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Abstract

This dissertation consists of the following series of four publications on the application of

piecewise deterministic Markov processes (PDMPs) in modelling population dynamics:

[I] P. Klimasara. Revisiting the logistic growth with random disturbances. Math.
Appl. (Warsaw), 47(2):177-186, 2019.

[II] P. Klimasara and M. Tyran-Kamirnska. A model for random fire induced tree-grass
coexistence in savannas. Math. Appl. (Warsaw), 46(1):87-96, 2018.

[ITT] P. Klimasara and M. Tyran-Kamiriska. A model of seasonal savanna dynamics.
SIAM J. Appl. Math., 83(1):122-143, 2023.

[IV] P. Klimasara, M. C. Mackey, A. Tomski, and M. Tyran-Kaminska. Randomly
switching evolution equations. Nonlinear Anal. Hybrid Syst., 39:Paper No. 100948,
15, 2021.

The research problem, thematically linking the articles that constitute this dissertation,
is the analysis of the impact of different types of perturbations on population dynamics

models based on PDMPs and the development of formal methods to analyze such models.

After a concise presentation of key concepts — and short mathematical preliminaries —

the main part of the dissertation is divided into three sections.

In the first, we present two population models of antagonistic plant groups — grasses and
trees — in the savanna. It is conjectured that the lack of transition to another biome,
in which one of them dominates, is due to the frequent occurrence of environmental dis-
turbances that cause losses in the biomass of both vegetation types. Among the most
important such factors are fires. Most existing mathematical models do not directly ac-
count for the random nature of fires — either by assuming their periodic recurrence, or
by introducing expressions corresponding to continuous biomass losses into the equations
(deterministic models). Furthermore, they often lack analytical results, and are limited to
numerical simulations and bifurcation analysis. In paper [I], we study a one-dimensional
model in which the logistic growth of tree biomass (assuming that grasses would maxi-
mally fill all remaining space) is perturbed at random times — denoting fire outbreaks —
by the discrete loss of a random fraction of the accumulated biomass. On the other hand,
in paper [II] we analyze a two-dimensional model that considers also grass biomass and
its growth rate, but takes the amount of plant biomass loss due to fire as a fixed fraction
of the biomass accumulated so far (value at the time of fire outbreak). In both articles,

we use PDMPs to describe the model and — by examining stochastic semigroups induced

il



by these processes — we justify mathematically that random fires allow the possibility of

(typical for savannas) long-time tree-grass coexistence.

In the next part of the thesis we extend the models from [I] and [II] with additional
variables — introducing the populations of herbivores and taking into account the impact
of their occurrence on grass and tree biomasses. Moreover, we propose an approach that
allows us to take into account a periodic “environmental disturbance” — seasonality (in
the case of savanna: switching between dry season and wet season). Its occurrence is very
important for many different ecosystems, but unfortunately the inclusion of seasons in
mathematical models poses many technical difficulties in their study. In the paper [II1],
we approach the subject in a new (for this problem) way — by using PDMPs with two
types of switching: jumps in phase space (fire-induced losses) at random times and with
random severity (biomass damage), and discrete changes in the model dynamics at fixed
intervals (i.e. during the change of seasons). In the proposed PDMPs, the periodicity
of the additional time variable (counting the time since the last season change) prevents
us from examining the convergence of the distributions to a stationary distribution and
we instead examine the convergence of time averages for such processes. In particular,
we provide conditions for which stationary distributions for grass and tree biomasses (as
well as populations of additionally introduced herbivores) exist. These methods can be

used also for such processes when more seasons than two are present.

The final part of the thesis — based on the publication [IV] — deals with models in which
random environmental disturbances affect all individuals simultaneously. Conducting
considerations from a population perspective — in contrary to so-called individual per-
spective — leads us to models with an infinite-dimensional state space (where states are
represented by population density). The study of the corresponding evolution equations
poses many formal difficulties — the only results in the literature are determination of
moment equations for diffusion processes in randomly switching environment. We extend
these results for a broader class of processes — described by randomly switching stochastic

semigroups — and we study the mean of such processes at large time.
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Procesy stochastyczne w modelowaniu ekosystemow

Streszczenie

Niniejsza rozprawe doktorska stanowi ponizszy cykl czterech publikacji poswieconych za-
stosowaniu kawatkami deterministycznych proceséw Markowa (PDMPs) w modelowaniu

dynamiki liczebnosci populacji:

[I] P. Klimasara. Revisiting the logistic growth with random disturbances. Math. Appl.
(Warsaw), 47(2):177-186, 2019.

[II] P. Klimasara and M. Tyran-Kaminska. A model for random fire induced tree-grass
coexistence in savannas. Math. Appl. (Warsaw), 46(1):87-96, 2018.

[ITT] P. Klimasara and M. Tyran-Kamiriska. A model of seasonal savanna dynamics.
SIAM J. Appl. Math., 83(1):122-143, 2023.

[IV] P. Klimasara, M. C. Mackey, A. Tomski, and M. Tyran-Kaminska. Randomly swit-
ching evolution equations. Nonlinear Anal. Hybrid Syst., 39:Paper No. 100948, 15,
2021.

Zasadniczym problemem badawczym, taczacym tematycznie artykuty sktadajace si¢ na te
rozprawe, jest analiza wplywu réznego typu zaburzein na modele dynamiki populacyjne;j

oparte o PDMPs oraz rozw6j metod matematycznych badania takich modeli.

Po opisowym nakresleniu rozwazanych zagadnien we wstepie i zwieztym przedstawieniu

najwazniejszych poje¢, merytoryczna cze$é¢ rozprawy zostala podzielona na trzy czesci.

W pierwszej z nich prezentujemy dwa modele populacyjne antagonistycznych grup roslin —
traw i drzew — na sawannie. Przypuszcza sie, ze brak przejscia do innego biomu, w ktérym
dominuje jedna z nich, spowodowany jest czestym wystepowaniem zaburzen srodowisko-
wych powodujacych straty w biomasie obu typoéw roslinnosci. Wsréd najwazniejszych
tego typu czynnikow wymienia sie pozary. Wickszos¢ istniejacych modeli matematycz-
nych nie uwzglednia bezposrednio losowej natury pozaréw, zaktadajac ich okresowa po-
wtarzalnosé lub wprowadzajac do roéwnan wyrazy odpowiadajace ciaglym stratom (opis
deterministyczny). Ponadto najczesciej nie sa dla nich dowodzone wyniki analityczne
— badacze ograniczaja sie do przeprowadzenia symulacji numerycznych i analizy odpo-
wiednich bifurkacji. W pracy [I] badamy jednowymiarowy model, w ktorym logistyczny
wzrost biomasy drzew (przy zalozeniu, ze trawy wypelnia cala pozostata im przestrzen)
zaburzany jest w losowych momentach — oznaczajacych wybuchy pozaréw — przez utrate

losowej czesei zgromadzonej biomasy. Z kolei w pracy [II] badamy model dwuwymiarowy,



uwzgledniajacy bezposrednio rowniez biomase traw i jej tempo wzrostu, ale przyjmujacy
wielko$é strat w biomasie roslin jako ustalona cze$¢ dotychczas zgromadzonej (wartosci
w momencie wystapienia pozaru). W obu artykutach do opisu modelu wykorzystujemy
PDMPs i — badajac indukowane przez nie potgrupy stochastyczne — uzasadniamy mate-
matycznie wplyw losowych pozaréw na mozliwosé (typowej dla sawanny) dlugotrwalej

koegzystencji tych grup roslin.

W kolejnej czesci rozprawy rozbudowujemy modele z [I] i [II] o dodatkowe zmienne, wpro-
wadzajac do nich obecnosé roslinozercow i uwzgledniajac wptyw ich wystepowania na
biomasy traw i drzew. Dodatkowo proponujemy podej$cie umozliwiajace uwzglednienie
wzaburzenia srodowiskowego” o stalej zmiennosci (okresowego) — sezonowosci (w przy-
padku sawanny: pory suchej oraz mokrej). Jej wystepowanie jest bardzo wazne dla wielu
roznych ekosystemow, niestety uwzglednienie sezonéw w modelach matematycznych przy-
sparza wielu trudnosci technicznych w ich badaniu. W pracy [III] podejmujemy temat
w nowy dla tego problemu sposéb — poprzez zastosowanie PDMPs z dwoma rodzajami
przetaczen: skokow w przestrzeni fazowej (straty wywolane pozarami) w losowych mo-
mentach i o losowej sile zniszczen oraz dyskretne zmiany dynamiki modelu w ustalonych
odstepach czasu, to jest podczas zmiany sezonéw. W zaproponowanych PDMPs, okre-
sowo$¢ dodatkowej zmiennej czasowej (liczacej uptyw czasu od ostatniej zmiany sezonu)
uniemozliwia nam badanie zbieznosci rozktadéw do rozkladu stacjonarnego i zamiast
tego badamy zbieznos¢ érednich z rozkladow dla takich procesow. W szczegdlnosci po-
dajemy warunki, dla ktérych dowodzimy istnienia rozktadow stacjonarnych dla biomas
traw i drzew (a takze populacji wprowadzonych dodatkowo roslinozercow). Wykorzystane
metody umozliwiaja zastosowanie analogicznego podejscia dla tego typu proceséw przy

wystepowaniu wiekszej liczby sezonow.

Ostatnia cze$¢ rozprawy — oparta o publikacje [IV] — dotyczy modeli, w ktorych losowo
wystepujace zaburzenia srodowiskowe wplywaja rownoczesnie na wszystkie osobniki. Pro-
wadzenie rozwazan z perspektywy catej populacji prowadzi nas do badan na nieskonczenie
wymiarowej przestrzeni stanow (reprezentujacych gestosé populacji). Badanie odpowied-
nich réwnan na ewolucje gestosci przysparza wielu formalnych trudnosci — w literaturze
(dotyczacej fizyki statystycznej) pojawiaja sie wyniki pod postacia wyznaczenia réwnan
na momenty dla losowo zaburzanych procesow dyfuzji. Rozszerzamy te wyniki dla szerszej
klasy proceséw — opisywanych potgrupami stochastycznymi z losowymi przetgczeniamsi —

oraz badamy dla nich zachowanie $redniej procesu w diugim czasie.
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Autoreferat

1 Wstep 1 motywacja

Modelowanie matematyczne zjawisk przyrodniczych wykorzystuje szeroka i zréznicowana
game dostepnych teorii matematycznych. W niniejszej rozprawie rozwazamy modele sto-
chastyczne, ktore wykorzystuja kawatkami deterministyczne procesy Markowa (dla spdj-
nosci z zamieszczonymi pracami i wickszodcig literatury, bedziemy stosowali skrot PDMP
- od angielskiego zapisu piecewise deterministic Markov process. Podobnie dla liczby mno-
giej, tzn. wielu takich proceséw, uzyjemy zapisu PDMPs). Jest to szczegolny rodzaj pro-
cesu Markowa z czasem ciaglym, ktéry powiazany jest z rosnacym ciagiem losowych
wartodci czasu — zwanych momentami skoku. Pomiedzy takimi skokami dysponujemy de-
terministycznym opisem trajektorii procesu — najczesciej przy pomocy réwnan rézniczko-
wych zwyczajnych. Moment skoku jest dyskretnym wydarzeniem zmieniajacym dyna-
mike uktadu lub dostownie skokiem - natychmiastowym przeniesieniem do innego punktu
w przestrzeni fazowej. W naukach przyrodniczych modele oparte o PDMPs okazuja sie

dos¢ uniwersalnym narzedziem, reprezentujac bardzo szeroki wachlarz zastosowan [23].

W zaprezentowanych pracach rozwijamy metody wykorzystania PDMPs do modelowania
zaburzen srodowiskowych wptywajacych bezposrednio i posrednio na liczebnosé populacji.
W szczegdlnosci wykorzystujemy je do opisu oraz przewidywania wplywu zjawisk zmie-
niajacych znaczaco i w krotkim czasie liczebnosé populacji (takich jak pozary), a takze
takich, ktore wplywajac na jakosciowe cechy catego ukltadu, maja znaczacy wpltyw na
jego dynamike (na przyktad wplyw wystepowania pér roku na tempo wzrostu roslin).
Wspoélnym problemem badawczym, taczacym tematycznie publikacje sktadajace sie na te
rozprawe, jest analiza wplywu réznego typu zaburzen na modele dynamiki populacyjnej

oparte o PDMPs oraz rozwo6j metod badania takich modeli.

W pierwszej czesci przegladu najwazniejszych wynikow opisujemy nasz kluczowy przyktad
po stronie zastosowan w ekologii — tak zwany ,problem sawanny” (w literaturze ekologicz-
nej pojawiaja sie nazwy savanna problem oraz savanna question), ktory — kilkadziesiat lat
od pierwszego opisania — wciaz pozostaje nie do konca zrozumiany i bez referencyjnego
modelu teoretycznego [10]. Immanentng cecha typowej sawanny (szeroko wystepujacego
biomu) jest relatywnie stabilne wspolistnienie — konkurujacych o przestrzen zyciowa,
wode oraz sktadniki mineralne — roslin trawiastych i drzewiastych, ktére utrzymuje sie
dhugotrwale — mimo ze zazwyczaj w analogicznych sytuacjach konczy sie to dominacja

jednej z grup roslin (przemiana biomu w odpowiedni typ lasu lub stepu/taki). Badania



prowadzone przez ekologow wskazuja na szczegblne znaczenie w utrzymaniu takiej sytu-
acji przeréznych zjawisk: nieréwnomierno$é wystepowania surowcow i rozne dostosowanie
grup organizméw do ich pozyskania z réznych zrodel, tzw. nisze ekologiczne [13], straty
powodowane wybuchami pozaréw (zobacz np. [25]), wpltyw populacji roslinozercow po-
zywiajacych sie konkretnym typem roslin (np. [24], [31]), czy wystepowanie pory mokrej
i suchej (np. [8], [12]). W literaturze fachowej odnajdziemy wiele réznych pomystéow na
proby modelowania wpltywu tych czynnikoéw na populacje traw i drzew na sawannie (cze-
sto z powodow praktycznych wyrazone nie jako ,liczba osobnikéw”, ale jako ilo§é¢ biomasy
danego typu roslin). Jednak dostepne modele — z powodu trudnej analizy — czesto nie
uwzglednieniaja bezposrednio losowosci zjawisk takich jak wystepowanie pozaréow, ko-
rzystajac z opiséow deterministycznych. Formalnie wykorzystano nawet modelowanie za
pomoca sieci (grafu skierowanego z wazonymi krawedziami) [4], ale najczesciej pozary sa
uwzgledniane przez zastosowanie uktadéw impulsowych: zwyczajnych réwnan rézniczko-
wych (np. [30], [11]) lub — wprowadzajac zaleznosci przestrzenne — roéwnai reakcji-dyfuzji

(np. [11,[26]).

