a list of diagrams

and mark the diagram as belonging to the n’th diagram family (n = 1, 2, 3, etc.);
2. compute U and F' polynomials;
3. find the canonical form of the product U * F;
4. take the next diagram and repeat steps 2) and 3);
5. if canonical forms are the same, we put this diagram into the n’th family;
6. repeat procedure to the end of all diagrams;
7. remove from the starting list all diagrams belonging to the n’th family;

8. repeat steps 1)-7) until all diagrams are distributed into different families.

After that, within each diagram family, we perform a shift of loop momenta to have
the same momenta flow for all diagrams. An example of such a family’s identification
is given in a file AMWsq3_ 3loop_diags.nb in repository [166].

We take these families as input for our SEflow script, and we are sure that our
shifting procedure is not wasting time trying to fit different topologies. Diagrams in
the starting list must be sorted from diagrams with the largest number of propagators
to the smallest. Talking about diagram families, it may happen that a diagram with a
smaller number of propagators belongs to a family of diagrams with a bigger number
of propagators. This becomes possible when we remove one or more propagators in
the family with a larger number of propagators (later, to compute individual Feynman
integrals, we use IBP’s method, and cancellation of propagators is a typical situation).
Removing a propagator is equivalent to setting the corresponding Feynman parameter
to zero. An example of such a situation is shown in Fig. 43, where the third diagram
appears after removing the W (G) propagator from the first (second) diagram. When
we meet a diagram with a smaller number of propagators on step 4), we need to modify
the U F' function for the starting set of propagators and perform the test several times.
For example, if the starting set has N propagators and a new diagram - N-1, we set
one of the Feynman parameters to zero for the starting diagram. Repeating this for
each parameter, we get N different functions from the function U x F', then we compare
them with the U x F' function for the diagram with N-1 propagators. After getting the

match, the new diagram is marked as belonging to the family.
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Figure 43: Diagrams from family 46 of the genuine 3-loop W self-energy discussed in
the text as defined in dAMWsq3_ 3loop_diags.nb.

In the genuine 3-loop self-energy and vertex cases, described identification of sym-

metrical topologies speed up complete calculations typically by at least one order of

magnitude.
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