W pierwszych dwoch pracach [I, 1] rozwazamy jedno- oraz dwuwymiarowy model koeg-
zystencji na sawannie, oparty o zwyczajne réwnania rézniczkowe, i uwzgledniamy stocha-
styczna nature pozaréw — definiujac odpowiedni proces stochastyczny (PDMP). Korzy-
stajac z metod teorii liniowych potgrup stochastycznych, dowodzimy istnienia rozktadow

stacjonarnych biomas traw i drzew (oraz ich asymptotycznej stabilnosci).

W kolejnej czesci rozprawy rozbudowujemy nasze modele poprzez uwzglednienie bardzo
waznego z punktu widzenia ekologii, ale niemal nietknietego w jej typowych modelach
matematycznych [29], czynnika — wystepowania sezonéw (w wypadku sawanny: pory su-
chej oraz pory mokrej). Dany sezon wplywa nie tylko bezposrednio na dynamike populacji
(np. tempo wzrostu roslin, znaczaco je hamujac w porze suchej poprzez skape opady),
ale réwniez posrednio — wplywajac na prawdopodobieristwo wystepowania i site niekto-
rych zaburzen $rodowiskowych (np. wybuchanie pozaréw i rozlegltos¢é dokonanych przez
nie zniszczen). Praca [I1I] jako glowny przyklad zastosowania weiaz odnosi sie do wspot-
istnienia populacji antagonistycznych roslin na sawannie, ale uzyskane wyniki sa ogolne
i dotycza catej klasy tego typu modeli populacyjnych — opartych na PDMPs z losowymi
zaburzeniami $rodowiskowymi (spadki liczebnosci populacji w momentach skokow da-
nego PDMP), w ktorych dodatkowo wystepuje sezonowosé (skokowe zmiany dynamiki,
ale w stalych odstepach czasu, odpowiadajacych typowemu czasowi trwania danych se-

zonow).

Ostatnia czesé przegladu najwazniejszych wynikéw dotyczy losowych zaburzen modeli

opisanych przez PDMP z perspektywy calej populacji — w odréznieniu od czestszego



podejscia osobniczego. Matematycznie sprowadzi to sytuacje do analizy proceséw okre-
slonych na nieskornczenie wymiarowej przestrzeni stanow. W artykule [IV] proponujemy
wprowadzenie potgrup stochastycznych z losowymi przetgczeniami i badamy rodzine sto-
chastycznych réwnan ewolucji na przestrzeni gestosci (L;). W odniesieniu do procesoéw
dyfuzji P. C. Bessloff utozsamil [5] srednig takiego procesu w dlugim czasie z pewnymi
rozwigzaniami rownania na ewolucje gestosci (stochastycznej wersji réwnania Liouville’a)
i podal réwnania na momenty rozwazanego procesu. Uogoélniamy i uzasadniamy anali-
tycznie te wyniki dla szerszej klasy modeli (wspomnianych potgrup stochastycznych z lo-
sowymi przetaczeniami). Ponadto badamy szczegélowo drugie momenty ewolucyjnych
rownan stochastycznych i opisujemy jak przez analogie przenies¢ nasze rozumowanie na

wyzsze momenty.

Zanim przejdziemy do bardziej szczegdlowej prezentacji zasadniczych wynikéow publika-
cji sktadajacych sie na rozprawe, w kolejnej preliminaryjnej czesci przytoczymy krotko
najwazniejsze definicje i fakty dotyczace PDMPs oraz ich zwigzkéw z teorig potgrup sto-
chastycznych. Odniesienia do nich umozliwia nam w bardziej zwiezty i klarowny sposob
uzasadnienie niektorych twierdzeri oraz lepsza prezentacje i powiazanie z nimi modeli

z sezonowoscia oraz poélgrup stochastycznych z losowymi przetaczaniami.

2 PDMPs i polgrupy stochastyczne

PDMPs zostaly wprowadzone przez M.H.A. Davis’a w pracy [6]. Mowimy, ze proces
stochastyczny z czasem ciagltym {£(t)}:>0 jest kawatkami deterministyczny, gdy istnieje
rosnacy ciag losowych wartosci czasu (t,,),>1 (nazywanych momentami skokow), taki ze
pomiedzy dwoma kolejnymi momentami proces jest deterministyczny (na przyktad opi-
sywany przez autonomiczne uktady réwnan rozniczkowych zwyczajnych). Wartosci tego
procesu w momentach skokow £(t1), &(t2), £(t3), ... wybierane sa z zadanego rozktadu
prawdopodobienistwa zaleznego od stanu procesu bezposrednio przed skokiem, natomiast

intensywnos¢ wystepowania skokow zalezy od biezacej wartosci procesu.

Formalnie PDMP jest okreslony przez trzy lokalne charakterystyki (7, q, P), gdzie 7 jest
semi-ukltadem dynamicznym opisujacym deterministyczne czesci procesu, g(x) jest funk-
cja intensywnosci skoku z x, a P(x,-) jest rozkladem stanu osiagnietego przez ten skok.
Zaktadamy, ze zbior X — przestrzen stanow — jest przestrzenig borelowska. Odwzorowanie
m: Ry x X — X, (t,x) — max nazywamy semi-uktadem dynamicznym na X, gdy ([14,
Section 7.2|):

a) mx =,



b) msx = m(msx) dla z € X oraz s,t € Ry,
c¢) odwzorowanie (t,x) — ma jest ciagle.

Nakladamy istotny warunek — aby m(X) C X dla kazdego t > 0. Dla funkcji intensywno-
§ci skoku q: X — [0, 00) przyjmujemy, ze jest borelowska, wymagamy aby odwzorowanie
s — q(msx) bylo catkowalne na kazdym przedziale [0,¢) dla t > 0 oraz zakladamy, ze:

t
lim [ q(7msz)ds =400, z€X.

t—o00 0

Natomiast dla funkcji przejscia P: X x B(X) — [0, 1] zaktadamy, ze P(z, X \{z}) = 0 dla
wszystkich # € X. Przypomnijmy, ze funkcje P: X x B(X) — [0, 1] nazywamy funkcjq
przejscia (jadrem), jesli dla kazdego x € X funkcja P(x,-) jest miara probabilistyczna
(miara skoniczona) i dla wszystkich B € B(X) funkcja P(-, B) jest mierzalna.

Opiszemy teraz krotko konstrukcje PDMP {{(t) }+>0 o charakterystykach (7, ¢, P) (6, 7]).
Zdefiniujmy funkcje

¢
F.(t)= exp{—/ q(msz)ds}, t>0, ze€X
0

i zauwazmy, ze zalozenia dla ¢ implikuja, ze 1 — F, jest dystrybuanta nieujemnej i skon-
czonej zmiennej losowej dla wszystkich x € X. Wezmy to = 0 i niech £(0) = & bedzie
zmienng losowa o wartosciach w X. Za n-ty moment skoku t, (dla kazdego n > 1)

mozemy przyja¢ nieujemna zmienna losowa, dla ktore;j:
Pr(tn —lp1 > t|§n—1 = 37) = Fm(t), t>0.

Okreslamy
() { Toty o (Enor)  dlaty, g <t <ty
&n dlat =t,,

gdzie n-te potozenie po skoku &, jest taka zmienna losowa o warto$ciach w zbiorze X,
ze Pr(§, € Bl¢(t,—) = x) = P(x, B) oraz {(t,—) = limuy, £(t) = w11, , (§n—1). Wtedy
trajektoria procesu jest zdefiniowana dla wszystkich ¢ < ¢, := lim,,_,o t,. Rozszerzamy
definicje na dowolny czas t przyjmujac £(t) = A dla t > t., gdzie A ¢ X oznacza pewien
dodatkowy stan spoza przestrzeni. Proces {{(t)}:>0 nazywamy minimalnym PDMP od-
powiadajacym (7, ¢, P) — i méwimy, ze jest niewybuchajocy — jesli P,(t = 00) = 1 dla
wszystkich x € X, gdzie P, to rozktad procesu startujgcego z punktu z. Jesli ¢ jest funk-
cja ograniczona, to proces jest niewybuchajacy. O mierze probabilistycznej p mowimy, ze

jest niezmiennicza dla procesu &, jesli dla wszystkich B € B(X):

u(B) = /X P.(E(t) € B)u(dz), 1> 0.
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M. H. A. Davis w definicji PDMP z [6] za przestrzen stanéw bierze podzbior przestrzeni
euklidesowej, a zamiast semi-uktadu dynamicznego rozwaza lokalny uktad dynamiczny

T & opisujacy rozwigzania rownania rézniczkowego zwyczajnego

2/(t) = bl (1)) (2.1)

przy warunku poczatkowym z(0) = z, wybranym ze zbioru otwartego X°, natomiast
b: R — R? jest odwzorowaniem (lokalnie) lipschitzowskim. Rozwigzania te moga wycho-
dzi¢ (w skonczonym czasie) z przestrzeni stanéw X — ktora jest podzbiorem domkniecia
zbioru X°. Wobec tego okresla si¢ moment pierwszego wyjscia ¢, (x) z przestrzeni stanow
oraz zbior I' = {x : t, (z) < oo}. Jezeli ' jest niepusty, to nazywamy go aktywnym brze-
giem i wtedy funkcja przejscia musi byé okreslona réwniez dla punktow z tego brzegu,
przy czym uwzglednia sie wytacznie skoki do przestrzeni stanow: P(x, X \ {z}) =1 dla
x € X UT'. Przyjmujac definicje

t
Fo(t) = Lo, () (t) exp {—/0 q(mx)dr} , t>0,

mozemy skonstruowaé proces analogicznie do schematu zastosowanego wczesnie;j.

W [6,[7] M. H. A. Davis charakteryzuje rozszerzony generator L procesu £ jako operator li-
niowy na przestrzeni funkcji borelowskich na X, ktéory dany jest wzorem
[7, Proposition 26.14]:

LV (&) = LoV (@) +a(o) [ (V) = V@)Plody), x € X,

X

a jego dziedzina D(L) zawiera w szczegolnosci wszystkie mierzalne funkcje ograniczone
V: X — R, dla ktorych:

a) funkcja t — V(¢.(z)) jest absolutnie ciagla na [0,¢,(z)) dla z € X,

b) rozszerzajac V na aktywny brzeg, przyjmujac V(x) = limy_o V(7m_4x) dla z € T,

zachodzi
V(x):/ V(y)P(z.dy), z€T,
X

c) Ly odpowiada uktadowi 7:

LoV (z) = lim Vim(=) - V(I)
tl0 t

Zalozmy, ze m jest o-skoriczona miara na B(X), natomiast D niech bedzie podzbiorem

przestrzeni L' = LY(X, B(X), m) zawierajacym wszystkie gestosci:
D={fell: f20 =1}, sdsie 1] = [ |fie)m(do)
X

5



Jezeli dla operatora liniowego P: L' — L' zachodzi P(D) C D, to nazywamy go operato-
rem stochastycznym. Z kolei rodzina takich operatorow { P(t)};>0 nazywana jest potgrupq

stochastyczng ([14]), jesli spetnia ona warunki:

b) P(t+s) = P(t)o P(s) dlat,s >0,
c) funkcja t — P(t)f jest ciagta dla kazdego f € L'.

Dla potgrupy {P(t) }+>0 definiujemy jej generator infinitezymalny A przez
1
gdzie do jego dziedziny D(A) naleza wszystkie funkcje z L', dla ktorych ta granica istnieje.

O polgrupie stochastycznej {P(t)}:>0 mowimy, ze jest asymptotycznie stabilna, jesli ist-
nieje takie f. € D, ze dla wszystkich ¢t > 0 zachodzi P(t)f, = f. oraz

Jim | P(0)f = £ =0, feD.

Wtedy taka gesto$¢ f. nazywana jest niezmienniczg. Ogolne rezultaty dotyczace asymp-
totycznej stabilnosci potgrup stochastycznych naleza do R. Rudnickiego [22], a ich uogol-
nienia do K. Pichor i R. Rudnickiego [19] 20} 21].

Niech {£(t)}+>0 bedzie niewybuchajacym PDMP o charakterystykach (m, ¢, P), okreslo-
nym na przestrzeni stanoéw X bez aktywnego brzegu. Moéwimy, ze proces ten indukuje
potgrupe stochastyczng {P(t)}>0 na przestrzeni L', gdy dla dowolnych B € B(X), t > 0

oraz gestosci f zachodzi

| POs@min) = [ Pa(eo) € Brfmin)

X

Czyli jesli f jest gestoscia &y, to P(t)f jest gestoscia £(t) dla kazdego t. Generator infini-
tezymalny takiej potgrupy jest postaci [23)]

Af =Aof —af + P(qf),

gdzie operator Ay jest generatorem poétgrupy stochastycznej indukowanej przez uktad
dynamiczny 7, a P: L' — L' jest operatorem przejscia odpowiadajacym funkcji przejscia

P, czyli spetniajacym:

/XP(x,B)f(:L')m(dx):/BPf(J:)m(dx), B eB(X), feD.

Kiedy uklad 7 opisuje rozwiazania réwnania (2.1)), a funkcja b jest klasy C!, to dla f
bedacych funkcjami gtadkimi zachodzi Ay f(x) = — div(b(x) f(x)) dla wszystkich z € X.

6



3 Przeglad najwazniejszych wynikéw

Ponizej, w trzech sekcjach, omawiamy kluczowe rezultaty uzyskane w pracach [I, IT, TI1,
IV]. Z oryginalami referowanych artykuléw mozna si¢ zapozna¢ w kolejnych sekcjach

nastepujacych po anglojezycznej wersji tego autoreferatu (Extended Abstract).

3.1 Modele wspoélistnienia traw i drzew na sawannach

Nasze rozwazania rozpoczniemy opisem dwoch modeli wspolistnienia traw i drzew na
sawannach, wprowadzonych w pracach [I] i [II], oraz zwieztym opisem ustanowionych dla

nich wynikow.

Wprowadzamy zmienna stanu v € [0, 1] oznaczajaca biomase drzew, gdzie 0 bedzie odpo-
wiadato sytuacji z minimalnym wystepowaniem drzew na danym obszarze, z kolei war-
tos¢ 1 — maksymalnemu zalesieniu. Za [9] stosujemy nastepujace uproszczenie: zamiast
wprowadzenia dodatkowej zmiennej, opisujacej biomase traw — oraz uwzglednienia bez-
posrednio konkurencji miedzygatunkowej — przyjmujemy, ze trawy rosiewaja sie po calej
dostepnej przestrzeni (pozostaltej pomiedzy drzewami) i proporcjonalnie do pozostatych
zasobow (1 — v). Taka sytuacje bez zaburzeri modelujemy klasycznym réwnaniem logi-
stycznym

V'(t) = av(t)(1 — v(t)), (3.1)

gdzie a > 0 jest stala wzrostu. Wobec tego, poza sytuacja w ktorej dominuja trawy (punkt
stabilny v = 0), rownanie to opisuje wypieranie roslinnosci trawiastej przez drzewa, az
do ich catkowitej dominacji (wzrost logistyczny do wartosci v = 1) i mozemy tatwo je
rozwiazaé¢ uzyskujac

w

m(w) = olt) = w~+ e (1 —w)’

przyjmujac warunek poczatkowy v(0) = w € [0, 1].

Zakladamy, ze pozary wystepuja w losowych momentach (t,),>;. Biomase drzew be-
dziemy teraz opisywaé procesem stochastyczym £(t),¢ > 0, ktory pomiedzy pozarami
zmienia sie zgodnie z rownaniem (3.1). Utrate biomasy od pozaru w kazdym z momen-

tow t,, wyznacza

§(tn) = (1 = 0n)E(t,,),
gdzie (6,,)n>1 jest ciagiem niezaleznych zmiennych losowych o pewnej gestosci h i przyj-
mujacych wartosci z przedziatu (0,1). Zauwazmy, ze przyjecie £(0) = 0 pociaga za soba,
£(t) = 0 dla wszystkich ¢. Wobec tego ograniczamy nasza analize do przedziatu (0, 1].



O funkcji intensywnosci skokow A: [0, 1] — R, zaktadamy, ze jest funkcja ciagla, ograni-
czona i dodatnia w zerze. Tak zdefiniowany proces £(t),t > 0 jest przyktadem PDMP
o charakterystykach (7, A, P) na przestrzeni stanow X = (0, 1], a funkcja przejscia P jest

postaci
P(v,B)=Pr((1—-0,)veB)= /1 15((1 = 0)v)h(6)ds, v e (0,1], B € B((0,1]),

gdzie h jest wprowadzong wczesniej gestoscia prawdopodobienistwa zmiennej losowej 6,,.

W przestrzeni stanéw X jako miare m bierzemy miare Lebesgue’a i wtedy operator przej-

$cia na L' wyraza sie wzorem

1
Pf(v) = / h (1 — %) %f(w)dw.
Proces {£(t) }+>0 indukuje potgrupe stochastyczng { P(t)}+>0 0 generatorze postaci
0 ! A
Af(v) = —%(av(l —v)f(v)) = Av)f(v) —i—/v h (1 — %) %f(w)dw.

Przy zaltozeniu, ze funkcja A jest ciagla i silnie dodatnia na przedziale [0, 1], rozwazamy

dwa nastepujace warunki:

a+ A(0) /1 In(1 — 2)h(2)dz >0 (3.2)

oraz

aX + \? /1 In(1 — 2)h(2)dz < 0, (3.3)

gdzie skrocili$my zapis ograniczeri gérnych i dolnych przyjmujac A = sup{A(v) : v € [0, 1]}
oraz A = inf{\(v) : v € [0, 1]}. Dodatkowo zauwazmy, ze zachodzi

a—+ A(0) /1 In(1 — 2)h(2)dz < a% + A/l In(1 — 2)h(z)dz,

gdzie rownos¢ uzyskamy, kiedy A jest funkcja stalg.

W pracy [I| wykazalismy [T, Theorem 2.1], ze jesli warunek ([3.2)) jest spelniony, to poétgrupa
{P(t)}+>0 jest asymptotycznie stabilna. Natomiast jesli spelniony jest warunek (3.3)), to

polgrupa ta nie ma gestosci niezmiennicze;j.

Przechodzimy teraz do opisu dwuwymiarowego modelu przedstawionego w pracy [I1],

gdzie korzystamy ze zmodyfikowanych rownan podanych w [2].

Ponownie opisujemy zmiany ilosci biomasy roslinnosci na sawannie w obecnoéci zaburzen
spowodowanych pozarami, jednak tym razem konkurencje pomiedzy trawami (zmienna

w czasie iloscia biomasy g — od grass) i drzewami (analogicznie, funkcja w czasie ilosci
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biomasy w — od wood) uwzglednimy bezposrednio — wychodzac od modelu determini-

stycznego opisanego uktadem:

{ w'(t) = ryw(t) (1 —w(t)),
g(8) =ryg(t) (1 = g(t) = w(®)).

gdzie r,,, 14 to odpowiednie stale wzrostu oraz w(t), g(t) € [0, 1]. Do tego opisu dodajemy

(3.4)

losowe momenty skoku (t,),>1, w ktorych beda wystepowaly pozary, oraz przyjmujemy
to = 0 i dowolne wartosci poczatkowe (z przedziatu [0, 1]) dla biomas w(ty) = wy oraz
g(to) = go- W tym modelu zakltadamy, ze sita pozaru jest proporcjonalna do nagroma-
dzonej biomasy, ktora sie spala — straty w kazdym momencie ¢,, (dla dowolnego n > 1)
wyrazamy poprzez
{MMZMM—MMW%
9(tn) = g(t;) — My g(t,),
dla statych M,,, M, o ustalonych wartosciach z przedziatu (0, 1).

Proces stochastyczny £(t) wyznaczajacy biomasy (w(t), g(t)) jest PDMP, przy czym dla
funkcji intensywnosci skoku A: [0,1]2 — R, przyjmujemy ponownie, ze jest ciagla, nie-

ujemna i ograniczona. Zaktadamy dodatkowo:
AMw,0)=0 dlaw>0 oraz AMw,g) >0 dlaw >0, g>0,

gdyz — zgodnie z obserwacjami ekologéw — gtéwnym nosnikiem ognia sa przesuszone trawy
(ilos¢ proporcjonalna do biomasy ¢). Mianowicie, przyjmujac jako warto$é poczatkowa
g(0) = 0 oraz w(0) > 0, warto$¢ biomasy trawy pozostanie zerowa w kazdym czasie
i wtedy — zgodnie z warunkami nalozonymi na funkcje A\ — ogieni sie nie pojawi. W takiej
sytuacji biomasa drzew bedzie stale rosta, dazac do ,lasu” (granica w = 1). Wobec tego
miara punktowa d(1,0)} jest miarg niezmienniczg dla procesu §. Podobnie, gdy wyjdziemy
od wartosci zerowych dla obu biomas, to pozostang one zerowe i wtedy miarg niezmienni-
czg dla procesu § bedzie dy(0)}. Na koniec rozwazmy sytuacje gdzie wartosé poczatkowa
biomasy drzew jest zerowa, natomiast g(0) > 0. Wtedy wartos¢ w(t) bedzie stale zerowa,
ale pozary beda wystepowaly. Proces ten sprowadza sie do wczesniej omoéwionej sytu-
acji z modelu jednowymiarowego [I|, tylko zamiast biomasy drzew v opisuje on biomase
traw g(t) = 1 — v(t), przy czym dodatniosci funkcji intensywnosci w zerze odpowiada

ograniczenie gorne na \. Przyjmijmy wiec zalozenie:
g+ Ao(1 — M) >0,

gdzie Ao = sup{A(0,9) : g € [0,1]}. Wtedy proces ¢ ma miare niezmiennicza bedaca
miarg produktows dyoy i absolutnie cigglej miary o gestodci niezmienniczej z procesu

jednowymiarowego.



Skorzystamy tutaj z okazji by sprostowaé przeoczenie z oryginalnej pracy (tj. [II]).
W zwiazku z powyzszymi uwagami, jako przestrzen stanéw naszego procesu dwuwy-

miarowego przyjmujemy X = (0,1) x (0, 1] i dodatkowo zaktadamy, ze
Tw + A1 — M) > 0, (3.5)
gdzie A = sup{\(w,g) : w,g € [0,1]}.

Proces £ jest PDMP o charakterystykach (w,\,P), gdzie odwzorowanie 7 jest semi-

uktadem dynamicznym wyznaczonym przez (3.4)), a funkcja przejscia dana jest wzorem
P((w7g>7B) :1B<S(wag))> BEB(X),

gdzie S jest transformacja liniowa opisujaca wartosci procesu w momentach skokéw zgod-
nie z

S(w,g) = ((1 = My)w, (1 —M,)g).
W konsekwencji funkcji P odpowiada operator stochastyczny postaci
Pf(w,g) = (1= My)"(1 = M) f(S™(w, 9)).

Proces {£(t) }+>0 indukuje potgrupe stochastyczna { P(t)}:>0 z generatorem

CO(rew(1 —w)f(w,g))  O(reg(1 — g —w)f(w,g))
ow ag

—Mwyﬁwmﬂ+k(< y( e 9)

Zasadniczym wynikiem pracy [II] jest pokazanie, ze polgrupa {P(t)}i>0 jest asympto-

Af(w,g) =

tycznie stabilna |II, Theorem 2.1]. Dowdéd w pracy przebiega przy wykorzystaniu wyniku
[21,, Theorem 2.2| (w wersji z ksiazki [23, Theorem 5.6]). Do sprawdzenia warunku (WT)
korzystamy z funkcji Hasminskiego V' (zobacz [23, Section 5.2.4]) — tzn. takiej mierzalne;
funkcji, ze dla rozszerzonego generatora L funkcja LV jest dobrze okreslona oraz — dla
pewnego zbioru zwartego F' C X — funkcja LV jest ograniczona na tym zbiorze, z ko-
lei poza nim jest ujemna i odgraniczona od zera. W artykule [II| rozwazamy przestrzen

stanow X = (0, 1]*> (wspomniane wczesniej przeoczenie) i wtedy dobrana funkcja

V(w,g) = —In(w) — In(g)

nie jest funkcja Hasminskiego. Mianowicie £V zmierza do zera, gdy warto$¢ w zmierza

do jedynki, a g do zera. Zaktadajac warunek (3.5)) i przyjmujac X = (0,1) x (0, 1] oraz
1 1

+ — —In(1 — w),

wWow gag

V(w,g) =

przy odpowiednio dobranych statych a,, a, € (0,1], zasadniczy wynik pracy [II] jest
poprawny — polgrupa { P(t)}:>o jest asymptotycznie stabilna.
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3.2 Sezonowos¢ w modelach populacyjnych

Jedng z istotnych cech wielu bioméw jest wystepowanie sezonéw klimatycznych. Poniewaz
reprezentujg one niemal okresowa zmiennosé, takich czynnikow jak temperatura powie-
trza czy wilgotnosé gleby, ich wystepowanie silnie wptywa na liczne zmienne srodowiskowe
uwzgledniane w pomiarach eksperymentalnych oraz teoretycznych badaniach ekologow.
Mimo tego wickszos¢é rozwazan teoretycznych — z powodu niedostepnosci wygodnych na-
rzedzi formalnych — nie uwzglednia bezposrednio samego zjawiska sezonowosci w bada-
nych modelach, a istniejace w literaturze proby matematycznego opisu takich modeli
w wiekszosci przypadkéw ograniczaja sie do symulacji numerycznych czy analizy bifur-
kacji [29].

Podejmujemy problem sezonowosci w modelach populacyjnych, wykorzystujac ponownie
odpowiednio zdefiniowane PDMPs. Ponizej opisujemy nasza propozycje opisu takich mo-
deli z sezonowoscig 1 prezentujemy zasadnicze wyniki pracy [III], positkujac sie — jako

konkretnymi przyktadami — rozbudowanymi modelami sawanny z prac poprzednich.

Aby do dotychczas uzywanych PDMPs wprowadzi¢ bezposrednio sezony, potrzebujemy
dodatkowej zmiennej czasowej ( — mierzacej czas jaki uptynat od ostatniej zmiany sezonu
(lub czas ,pobytu” w aktualnym sezonie) — oraz numeracji sezondéw zmienna
ie€{0,1,...,k — 1}, gdzie wartos¢ k jest liczba rozpatrywanych sezonéw. Kazdy z nich
ma ustalony czas trwania ¢’ i rozwazamy dla niego uktad dynamiczny opisujacy rozwia-

zania zwyczajnego réwnania rézniczkowego

gt)=0(&), i=0,....k—1. (3.6)

Zaktadamy istnienie takiego borelowskiego podzbioru X; przestrzeni euklidesowej, ze dla
kazdego & € X; rozwiazanie £(t) rownania (3.6) z warunkiem poczatkowym £(0) = &,
istnieje oraz £(t) € X; dla t > 0. Oznaczamy to rozwiazanie przez mi(&). Przechodzimy
wiec do opisu stanu x calego procesu za pomoca trojki (€, ¢, ), ktora zmienia sie w czasie

zgodnie z uktadem

g'(t) =" (&(t)),
¢'(t) =1,
i'(t) =10

W zwiazku z tym, jak w (2.1]), otrzymujemy uktad dynamiczny ¢ zadany rozwiazaniami

powyzszego uktadu réwnan

du(x) = ¢u(€,¢,0) = (mi(€), ¢+ t,4).
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W takiej sytuacji przestrzen stanéw ma postaé
X =Jxix[0,¢,) x {i}
i
i {¢y} moze z niej wychodzi¢ w skoriczonym czasie przez aktywny brzeg

P =X (G x i

Czas pierwszego wyjscia wynosi ¢, (z) = ¢!, — (dlaz = (£,(,i) € X. Jezeli (&, (1)
jest stanem procesu pod koniec i-ego sezonu, to na poczatku kolejnego sezonu proces
wykonuje skok do (&,0, (i + 1)mea k). Gdy proces znajduje sie w danym sezonie moze
dodatkowo w losowych momentach ulega¢ losowym zmianom, co opisujemy nastepujaca
funkcja przejscia

P(£.C.i), B) = / 15((S5(6). C.0))ph(&, v(dB),  (€.¢.i) € X, B € BX),

S}

gdzie © jest pewnym podzbiorem przestrzeni euklidesowej z miara borelowska v, transfor-
macja Sj(€) opisuje wartos¢ stanu populacji £ po losowej zmianie, natomiast pj (&, ¢)v*(df)

jest pewnym rozktadem prawdopodobienstwa, tzn.
[ sie.ovitan) =1
®

przy czym zakladamy, ze odwzorowania (0,&) — S5(£) oraz (6,&,¢) — ph(&, ¢) sa ciagle.
Jako funkcje intensywnosci przyjmujemy ¢(&, ¢, 1) = N(&, (), gdzie kazda \' jest ciagla
nieujemng funkcjg opisujaca wystepowanie losowych zmian populacji w i-tym sezonie.
W ten sposob uzyskujemy PDMP z charakterystykami (¢, g, P), ktory oznaczamy przez
® = {®(1) }i>o0-

Zauwazmy, ze uwzglednienie sezonowosci w zaproponowany przez nas sposob prowadzi do
procesu Markowa jednorodnego w czasie w rozszerzonej przestrzeni stanéw, gdzie jedna
ze wspolrzednych jest funkcja okresowa ((). Wobec tego — zamiast badania zbieznosci
rozkladow do rozktadu stacjonarnego — badamy zbieznosé srednich z rozktadéw takich
procesow. Mowimy, ze proces ® jest ergodyczny w Sredniej (Cesdro-ergodic), jezeli dla
kazdej miary probabilistycznej p na przestrzeni X istnieje taka miara skonczona pll na

tej samej przestrzeni, ze Srednie w czasie z rozktadéw, tzn. miary

u(t)(B) = %/;/Xm(cp(s) € B)u(dz)ds, BeB(X), t>0,

sa zbiezne w normie catkowitego wahania do miary ull, czyli

lim - sup |u(t)(B) — pll(B)] = 0.
%0 BeB(X)
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Zauwazmy, ze kazda miara pll jest miara niezmiennicza dla procesu ®. Przyjmujemy
definicje
I(z,B) =6,11(B), BeB, z€X,

gdzie ¢, jest miara punktowa w punkcie = (deltq Diraca).

W pracy [III] podajemy warunki wystarczajace na to, aby dowolny proces Markowa
byl ergodyczny w $redniej. Aby przej$¢ do wypowiedzenia zasadniczego wyniku, musimy
jeszcze przypomnieé pojecie T-procesu wprowadzone w [27, [I7]. Mianowicie proces @
nazywamy 1-procesem jezeli dla pewnej miary probabilistycznej a na R, funkcja przejscia
zdefiniowana przez

K,(z,B) = /0 T PL(@(t) € Ba(dt)

ma nietrywialng czesé ciagla, tzn. istnieje takie jadro T, ze zachodza nastepujace wa-
runki: K,(z,B) > T(z,B) dlaz € X, B € B(X), funkcja z — T'(z, B) jest polciaglta
z dotu dla kazdego B € B(X) oraz T'(x, X) > 0. Jezeli a odpowiada rozktadowi wyktad-
niczemu, tj. a(dt) = e 'dt, to funkcja K, jest rezolwentq procesu — funkcjg przejscia dla
lanicucha Markowa (zwanego R-taricuchem) zdefiniowanego przez obserwacje procesu @

w momentach skoku procesu Poissona z intensywnoscia 1 (niezaleznego od procesu ®).

Zaktadamy teraz, ze spelniony jest nastepujacy warunek typu Fostera-Lapunowa (odpo-

wiadajacy warunkowi (CD2) z pracy [18]):
LV(z) < —cf(x) +dlc(z), =€ X,

dla pewnych: V' € D(L), funkcji mierzalnej f: X — [1,00), zbioru zwartego C' oraz
statych dodatnich ¢ i d. Wtedy — jezeli ® jest T-procesem — prawdziwy jest wynik [III,

Theorem 5.1|, mianowicie ® jest ergodyczny w Sredniej oraz zachodzi

P (jm 7 [ f@as = [ rait) =1

dla dowolnej ograniczonej i mierzalnej f oraz miary losowej II, ktéra spelnia
II(z, B) = E,II(B), B € B(X), z € X. Okazuje sie, ze ergodycznosé w sredniej dla
procesu ¢ jest rownowazna ergodycznosci w $redniej dla R-taricucha [III, Lemma 6.2].
W zwiazku z tym dowdd wspomnianego wyniku [III, Theorem 5.1| polega na badaniu
R-taricucha w oparciu o metody wypracowane przez S. Meyna i R. L. Tweediego w pra-
cach [16, 17, [18].

Opiszemy teraz sezonowe modele dynamiki populacyjnej na sawannie, uogélniajace po-
dejscia przedstawione w pracach [I| oraz [II], a w szczegblnosci podamy warunki wystar-
czajace aby opisujace je PDMPs byly ergodyczne w sredniej. Ponownie wykorzystujemy

znormalizowane zmienne g, w € [0, 1] na oznaczenie biomas roslin trawiastych oraz drzew.
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Dodatkowo uwzgledniamy jeszcze zmiany tych biomas w wyniku wystepowania na danym
terenie populacji zwierzat roslinozernych. Tacy roslinozercy czesto ,specjalizuja si¢” w tra-
wieniu danego typu roslin, co uwzgledniamy poprzez wprowadzenie populacji dwoch grup
zwierzat. Populacje tych odzywiajacych sie przede wszystkim trawami wprowadzamy jako
liczebnos¢ osobnikow he (G z ang. grazers). Analogicznie — przez hg (B z ang. browsers)
— opisujemy populacje zwierzat jedzacych przede wszystkim fragmenty drzew. Determi-
nistyczna sytuacje zaleznosci populacyjnych na sawannie opisujemy teraz jako ponizszy

uklad rownan (korzystamy z réwnarn opisujacych populacje roslinozercow z [28)]):

(62—1: = rypw (1 —w) — ¢, hpw,

) & =r49(1—g—w)—cshay,
e = eghc (9= ha),

\dizl_f = eyhp (w— hp),

gdzie r,,, r, oznaczajg jak wezesniej wspotczynniki wzrostu dla traw i drzew, stale e, ¢,
opisuja jak ,efektywnie” roslinozercy przetwarzaja biomase odpowiedniego typu roslin,
natomiast wartosci c,, ¢, zalezg migdzy innymi od wspoélczynnikéw wymierania odpo-
wiednich grup zwierzat. Uwzgledniamy teraz sezonowo$¢ na sawannie — charakteryzuje ja
podzial roku na pore mokra oraz pore sucha, wobec czego przyjmujemy k£ = 2. Zmiane dy-
namiki wzrostu roslin wzgledem zmiany opadéw miedzy nimi wprowadzamy przez przypi-
sanie porze suchej (i = 0) oraz porze mokrej (i = 1) oddzielnych wspotczynnikow wzrostu
r*. Nie wprowadzamy bezposrednio zaleznosci populacji rodlinozercéw od wystepowania

sezonow. W kazdym z sezonéw rozwazamy ten uklad na przestrzeni stanow
X; =(0,1) x (0,1] x (0,00) x (0,00).

Pozostalo nam uwzglednié¢ straty biomas roslin spowodowane wystepowaniem pozarow.

Jako odpowiednig transformacje bierzemy:
Sé(f) = ((1 - ew)wa (1 - 99)97 hga hB)a 5 = (waga hG> hB) € Xi7 9 = (ewa eg)

Zauwazmy, ze w analogicznej sytuacji (bez uwzgledniania sezonowosci), jezeli przyjmiemy
hg = hg = 0, to uzyskamy sytuacje rozwazana w pracy [II] uogolniona o losowe straty
biomas (w miejsce statych M, M) — czyli dwuwymiarowa wersje modelu z |I]. Wobec tego
nasz model sawanny, opisywany procesem ®, jest przyktadem PDMP z dwoma sezonami.
Przyjmujac, ze funkcja intensywnosci oraz rozktady strat biomasy nie zaleza bezposrednio
od liczebnosci populacji rolinozercéow oraz dopuszczajac mozliwo$¢ wystapienia pozaru
w kazdym z sezonow (warunki (i) oraz (ii) ze str. 129 w [III]) pokazujemy, ze ® jest

T-procesem |III, Theorem 5.3|. Dodatkowo, przyjmujac odpowiednie warunki techniczne
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(warunki (iii), (iv) ze str. 129 w [III]), dowodzimy ze zachodzi warunek typu Fostera-
Lapunowa [III, Theorem 5.3]. W rezultacie ® spetnia zalozenia przytoczonego wczesniej
gtownego wyniku [III, Theorem 5.1] i jest ergodyczny w $redniej. W szczegolnosci, dla
modelu z proporcjonalnymi (do nagromadzonej biomasy) stratami w wyniku pozaroéw

(jak w pracy [II]), wystarczy aby zachodzil warunek (3.5) w kazdym z sezonéw, tzn.
ri N (1 —=M) >0, i=01,

gdzie A jest ograniczeniem gornym dla funkcji A* (zobacz [III, Corollary 4.2]). Otrzymana
ergodycznosé¢ w sredniej dla rozwazanych modeli sawanny implikuje istnienie rozktadéw

stacjonarnych okreslonych na przestrzeni

X =(0,1) x (0,1] x (0,00) x (0,00) x | J[0,¢,) x {i},

=0
dowodzac mozliwosci wspolistnienia populacji wszystkich rozwazanych gatunkow (przede

wszystkim traw i drzew).

3.3 Poélgrupy stochastyczne z losowymi przelaczeniami

W ostatniej czesci rozprawy przygladamy sie procesom, w ktoérych dynamika uktadu
ulega zmianom — podobnie jak w sytuacji z wystepowaniem sezonéw — ale nie w statych
tylko w losowych momentach, tj. zgodnie z jakims$ taricuchem Markowa. Przyktadami
zastosowania takiego opisu w naukach biologicznych moga by¢ np. modele odpowiedzi

ukladow regulacji metabolizmu czy ekspresji genow na bodzce srodowiskowe [3].

Wychodzimy od prostego modelu dynamiki populacji. Rozwazamy pewna populacje wiel-
kosci x > 0 o wspotezynniku Smiertelnosci i i réznych, zmieniajacych sie zgodnie z dys-
kretnymi zmianami warunkéw srodowiska, wspoétezynnikami urodzen 5y oraz [3;. Zmiany
liczebnosci populacji opisuje rownanie z'(t) = b;(z(t)), ¢ € {0, 1}, gdzie zmiany wartosci
wspolcezynnika i opisuje pewien taricuch Markowa i(t) € {0,1}, natomiast funkcje b; sa
postaci
bo(x) = (Bo — cx)x — px oraz bi(z) = (B — cx)x — pa.

Zauwazmy, ze dla kazdego i rownanie 2/(t) = b;(2(t)) indukuje polgrupe stochastyczna
{P;(t)}+>0. Jesli przyjmiemy warunki poczatkowe, gdzie wychodzimy od liczebnosci po-
pulacji opisywanej i-tym réwnaniem przy gestosci rozkladu g, to po pewnym czasie ¢t > 0

rozktad liczebnosci populacji wyznacza gestosé dana przez Pi(t)g.

Przyjrzymy sie takiej sytuacji z punktu widzenia catej populacji, tj. przejdziemy do ana-
lizy na przestrzeni gestoéci. Rozwazamy wtedy przetaczanie pomiedzy potgrupami sto-

chastycznymi {Py(t) b0 1 {Pi(t)}+>0 — zgodnie z wezesniej wprowadzonym tancuchem
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Markowa i(t). Prowadzi to do badania réwnania zaproponowanego przez P.C. Bressloffa

w [5] (autor postuguje si¢ nazwa stochastyczne réwnanie Liouville’a):

u(t,z) _8(bi(t) (z)u(t, z)) .

ot Oz

Mozemy uogblnié¢ to podejscie na dowolne modele populacyjne opisywane uktadem réow-
nan rézniczkowych z przestrzenia stanéw bedaca podzbiorem przestrzeni euklideso-
wej, w ktorych cata rozwazana populacja zyje w srodowisku ulegajacym losowym zmia-
nom. Podobnie jak wyzej opisuemy je pewnym laiicuchem Markowa i(t) € I, gdzie I jest
skoriczonym zbiorem. W takiej sytuacji, przyjmujac gestos¢ poczatkowa u(0,z) = g(z),
uzyskujemy ogolniejsza wersje stochastycznego réwnania Liouville’a:

ou(t, x)
ot

= —div(bi) (z)u(t, x)). (3.7)

W literaturze rozwaza sie tez analogiczna sytuacje, ze srodowiskiem ulegajacym losowym
zmianom, w kontekscie procesow dyfuzji — takie wspolne zrodto stochastycznosci prowadzi

do odpowiedniego réwnania parabolicznego [15], bedacego analogiem (3.7)).
W pracy [IV] uogdlniamy wszystkie te sytuacje — badajac cala klase modeli opisywanych

za pomoca potgrup stochastycznych z losowymai przetgczeniama.

Wychodzimy od L'(E) = L'(E,B(F),m) dla pewnej osrodkowe]j przestrzeni mierzalnej
(E, p) i o-skoriczonej miary m. Dla kazdego i ze skoriczonego zbioru I = {0,1,...,k}
rozwazamy polgrupe stochastyczna { P;(t) };>0 na L' (E) oraz, do opisu przelaczan pomie-
dzy nimi, wprowadzamy tancuch Markowa {i(¢) };>0 z przestrzenia stanéw I i macierza
intensywnosci Q = [g;;]i jer- Na przestrzeni stanow X = L'(E) x I rozwazamy semi-uklad
dynamiczny ¢, opisywany roéwnaniem roézniczkowym

u'(t) = Aipyu(t),

i'(t) =0,

gdzie A; jest generatorem polgrupy {P;(t)}i>0. Okreslajac funkcje przejscia

P((f0), {(f.)}) = qq— gdzie ¢, = Y g
¢ j#i

i funkcje intensywnosci q(f,71) = ¢; dla (f,i) € L*(F) x I, otrzymujemy proces £(t) =
(U(t)g,i(t)) startujacy z £(0) = (g,(0)), ktory jest PDMP z charakterystykami (¢, g, P).

Badamy dlugookresowe zachowanie $redniej procesu u(t,x) = U(t)g(z), x € E. W tym

celu wprowadzamy funkcje
V;(t,l’) = E(l{z(t):z}u(t7x))a rek, i€l t>0,

16



i badamy asymptotyke sredniej tego procesu, czyli funkcji

V(t,z) =E(u(t,z)) =Y Vi(t,z), z€E, t>0.

i€l

Jezeli istnieje takie V* € LY(F), ze

t—o00

lim / V(t,2) — V()| m(dz) =0,
E
to funkcje V* nazywamy sredniq tego procesu w diugim czasie.

Z gtownego twierdzenia pracy [IV, Theorem 5.1] wynika [IV, Corollary 5.3|, ze funkcje
(Vi)ier spelmiaja rownania

8 .

EVi = AV, +Zqﬂvj, iel,

J

ktorych rozwigzania stanowia potgrupe stochastyczna { P(t) };>¢ na przestrzeni L'(E x I).
W twierdzeniu tym zakladamy, ze spelnione sa warunki (I)-(II) z artykutu [IV, str. 6].
W sytuacji opisanej rownaniem warunki te zachodza [IV, Corollary 5.2|, a polgrupa
{P(t)}+>0 jest polgrupa stochastyczng indukowana przez PDMP odpowiadajacy uktadom
dynamicznym generowanym przez rownania rézniczkowe z’(t) = b;(x(t)) z losowymi prze-
laczeniami zgodnie z tancuchem Markowa {i(t) };>0. W szczegdlnosci warunkiem wystar-
czajacym na istnienie $redniej procesu w dtugim czasie V* jest asymptotyczna stabilnosé
polgrupy {P(t)}i>0 1 wtedy V*(2) = >_,c; fi (), gdzie f* = (f7)ier jest gestoscia nie-
zmiennicza tej polgrupy. Zgodnie z kolejnym wynikiem pracy [[V, Theorem 7.1] funkcje

(Cy)ier okreslone przez
Ci(t7x7 y) = E(l{l(t):Z}U(t,I)U(t,y)), T,y € E7 (NS [7 t > 07

spelniajg rownania

0

jel
gdzie ® oznacza iloczyn tensorowy operatorow. Ponownie zaktadamy tutaj prawdziwosé

warunkow (I)-(II) [IV, str. 6]. Ponadto rozwiazania rownan (3.8)) stanowia polgrupe sto-

chastyczna na przestrzeni L'(E? x I).
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Extended Abstract

4 Introduction and Motivation

Mathematical modelling of natural phenomena uses a wide range of diverse mathematical
theories. In this dissertation, we consider stochastic models that use piecewise determin-
istic Markov processes (abbreviated as PDMP, similarly PDMPs for plural). This is
a special type of Markov process with continuous time, which is associated with an in-
creasing sequence of random moments in time — called jump times. Between such “jumps”,
the trajectory of the process is described deterministically — usually by ordinary differen-
tial equations. A jump time is a discrete event that changes the dynamics of the system,
or literally an immediate “jump” to another point in the phase space. Models based on
PDMPs are proving to be a fairly versatile tool in the life sciences, useful for a broad

range of varied applications [23].

In the papers presented here, we develop methods for using PDMPs to model environ-
mental disturbances that directly and indirectly affect populations. In particular, we use
these processes to describe and predict the impact of phenomena that change population
number significantly in the short term (such as fires), as well as those that have a signif-
icant impact on the dynamics of a system (for example, the effect of the seasons change
on vegetation growth rates). A common research problem that links the articles that
constitute this PhD thesis, is the analysis of the impact of different types of disturbances
on population dynamics models based on PDMPs and the development of methods to

study such models.

In the first part of the overview of the most important results, we will describe the so-
called “savanna problem” (our primary application in ecology), which — several decades
since it was first described — still remains not fully understood and without a comprehen-
sive theoretical model. An immanent feature of a typical savanna (a widely distributed
biome) is the relatively stable coexistence of — competing for living space, water and
minerals — grasses and woody plants, which persists over the long term (even though
usually, in analogous situations, this ends in the dominance of one of the plant groups
— transition of the biome into a forest or a grassland). Research by ecologists points
to the particular importance of a variety of phenomena in maintaining such a situation:
partitioning of below-ground resources (root-niche separation) [13], losses caused by fire
outbreaks (see e.g. [25]), the impact of herbivores by grazing and browsing (e.g. [24],

[31]), or seasonality (occurrence of wet and dry seasons) (e.g. [8], [12]). In the literature,
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we find a wide variety of ideas for modelling the effects of these factors on grass and tree
populations in the savanna (often — for practical reasons — expressed not as “number of
individuals”, but as the amount of biomass of a given plant type). However, available
models — due to the difficulties in formal analysis — usually do not directly account for
the stochasticity of fires, and use deterministic descriptions. Formally, even the graph
loop analysis for network models was used [4], but the most popular approach to include
fire events are models based on impulsive systems: of ordinary differential equations
(e.g. [30], [I1]) or — introducing space-explicit description — reaction-diffusion equations

(e.g. [11,[26]).

In the first two papers [I, II| we consider one and two dimensional model of tree-grass
coexistence in savanna, based on ordinary differential equations, and we include the
stochastic nature of fires by defining the appropriate stochastic process (PDMP). Using
the methods of stochastic semigroup theory, we prove the results about the existence of

stationary grass and tree biomass distributions (and their asymptotic stability).

In the next part of the dissertation, we extend our models by including a factor that
is very important from the point of view of ecology — but almost non-present in typical
mathematical models — the seasonality (dry and wet seasons for savannas ). A given sea-
son not only influences directly the population dynamics (e.g. the growth rates of plants,
significantly decreasing it in the dry season due to sparse rainfall), but also indirectly —
affecting the probability of occurrence and severity of some environmental disturbances
(e.g. the possibility of fire outbreak and the extent of the damage caused to vegetation).
The work [III| — as a main application example — again refers to the tree-grass coexistence
in savanna, but the results obtained are general and can be applied to a whole class of
population models. Namely, the ones based on PDMPs with random environmental dis-
turbances (discrete population losses in jump times of a given PDMP), that additionally
include seasonality (as dynamics changes between fixed intervals — corresponding to the

average duration of the respective seasons).

The last part of the overview of the major results deals with random disturbances of the
PDMP models from the perspective of the entire population — as opposed to the usual
individual perspective. Mathematically, it requires studying processes on an infinite-
dimensional state space. In the paper [IV], we introduced the concept of randomly
switching stochastic semigroups and study a family of stochastic evolution equations on
the density space (L1). In the case of diffusion processes, P. C. Bessloff identified the
average of such a randomly switching environment process over a long time with certain
solutions of the (stochastic version of the Liouville equation) [5] and provided moment

equations of the considered process. We generalize and justify analytically these results
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for a broader class of models (the introduced randomly switching stochastic semigroups).
Furthermore, we study in detail the second moments of the stochastic evolution equations

and describe how to extend our reasoning by analogy for higher moments.

Before giving a more detailed presentation of the essential results of the publications
[I-IV], in the next preliminary part we will briefly summarize the most important defini-
tions and facts about PDMPs, as well as their relations with the stochastic semigroups
theory. These references allow for more clear and concise presentation of main theorems

and population models.

5 PDMPs and Stochastic Semigroups

PDMPs were introduced by M.H.A. Davis in the paper [6]. We say, that a continuous
time stochastic process {£()}+>0 is piecewise deterministic, if there exists an increasing
sequences of the so-called jump times (¢,),>1, such that between two consecutive “jumps”
the process is deterministic (for example, described by autonomous system of ordinary
differential equations). Values of this process at jump times £(t1), £(t2), £(t3), ... are
chosen according to probability distribution depending on the state of the process at the
moment before the jump, while the jump intensity depends on the current state of the

process.

Formally, a PDMP is defined by three local characteristics (, ¢, P), where 7 is a semidy-
namical system describing the deterministic parts of the process, ¢(z) is a jump intensity
(from x) function, and P(z,) is the state distribution after this jump. We assume that
the set X — the state space — is a Borel space. We say that the mapping 7: R, x X — X

(t,x) — ma is a semidynamical system on X if (|14, Section 7.2]):
a) mor = x,
b) msx = m(mwsx) for v € X and s,t € Ry,
¢) (t,z)— mx is continuous.

We make an important assumption that m;(X) C X for each ¢t > 0. For the jump intensity
function q: X — [0,00) we require that it is Borel, that the mapping s — ¢(msz) is
integrable on each interval [0, ¢) for ¢ > 0, and we assume that:

t
lim [ q(7msz)ds =400, z€X.

t—o00 0

For the transition function P: X x B(X) — [0,1] we require that P(z, X \ {z}) = 0
for all x € X. Let us remind that P: X x B(X) — [0, 1] is called a transition function
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(a kernel), if for each x € X the function P(x, -) is a probability measure (a finite measure)
and for each B € B(X) the function P(-, B) is measurable. Now we briefly summarize
how to construct a PDMP {&(¢)}4>0 with local characteristics (m, ¢, P) ([0, [7]). Let us

define a function .
F.(t) = exp{—/ q(msx)ds}, t>0, zeX
0

and note that assumptions for ¢ imply that 1 — F), is a distribution function of a finite
and nonnegative random variable for each x € X. Assume that ¢, = 0 and let £(0) = &
be a random variable taking values in X. As the n-th jump time t, (for any n > 1) we

can take any nonnegative random variable for which:
Pr(tn —tp1 > t|£n_1 = [L’) = Fx(t), t> 0.

We determine
(o) = { Tocty (Encr)  for ty_y <t <ty
n for t =t,,

where the n-th position after jump &, is a random variable with values from X such that
Pr(¢&, € Bl¢(t,—) = x) = P(z, B) and £(t,,—) = limy, £(t) = me, -+, ,(§n—1). Then the
trajectory of the process is defined for all ¢t < t, := lim,,_, t,. We extend the definition
for all ¢ by taking £(t) = A for t > t., where A ¢ X denotes an additional state
(not an element of the state space). The process {£(¢)}i>o is called the minimal PDMP
corresponding to (m,¢q, P) — and we say that it is non-explosive — if P,(t, = 00) = 1
for all z € X, where P, is the distribution of the process starting from z. Note that if
the function ¢ is bounded then the process is non-explosive. A probability measure y is

invariant for the process ¢, if for all sets B € B(X):
u(B) = [ B € Buldo), t20.
b

M. H. A. Davis in his definition of PDMP in [6] takes a subset of a Euclidean space as
the state space and — instead of a semidynamical system — considers a local dynamical

system 7,z describing solutions of an ordinary differential equation

() = b(x(t)) (5.1)

with initial value 2(0) = z chosen from an open set X° while a mapping b: RY — R?
is required to be (locally) Lipschitz. These solutions may (in finite time) leave the state
space X — which is a subset of the closure of the set X°. Therefore we specify a first
exit time ¢, (z) and a set I' = {z : t, (x) < oco}. If this set is nonempty, it is called an

active boundary and then the transition function must be defined also on I' — but only

21



jumps into the state space are considered: P(z, X \ {z}) =1 for x € X UT. Assuming
the definition

t
Fo(t) = Lo, () (t) exp {—/ q(mx)dr} , t>0,
0
we can construct a process analogically to the scheme used earlier.

In [6, 7] M. H. A. Davis determines the extended generator L of the process £ as a linear

operator defined on the space of Borel functions on X, given by [7, Proposition 26.14]:

LV(&) = LoV (@) +a(o) [ (V) = V@)Plody), 2 € X,
D'

and its domain D(L) contains especially all measurable bounded functions V: X — R
for which:

a) the function ¢ — V (¢(z)) is absolutely continuous on [0,¢,(z)) for z € X,

b) when extending V' onto the active boundary by V(z) = lim; oV (7_x) for x € T
it holds that

V() = [ VWP, wer.
X
c) Ly corresponds to the system 7

LoV (z) = lim Vim(z) -~ Viw)
t10 t

Now let m be a o-finite measure on B(X), and let D be a subset of the space L' =
LY (X, B(X),m) that contains all densities:

D={feL':f>0f]=1} where|f|] = /X |f () [m(dx).

If a linear operator P: L' — L' satisfies P(D) C D, then we call it a stochastic operator.
The family of such operators {P(t)};>¢ forms a stochastic semigroup ([14]) when the

following conditions are true:
a) P(0)=1d,
b) P(t+s) = P(t)o P(s) for t,s > 0,
c) the function ¢ — P(t)f is continuous for each f € L.

For a semigroup {P(t)}:>o we define its infinitesimal generator A by

Af =lim 2(P(H)f — f), f € D(A),

tlo ¢

where its domain D(A) contains all functions from L' for which this limit exist.
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A stochastic semigroup { P(t)}:>¢ is asymptotically stable, if there exists f, € D such that
for all ¢ > 0 it holds that P(t)f. = f. and

lim |P()f ~ ] =0, feD.

Then the density f, is called invariant. General results regarding asymptotic stability of
stochastic semigroups belong to R. Rudnicki [22], and their extensions to K. Pichor and
R. Rudnicki [19, 20} 21].

Let {£(t) }+>0 be a non-explosive PDMP with characteristics (7, ¢, P), defined on a state
space X without an active boundary. Such process induces a stochastic semigroup
{P(t)}+>0 on L', if for all B € B(X), t > 0 and for each density f there is

/B P(t) f (x)m(dz) = /X P,((t) € B) f(x)m(dz).

Hence, if f is a density of £(0), then P(¢)f is a density of £(¢) in each time ¢. Infinitesimal

generator of such semigroup takes the form [23]

Af =Aof —af + P(af),

where Ay denotes the generator of the stochastic semigroup induced by a dynamical
system 7, and P: L' — L' is a transition operator corresponding to the transition
function P, that is:

/P(x,B)f(x)m(dx):/Pf(x)m(dx), BeB(X), feD.

X

B

When the system 7 describes the solutions of (2.1)), and the function b is C, then for
smooth f we have Ayf(z) = —div(b(z)f(x)) for all z € X.

6 Overview of the Main Results

In three sections below, we discuss the main results obtained in the papers [I, 1T, III, IV].
The full-text versions of original papers are attached as the dissertation parts following

the extended abstract and bibliography.

6.1 Models of Tree-Grass Coexistence in Savannas

We begin our study with a description of the two models of tree-grass coexistence in
savannas, as introduced in papers [I| and [II], and a summary of the results established

for them.
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We introduce a state variable v € [0, 1] denoting the biomass of trees, where 0 corresponds
to the situation with the minimum occurrence of trees in a given area, while the value
of 1 denotes maximum afforestation. Following [9] we use the following simplification:
instead of introducing an additional variable describing the biomass of grasses — and
taking interspecies competition directly into account — we assume that grasses grow over
all available space (remaining between trees) and in proportion to the remaining resources
(1 —v). We model such a situation (without disturbances) with the classical logistic
equation

V'(t) = av(t)(1 —v(t)), (6.1)
where o > 0 is the growth rate parameter. So actually, apart from the situation in which
grasses dominate (stable point v = 0), this equation describes the suppression of grass
vegetation by trees — up to their total dominance (logistic growth to v = 1), and we can

easily solve it obtaining

for initial condition v(0) = w € [0, 1].

We assume that fires occur at random times (%, ),>1. We describe the biomass of the trees
by a stochastic process £(t),t > 0, which changes between fires according to equation
(6.1)). The loss of biomass from the fire event at each t,, is determined by

§(tn) = (1= 0n)8(,,),

where (6,,),>1 is a sequence of independent random variables that have values in the
interval (0,1) and with density h. Note that taking £(0) = 0 implies £(t) = 0 for all ¢.
Therefore, we will limit our analysis to the interval (0,1]. We assume that an intensity
function A: [0,1] — R, is continuous, bounded, and positive in zero. A process defined
in this way £(t),t > 0 is an example of PDMP with characteristics (m, A, P), the state

space X = (0, 1], and the transition function P of the form
1
P(v, B) = Pr((1 — 0,)v € B) = / 1s((1 = 0)0)h(0)d6, v e (0,1], B € B((0,1]),
0

where h is the probability density of 6,,.

In the state space X we take m to be the Lebesgue measure, so the transition operator

on L' is of the form . .
v
Pf(v) = /v h (1 - E> Ef(w)dw.

The process {{(t)}+>0 induces a stochastic semigroup {P(t)}:+>o with generator given by

Af(v) = —(%(ow(l —0)f(v)) = Aw) f(v) +/ h (1 - 3) A )

w w
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Assuming that the function A is continuous and strictly positive on the interval [0, 1], we

consider the following two conditions:
1
a+ )\(0)/ In(1 — z)h(z)dz >0 (6.2)
0

and .
a\ + AQ/ In(1 — 2)h(2)dz < 0, (6.3)
0

where we use the shortened notation for the upper and lower bounds, namely

A =sup{\(v) : v € [0,1]} and A = inf{\(v) : v € [0,1]}. Additionally note that

a—+ A(0) /1 In(1 — 2)h(2)dz < oé + A/l In(1 — 2)h(z)dz,

and it is equality for A being a constant function.

In paper [I] we proved [I, Theorem 2.1] that if (3.2) is fulfilled, then the semigroup
{P(t) }+>0 is asymptotically stable. However, if condition (3.3)) is true, then this semigroup

has no invariant density.

Now we switch to the description of the two-dimensional model presented in paper [I1],

where we use modified equations from [2].

Again, we consider changes in the amount of vegetation biomass in savanna in the pres-
ence of fire outbreaks, but this time we directly include the competition between grasses
(biomass amount denoted as g) and trees (biomass w — from wood). The deterministic

model is described by the system:

{ w'(t) = ryw(t) (1 - w(t)),
g(1) = rag(t) (1 = g(t) —w(®)).

where the constants r,, r, are the respective growth rates and w(t), g(¢) € [0,1]. Next

(6.4)

we add random jump times (,),>1, denoting fire outbreak events. Assume ¢, = 0, and
choose some initial values (from [0, 1]) for biomasses w(ty) = wo and g(to) = go. In this
model, we assume that the damage caused to vegetation by a fire event is proportional

to the accumulated biomass — we express the loss at each t,, (for any n > 1) by

{mm-mm M, w(t;),
g(ta) = g(ty) — My g(t;),

for some given constants M,, and M, chosen from interval (0, 1).

The stochastic process £(t) determining biomasses (w(t), g(t)) is a PDMP, and again we
demand that its jump intensity function A: [0,1]> — R, is bounded, non-negative and

continuous. Additionally we assume:

AMw,0) =0 forw >0 and AMw,g) >0 forw >0, g>0,
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since — according to ecological data — fires are fueled mainly by dry grasses (with amount
proportional to accumulated biomass g). Therefore, when taking initial values g(0) = 0
and w(0) > 0, the grass biomass will remain to be zero at all times and — according
to conditions imposed on A — there will be no fire outbreaks. In such situation woody
biomass grows indefinitely, until reaching the “forest” state (w = 1 limit). Hence the
point measure dy(; o)} is invariant for the process . Similarly — when starting with zeroth
biomasses for both vegetation types — they will stay zero at any time, and hence the
invariant measure of § is then dy();. Finally we consider zero initial biomass for trees
but g(0) > 0. Then again w(t) would remain to be zero — but there would be fires. So
under this assumption we get a very similar situation to the one dimensional model from
the paper [I], with the difference that — instead of describing the biomass of trees v — it
determines the amount of grass biomass g(t) = 1 — v(t) (observe that positive intensity

function value at zero corresponds to the upper bound for \). Thus let us assume that
g+ Ao(1 — M,) >0,

where \g = sup{\(0,g) : g € [0,1]}. Then the process ¢ has an invariant measure that is
a product measure of d;p1 and an absolutely continuous measure with invariant density

obtained for the one dimensional model.

Here we take the opportunity to fix an oversight from the paper [II|. According to the
above observations, as a state space for our two dimensional model we take

X =(0,1) x (0,1], and additionally we assume that
7w + A1 — M,) >0, (6.5)

where A = sup{\(w, g) : w, g € [0,1]}.

The process £ is a PDMP with characteristics (7, A, P), where the mapping 7 is a semi-
dynamical system corresponding to (6.4)), and the transition function is given by

P((w,g), B) = 15(5(w,g)), B e B(X),

with S being a linear transformation determining the values for the process at jump times
via
S(w,g) = ((1 — My)w, (1 — M,)g).

Consequently, the stochastic operator

Pf(w,g) = (1= M)~ (1= My)~ f(S7}(w, g))-
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corresponds to the function P. The process {£(t)}+>o induces a stochastic semigroup

{P(t)}+>0 with generator

A1,y = A= (w-9) _ D1 = = ) )

(S~ (w, 9)) f (S (w.9))
(1 —My)(1—M,)

- /\(w,g)f(w,g) +

The proof of asymptotic stability of the semigroup {P(t)}+>0 is the main result of the
paper [II, Theorem 2.1| and it uses results from the article [21, Theorem 2.2] (in a version
as in the monograph [23, Theorem 5.6]). To show condition (W7T) we introduce an
appropriate Hasminsky function V (see |23 Section 5.2.4]). It is a measurable function
for which the function LV, where £ denotes the extended generator, is well defined, and
— for some compact set F' C X — this function £V is bounded on this set, while it is
negative and separated from zero in all points outside of F. In paper [II] we consider the

state space X = (0, 1] (the oversight mentioned earlier), and then the proposed function

V(w,g) = —In(w) — In(g)

is not a Hasminsky function. Namely LV converges to zero when w converges to one,
and g to zero. But — assuming condition (6.5)), taking X = (0,1) x (0,1], and defining

1 1
+ — —In(1 —w),
Ww gag

V(w,g) =

for suitably chosen constants a,,, a, € (0, 1] — the essential result of |II] remains true, i.e.

the semigroup {P(t)}:>o is asymptotically stable.

6.2 Population Dynamics Models and Seasonality

One of the most important features of many biomes is the occurrence of seasons. Since
they represent near-periodic variability, such as air temperature or soil moisture, their oc-
currence strongly influences numerous environmental variables considered in experimental
measurements and theoretical studies by ecologists. Despite this, most theoretical con-
siderations — due to the unavailability of convenient formal tools — do not directly include
seasonality in the models. Most existing attempts in the literature (to mathematically
describe such models) are usually restricted to numerical simulations or bifurcation anal-
ysis [29].

We address the problem of seasonality in population models by the use of appropriately

defined PDMPs. In this section we describe our proposal for such models with seasonality,
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and present the main results of the work [III], where — as the examples — we introduce

the extended savanna models from previous papers.

To incorporate seasons directly into the PDMPs used so far, we need to introduce an
additional time variable (. It measures the time elapsed since the last season change (or
the “time of stay” in the current season). Moreover, we consider the numbering of the
seasons with the variable i € {0,1,...,k—1}, where k is the number of seasons considered.
Each such season has a fixed duration of ¢!, and we consider for it a dynamical system

describing the solutions of the ordinary differential equation

gt)=0(&t), i=0,....k—1. (6.6)

We assume the existence of a Borel subset X; of Euclidean space such that for every
& € X, the solution £(¢) of (6.6), with initial condition £(0) = &, exists and moreover
£(t) € X, for t > 0. We denote this solution by 7i(&;). So now, to describe a state x of
the process, we use the triple (¢, (, i) determined by

t) = b (&(1),
L,

7(t) = 0.

Therefore, as in (5.1)), we obtain the dynamical system ¢ given by the solutions of the

above system of equations

o) = ¢u(€,¢,0) = (mi(€), ¢+ t,4).

The state space here is

X = UX x [0,¢) %, {i}

and {¢;} may leave it in finite time through the active boundary
= JXs > {Gu} = {i}.

The first exit time is t,(z) = ¢/, — ( for x = (£,¢,i) € X. If (§,¢’,,4) is the state of
the process at the end of the i-th season, then — at the beginning of the next one — the

process jumps to (£,0, (¢ 4+ 1)mod )-

When the process is in a given season, it can additionally undergo random changes at

random times according to the following transition function

P((£.C.i), B) = / 15((S5(6), €. ) ph(€, C)v'(dB),  (€.¢.7) € X, B € B(X),

S}
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where © is a subset of Euclidean space with Borel measure v, transformation Sj(¢) de-
termines the value of ¢ after a jump, while p}(&, ¢)v*(df) is some probability distribution,
that is

| pite.witan) =1
where we assume that the mappings (0, &) — Sj(€) and (6, €, ) — ph(&, ) are continuous.

As the intensity function we take q(&, ¢, i) = N(&, (), where each A’ is a continuous and
nonnegative function that describes the intensity of random changes to population in the
i-th season. Therefore we obtain a PDMP with characteristics (¢, ¢, P), and we denote
it as & = {P(t) }+>o0.

Note that including seasonality in the way we propose, leads to a time-homogeneous
Markov process (in an extended state space) with one of the coordinates being a periodic
function (¢). Therefore — instead of studying the convergence of distributions to the sta-
tionary distribution — we study the convergence of the time averages of the distributions
of such processes. We say that a process ® is mean ergodic (Cesdro-ergodic) if, for every
probability measure p on the space X, there exists a finite measure pIl on the same space

such that the time averages of the distributions, i.e. the measures

H(t)(B) = %/;/XRC(@@ € B)u(dz)ds, B e B(X), t >0,

are convergent (in the total variation norm) to uIl, namely

lim sup |u(t)(B) — pll(B)] = 0.
%0 BeB(X)

Note that each measure pll is invariant for the process ®. Let us define
I(z,B) =6,11(B), BebB, ze€X,

where 0, is the point measure in = (Dirac delta).

In the paper [III] we provide sufficient conditions for a Markov process to be mean ergodic.
To summarize essential results of this publication we need to recall the notion of a T'-
process, as introduced in [27, [I7]. We say that a process ® is a T-process if — for some

probability measure a on R, — the transition function defined by
K. (2, B) = / P, (d(t) € B)a(dt)
0

has nontrivial continuous term, i.e. there exists a kernel T" such that the following con-
ditions hold: K,(z,B) > T(z,B) for z € X, B € B(X), the function « — T'(z, B) is

lower semicontinuous for each B € B(X), and T'(z, X) > 0 for all z. If a corresponds
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to the exponential distribution, that is a(dt) = e 'dt, then the function K, is the re-
solvent kernel — a transition function for the Markov chain (called R-chain) defined by
observing ® at jump times of a Poisson process with intensity 1 (and independent of the

process P).

We assume that the following Foster-Lyapunov type condition holds (it corresponds to
(CD2) from [18]):
LV(z) < —cf(z) +dle(z), =€ X,

for: some V € D(L), a measurable function f: X — [1,00), a compact set C, and
positive constants ¢, d. Then — whenever ® is a T-process — the following result is true

[III, Theorem 5.1]: @ is mean ergodic and moreover

(tlggot/f )ds:/fdf[):l

for any bounded and measurable f, and random measure II for which
I(z, B) = E,II(B), B € B(X), z € X. It appears that mean ergodicity of the process
® is equivalent to mean ergodicity of the R-chain [III, Lemma 6.2]. Therefore the proof
of the stated result [III, Theorem 5.1| involves studying the R-chain using the methods
developed by S. Meyn and R. L. Tweedie in papers [16], 17, [18].

Now we describe seasonal models of population dynamics in savanna — generalising the
ones presented in papers [I| and [II] — and, in particular, we provide sufficient condi-
tions for the PDMPs describing them to be mean ergodic. We use again the variables
g,w € [0,1] to denote the grass and woody biomasses. Additionally, we further account
for changes in these biomasses due to the presence of herbivore populations in the area
(separated into populations: hg of grazers - herbivores digesting mainly grassland plants,
and the population hp of browsers that mostly eat different parts of trees). We de-
scribe the deterministic situation in the savanna by the following system (the equations
determining herbivore populations are taken from [2§]):

)
‘ﬁl—’f =ryw (1 —w) — c,hpw,

% :ng(l_g_w)_cgh(}ga
Be — egh (g — ha)

| &8 = eyhp (w — hp),

where 1y, r, are trees and grasses growth rates, constants e,,, e, correspond to vegetation
biomass conversion efficiency for herbivores, while values ¢,,, ¢, are related to death rates
of these animals. Now we introduce seasonality — savannas are in this regard characterized

by wet and dry seasons so we take k = 2. We include changes in population dynamics
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for vegetation, related to soil moisture differences between seasons, by taking different
growth rates r® for dry (i = 0) and wet (i = 1) seasons. We do not consider the direct
dependence on herbivore populations of the occurrence of seasons. In each season we

consider this system on the state space
X; =(0,1) x (0,1] x (0,00) x (0, 00).

Finally we consider the losses of vegetation biomasses due to the fire outbreaks. As the

appropriate transformation we take:
SH(€) = ((1 — Ow)w, (1 —46,)g, hy, hB), &= (w,9,hag,hp) € X;, 0= (0u,0,).

Note that in such situation — but without seasonality — if we consider hg = hg = 0, then
we get a model from [II] generalized by including random biomass losses (instead of using
constants M,,, M), and hence it is also a two dimensional version of the model from [I].
So our savanna model, described by the process ®, is an example of PDMP with two
seasons. Assuming that intensity function and biomass loss distributions do not directly
depend on herbivore populations, and considering the possibility of fire events in each
season (conditions (i) and (ii) from page 129 in [III]), we show that ® is a T-process [III,
Theorem 5.3]. Moreover, under appropriate technical assumptions (conditions (iii), (iv)
from page 129 in [I1I]), we prove that Foster-Lyapunov type condition holds [III, Theorem
5.3]. In consequence ® fulfills all assumptions in the main result mentioned earlier [III,
Theorem 5.1| and hence it is mean ergodic. Especially, in the case of the model with

proportional (to accumulated biomass amount) losses due to fires (as in [II]), it is enough
when the condition (6.5)) holds in each season, i.e.

rl+N(1—- M) >0, i=0,1,

where A is an upper bound for the function X’ (see [III, Corollary 4.2]). Obtained mean

ergodicity for savanna models implies the existence of stationary distributions in the space

1
X = (0,1) x (0,1] x (0,00) x (0,00) x [_J[0,¢,) x {i},
i=0
for all considered populations, formally justifying the possibility of their coexistence

(especially of trees and grasses).

6.3 Randomly Switching Stochastic Semigroups

In the last part of the thesis, we consider processes in which the dynamics of the system

changes — similarly to the situation with seasonality — but at random moments, i.e.
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according to some Markov chain. Such approach can be used in the biological sciences —
for example to describe the response of the metabolic system of the baker’s yeast to an

environmental stimulus [3].

We start with a simple model of population dynamics. We consider a certain population
of size x > 0 with a death rate 1 and two different — varying according to discrete changes
in environmental conditions — birth rates 5y and ;. Changes in the population size are
described by the equation 2/(t) = b;(z(t)), i € {0, 1}, where i changes according to some
Markov chain i(¢) € {0, 1}, and the functions b; are of the form

bo(x) = (Bo — cx)x — pux and by(z) = (1 — cx)x — pa.

Note that for each ¢ equation z/(t) = b;(x(t)) induces a stochastic semigroup {P;(t)}+>o-
If we initially start with a distribution density g for the population described by the i-th
equation, then — after a certain time ¢ > 0 — the population distribution is determined
by the density P;(t)g.

We look at this situation from a perspective of an entire population, i.e. we switch to
analysis on the space of densities. We consider switching between stochastic semigroups
{Po(t)}+>0 and {Pi(t)}+>0 — according to Markov chain i(t) that we introduced above. It
leads to a study of the equation proposed by P.C. Bressloff in [5] (the author used the

name stochastic Liouville equation):

u(t,z) _8(bi(t) (z)u(t, x))
o ox '
We generalize this approach to population models described by a system of differential

equations ({5.1)) with state space that is a subset of Euclidean space, in which the entire

population lives in an environment that is affected by random disturbances. Again, we
will describe these random changes via a Markov chain i(¢) € I, where I is some finite set.
Then, assuming initial density u(0,z) = g(x), we get a more general version of stochastic

Liouville equation:
ou(t, )

ot

In the literature, an analogous situation is also considered (with the environment un-

— — div(bigy (z)u(t, z)). (6.7)

dergoing random changes) in the context of diffusion processes — such a common source

of stochasticity leads to the corresponding parabolic equation [I5], which is the analog
of (7).

In paper [IV| we generalize these approaches, and study the entire class of models de-

scribed by randomly switching stochastic semigroups.

As in [IV] we start by defining L'(E) = L'(FE,B(E), m) for some separable measurable

space (E,p) and o-finite measure m. For each i from a finite set I = {0,1,...,k} we
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consider a stochastic semigroup {P;(t)};>0 on L'(E) and — to describe switching between
them — we introduce a Markov chain {i(t)}:>o with state space I and intensity matrix
Q = [¢ijlijer- On a space X = L'(E) x I we consider a semi-dynamical system ¢, given
by

u(t) = Aiyu(t),

i'(t) =0,

where A; is the generator of the semigroup {P;(¢)};>0. By determining a transition

function as

. . dij
P((f7l)7{(f7])}) = _.j? where qi :Zqij
¢ J#i
and an intensity function by ¢(f,7) = ¢; for (f,i) € L'(E) x I, obtain a process £(t) =
(U(t)g,i(t)) starting from £(0) = (g,4(0)), that is a PDMP with characteristics (¢, q, P).

We study the mean of such process at large time u(t,z) = U(t)g(z), € E. For this aim

we introduce a function
‘/z(ta {L‘) = E(l{z(t):z}u(tv l’)), re ki€l t>0.
and study an asymptotic behaviour of the mean of such process, i.e. of the function
V(t,x) =E(u(t,z)) = Y Vi(t,z), x€E,t>0.
el
If there exists V* € L'(E) such that

lim /E V(t,2) — V* ()| m(dz) = 0

t—o0
then we call the function V* a mean of the process at large time.

From the main theorem of the paper [IV, Theorem 5.1] it follows [IV, Corollary 5.3|, that

functions (V;);er satisfy the equations

0 )
EVE = AV, + Zq]‘z‘vg‘, e l, (6.8)

J
and their solutions form a stochastic semigroup {P(t)};>o on the state space L*(E x I).
In this theorem we assume that the conditions (I)-(II) from [IV, p. 6] are met. In the
case described by equations these conditions indeed are fulfilled [IV, Corollary 5.2],
and {P(t)}+>0 is a stochastic semigroup induced by PDMP corresponding to dynami-
cal systems generated by differential equations z/(t) = b;(x(t)) with stochastic switch-
ing according to the Markov chain {i(t)};>0. Especially, for a mean of the process at

large time V* to exist, it is enough that {P(t)};>¢ is asymptotically stable, and then
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V¥(x) = > er fi(x), where f* = (f;)ier, is an invariant density of this semigroup.

According to the next result [IV, Theorem 7.1], functions (C;);cr given by
Cz<t7$ay) - E(l{z(t)zz}u(t7$)u<t7y))? S E7 (RS [> t>0.

satisfy the equations

0

5.Ci = (4 ®1A)Ci + (14 ® A)C; + > iy, i€l (6.9)

jer
where ® denotes the tensor product of operators. Again, we assume here that conditions

(I)-(II) [IV, str. 6] are fulfilled. Furthermore, the solutions of equations form

a stochastic semigroup on L'(E? x I).
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Revisiting the Logistic Growth
with Random Disturbances

Abstract We reconsider a one-dimensional probabilistic model of a fire-induced
tree-grass coexistence in savannas introduced by D’Odorico, Laio and Ridolfi in [5].
We rewrite it as a logistic growth model with random tree biomass losses caused by
fire occurring at random times. We study it by using the stochastic semigroup the-
ory and we give new sufficient conditions for the existence and stability of a unique
stationary density of woody biomass.
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1. Introduction Population dynamics models in ecology use mathemat-
ical tools to study changes of parameters such as population size or age distri-
bution. During over 100 years of population ecology history, theoretical ecol-
ogists/biologists and mathematicians developed many different approaches to
the problem. Nowadays, modeling approaches are based on variations of the
basic ones like the Lotka—Volterra model or the logistic population model.
The latter, despite being one of the first and simple, is extremely useful and
has been used recently [5] to help address the so-called savanna question[11].

Savannas cover roughly 20% of the Earth’s land surface and are mixed
woodland-grassland ecosystems characterized by open canopy of woody veg-
etation. There are many environmental disturbances that are said to be re-
sponsible for such tree-grass coexistence, including: seasonal rainfalls, grazing
and browsing of animals, human activity, and especially fires. Regular fires are
characteristic for tropical savannas. The main sources of ignitions are light-
nings and human activity (e.g. [13]). Similarly to [7] we work with a model
where tree-grass coexistence is induced by fire-vegetation feedbacks empha-
sizing significant role of fires in stabilizing savannas [6]|. Existing in literature
disturbance-driven savanna models including fires differ in applied mathemat-
ical methods, e.g. [3] they use the loop analysis for graphs while the model
presented in [15] is based on impulsive differential equations.
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In this paper we put the probabilistic model of [5] on a firm mathematical
ground. We propose a logistic growth model of the biomass of trees with
random disturbances that exhibits the same type of behaviour. We assume
that a random fraction of the biomass survives random occurrences of fires
leading to an appropriate piecewise deterministic Markov process (PDMP) [4].
In our previous work (jointly with M. Tyran-Kaminska) [7] we assumed that
always the same fraction of trees survives each fire. We study the existence
of a unique stationary density of the trees biomass. We also show its stability
when it exists by using the results of [8]. Asymptotic properties of randomly
disturbed population growth models have been studied recently in [9], where
it was assumed that the time of occurrence of disturbances is modelled as a
Poisson process with constant intensity A. In our model the intensity depends
on the current amount of the biomass which is the extension of results from
[9, Section 5| to non-constant .

2. Logistic tree biomass model of mesic savanna We give a brief de-
scription of a minimalistic model of tree-grass coexistence in fire-prone semi-
arid ecosystems given in [5]. The authors considered the case of mesic savannas
where the tree-grass coexistence cannot appear without disturbances, and
interspecies competition just slows down the growth of dominating woody
vegetation. Fires damage both, trees and grasses, but much slower growth
of woody vegetation enables grasses to occupy space left available by trees
[12, 14]. Between the fires trees reclaim the space form grasses by outcompet-
ing them since no niche separation is assumed. Without fires it is a simple
1-dimensional model with a state variable reflecting the total woody biomass
(a classical logistic growth). The authors assumed that the ecosystem carry-
ing capacity is constant so the state variable can be normalized to be a given
fraction of it. Namely, the tree biomass is denoted by v € [0, 1] in the logistic
equation of the form:

dv

% = (;m)(l — ’U) — "UF(t,U), (1)

where F'(t,v) is a noise reflecting the random occurrences of fire and « is
the tree growth rate. The grass biomass is assumed to be proportional to
the resources left available by trees. Equation (1) is interpreted in [5] as a
stochastic differential equation with multiplicative noise. This model supports
the "disequilibrium" theories of tree-grass coexistence in savannas via fire-
vegetation feedbacks (e.g. [1]).

We consider a similar logistic model with tree biomass losses being due to
random fires and rewrite it as an appropriate piecewise deterministic Markov
process (PDMP). Using the tools of linear semigroup theory we provide a
more careful analysis of the model.

We begin the description of the model with some modeling assumptions:
again a state variable v € [0, 1] denotes the tree biomass, the grass biomass
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is assumed to be proportional to 1 — v (remaining resources that are being
reclaimed by trees in periods between fires), and fires are discrete in time
events resulting with the woody biomass losses. In the absence of fires the
tree biomass is modeled by a classical logistic equation:

pri av(l —v) (2)
with some growth rate constant a > 0. So, the stable stationary point v = 0
reflects the landscape dominated by grasses while for v > 0 we have a system
describing a logistic growth of the biomass of trees leading to a maximal
woody vegetation amount for a given area (in reality in such a situation there
would still be grass in the space between the trees so the biomass of grasses
we refer to is actually the fraction of it occupying the space left available by
trees and not the total biomass). Let m(w) = v(t) be the solution of (2) with
initial condition v(0) = w. We have

w
w—+e %1 —w)’

m(w) = w € [0,1].

Now we add fires into the model by introducing the random disturbances
of a woody biomass growth at random times (¢,,),>1. Let tg = 0 and denote by
£(to) = w some initial tree biomass amount (an arbitrary value from (0, 1]).
The system evolves according to equation (2) in periods t € (t,—1,tn),n =

1,2,..., between the consecutive fire occurrences, so that we have &(t) =
et (§(tn—1)). For each n € N the biomass loss is given by:
§(tn) = (1 —0,)E(t,), (3)

where (0,,)n>1 is a sequence of independent random variables taking values
from the interval (0,1) with some density h and we use the short notation
for left limits £(¢,) = lim,_,,— §(s). We characterize occurrences of fire by
introducing a sequence of random variables (o, ),>1 such that:

(4)

tp, =tn_1+ 0, forn>1,
Pr(on >t ] &(tp—1) =w) =€ Jo Ms(w))ds,

where A: [0,1] — Ry with A(0) > 0 is a bounded continuous function re-
flecting the fire intensity. Note that this model is a more general case of a
continuous time model considered in [9, p. 501, eq. 9] where the authors con-
sidered the situation with A being a constant. Here the fire intensity depends
on the current amount of biomass, so more real factors can be taken into ac-
count, e.g. the fuel load for fires is provided mainly by the biomass of grasses
and after the main result of this paper we consider A from [5] as an example
taking this into account. In the next section we provide sufficient conditions
for the existence of the unique stationary density of the tree biomass actually
reflecting the savanna specific tree-grass codominance.
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Observe that if £(0) = 0, then &(t) = 0 for all ¢. Thus, we restrict our
analysis to (0, 1].

3. Results for the model
The process £(t),t > 0, is an example of PDMP with state space (0, 1].

Denote by D the subset of the space L' = L!(0, 1] which contains all densities,

1.e.

1
D:{f€L1:f>0,/ |f(v)|dv = 1}.
0

Let p(t,v) be the probability density of £(t), namely p(t,-) € D and satisfies

Pr(&(t) € B) = / p(t,v)dv

B

for any Borel subset of (0,1]. Then, p is a solution of the following Fokker-
Planck type equation

Ip(t,v) 0 (av(l — U)p(t= U)>

ot ow
U) Mp(t, w)dw, (5)

1
— _Aw)p(t, h (1 L
wptto)+ [ (1= 1) 2
where h is the probability density of the random variables 6,,. This equation

is supplemented with the initial condition

p(O,v) = f(U), J €D, (6)

(f is the probability density of v(0)).
We assume that the function A is continuous and a strictly positive func-

tion on [0, 1]. We consider two conditions:

a+ A(0) /01 In(1—2)h(z)dz >0 (7)

and

1
a\ + 32/ In(1—2)h(z)dz < 0, (8)
0
where A = sup{\(v) : v € [0,1]} and A = inf{\(v) : v € [0,1]}. Observe that
1

) _
o+ )\(0)/0 In(1 —2)h(z)dz < a% +A/0 In(1 — 2)h(z)dz

and equality holds when A is a constant function. We have the following result

that extends [9, Theorem 5.1] to non-constant A:
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THEOREM 3.1 If condition (7) holds true, then there exists a unique density
p«(v) which is a stationary solution of (5) and every solution of (5)—(6)
converges to it, 1i.e.

1
lim / p(t,v) — ps(v)|dv = 0.

t—o00 0

If condition (8) holds true, then (5)—(6) has no stationary solutions.

REMARK 3.2 Consider as in [5] A(v) = Ao + bv with b < 0 and b > —)g.
Suppose that 6,, are uniformly distributed random variables on (0,1). Then
h(z) =1 for z € (0,1) and [ In(1 — z)dz = —1. Thus, condition (7) holds if
and only if & > Ag. In this case, the invariant density is the beta distribution
of the same form as in [5, Equation (6)] with wp = 1.

Before we give the proof let us introduce some notions. We say that a linear
mapping P: L' — L! is a stochastic (or Markov) operator if P(D) C D. A
density f, is said to be invarinat for the operator P if Pf, = f.. Recall that a
stochastic semigroup is a family {P(t)}¢>0 of stochastic operators satisfying
the conditions:

(a) P(0)=1id and P(t+s)= P(t)P(s) for s,t > 0,
(b) the function t — P(t)f is continuous for each f € L'

We say that a density is invariant for the semigroup { P(t) }+>0 if it is invariant
for each operator P(t).

From [10, Section 4.2.4] it follows that the process &(t), t > 0, induces a
stochastic semigroup {P(t)};=0 on L(0,1], so that the solution of (5)—(6) is
given by p(t,v) = P(t)f(v), t > 0, v € (0,1]. To show that this semigroup has
an invariant density we look at the process at times (t,)n>1. Since £(t,)) =
T, —t,_1(&(tn—1)) and o, = t,, — tp—1, equation (3) can be rewritten as

{(tn) = (1 = )70, (§(tn—1)), n =1

We find the density of the random variable £(t,,) if £(tp,—1) = w. For any
bounded measurable function V' we have

// (1 = O)m(w) RO (m(w))e™ o =D eap. (9)

Substituting m(w) = z and (1 — 0)z = v we see that
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_ /[ v\ 4(2) 1% g _ AMy)
k(v,w) = /max{v,w} h (1 — ;) e wIWWdz  q(y) = —ay(l )

Thus, k(v,w) is the density of £(¢,) given &(t,—1) = w. Consequently, if
£(tn—1) has a density f,—1, then £(t,) has a density f, = K f,—1 where the
operator K is of the form

Kf(v) = /0 k(v,w)f(w)dw, fe L. (10)

Using 0 < A < X\ < oo we obtain from [2, Section 3| the following result:

Proposition 1 The operator K has an invariant density, if and only if the
semigroup {P(t)}4>0 has an invariant density. o

We also have the following, e.g. by [2, Corrolary 4.4].

Proposition 2 The operator K is either sweeping with respect to compact
subsets of (0,1], i.e. for any compact set F' C (0, 1] we have

lim [ K"f(v)dv=0, fe€L',

n—o0 F

or the operator K has a unique invariant density f.. In the latter case, this
density s strictly positive almost everywhere. 0

ProOOF (OF THEOREM 3.1) We first show that condition (7) implies that
the operator K is not sweeping from compact subsets of (0, 1], by using [2,
Proposition 2.3|. To this end we take an unbounded Lyapunov-type function
V(w) = —Inw for w € (0,1] and we check that the function

w = By (V(E(t1)) = V(E(t0)))

is bounded on compact subsets of (0, 1] and has a negative supremum in the
neighbourhood of 0, where E,, is the expectation conditioned on £(ty) = w.
For £(tg) = w with tg = 0 we have o1 = t;, and

V(£(t1)) = V(£(to)) = —In(1 — 1) + In(w + e~ (1 — w)).

Fatou’s lemma and condition (7) give

limsup By, (V(£(t1)) — V(£(t0))) < —E(1 —61)

w—0

+ / In(e~ )\ (s (0))e~ Jo A @dr gg
0
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Thus the operator is not sweeping. Now, Proposition 2 together with [, The-
orem 6 and Remark 2] implies that the semigroup {P(t) };+>0 is asymptotically
stable.

Next, assume condition (8). Suppose that { P(t)}+>0 has an invariant den-
sity. Then, Proposition 1 implies that the operator K has an invariant density
f«. Take any B > 0 and consider the function V(w) = w®, w € (0,1). Since
V is bounded, we have

1 1 1
| Vs = [ VeKEed = [ BuVE@) L wde. ()
0 0 0
Recall that if ¢ is a random variable, then

. BV /B _ E(nlcl)
lim (E(I¢)) " = e

Since mg(w) < we*® for all w and s, we see that
V(E@D) = (1= 0n)m, (w))” < wl(1 - 1)
and for ¢ = (1 — 61)e®"t we have E,, In¢ = E(1 — 1) + aE,, (1), where

Ew(tl) = /O S)\(Trs(w))e_ foS )‘(Wr(w))drds < ﬁ

Condition (8) implies that E,, In{ < 0 and shows that equality (11) is impos-
sible, leading to a contradiction. n

REMARK 3.3 Using the more sophisticated methods from [10] one can prove
that if there is no invariant density, then the semigroup is sweeping.

4. Summary We proved Theorem 3.1 specifying when the presented
model can describe a stable tree-grass coexistence reflecting a savanna. Namely,
when condition (7) holds true, then there exists a unique absolutely contin-
uous stationary distribution for positive amount of woody biomass while in
the situation (8) such a distribution does not exist. The condition (7) takes a
much simpler form for a specified case, in Remark 3.2 we show as an example
the situation for a model analogical to the one presented in [5].

The whole analysis in the paper is performed in 1D but it can be straight-
forwardly taken to higher dimensions, e.g. it can be applied for the author’s
and M. Tyran-Kamiriska’s previous paper on the topic with 2D model [7].

One can revisit the logistic model more by taking into consideration
putting the term 1— f (v(¢;,)) (where f is a function depending on the biomass
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of trees before fire loss) instead of 1 — 6, in equation (3). It would be another
interesting generalization of [9, p. 501, eq. 9] and we leave it for future work.

5. Acknowledgements The author would like to thank Marta Tyran-
Kaminska for helpful discussions and insights, and the two anonymous re-
viewers for their suggestions and comments.
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Ponowna analiza modelu logistycznego z losowymi skokami
Pawel Klimasara

Streszczenie Modele populacyjne oparte o réwnanie logistyczne wzigz sa popu-
larne w modelowaniu ekosytemoéw i pozwalaja lepiej zrozumie¢ rézne zjawiska. W
tym artykule rozwazamy prosty l-wymiarowy model sawanny zaproponowany przez
D’Odorico, Laio i Ridolfi’ego w pracy [5], ktory jest modelem wspolistnienia traw i
drzew na sawannach indukowanego losowymi pozarami. Jednak zamiast wprowadzaé
ubytki biomasy spowodowane wystepowaniem pozaréw bezposdrednio do rOwnan mo-
delu, definiujemy odpowiedni proces stochastyczny. Nastepnie badamy go z wyko-
rzystaniem teorii poélgrup stochastycznych. Zasadniczym wynikiem jest twierdzenie
3.1 okreslajace, kiedy przedstawiony model moze opisywaé stabilne wspoblistnienie
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traw i drzew charakterystyczne dla sawann. Mianowicie przy spelnionym warunku
(7) istnieje jedyny absolutnie ciagly rozklad stacjonarny biomasy drzew, do kto-
rego caly uklad bedzie dazyl, natomiast w sytuacji (8) taki rozklad nie istnieje.
Powyzszy wynik mozna latwo przenies¢ na wyzsze wymiary i zastosowaé np. w dwu-
wymiarowym modelu podanym w poprzedniej pracy (na ten temat) autora i Marty
Tyran-Kaminskiej [7].

2010 Klasyfikacja tematyczna AMS (2010): Primary: 92D40; Secondary: 60J25,
92D25.

Stowa kluczowe: dynamika populacyjna, réwnanie logistyczne, modelowanie ekosys-
temoéw, sawanna, gestos¢ stacjonarna, kawalkami deterministyczne procesy Markova.
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A model for random fire induced tree-grass
coexistence in savannas

Abstract Tree-grass coexistence in savanna ecosystems depends strongly on envi-
ronmental disturbances out of which crucial is fire. Most modeling attempts in the
literature lack stochastic approach to fire occurrences which is essential to reflect
their unpredictability. Existing models that actually include stochasticity of fire are
usually analyzed only numerically. We introduce a new minimalistic model of tree-
grass coexistence where fires occur according to a stochastic process. We use the
tools of the linear semigroup theory to provide a more careful mathematical analysis
of the model. Essentially we show that there exists a unique stationary distribution
of tree and grass biomasses.

2010 Mathematics Subject Classification:  Primary: 92D40; Secondary: 60J25,
92D25.

Key words and phrases: savanna, ecology, fire-vegetation feedbacks, tree-grass coex-
istence, stochastic modelling, piecewise deterministic Markov processes.

1. Introduction. Savanna covers around 20% of the Earth’s land sur-
face. It is a mixed woodland-grassland ecosystem with canopy open enough to
support the existence of continuous herbaceous layer dominated by grass. In
order to find the explanation of such tree-grass codominance many theoret-
ical models were introduced. Beside the interspecies competition (e.g. [11]),
this coexistence is believed to have been driven by various environmental dis-
turbances, primarily rainfall (e.g. [17], [17]), grazing and browsing (e.g. [0]),
and fire [11|. Some models consider additional factors like the competition
of tree seedlings with grass [2] or varying flammability of trees [3]. From the
mathematical point of view, models containing many different factors lack
stochasticity and differ in methodology (see e.g. the loop analysis for graphs
in [6] or models based on impulsive differential equations [16], [18]).

Realistically, the appearance of fire is stochastic and its frequency can vary
significantly [1]. Usually studies with stochastic fire focus on the numerical
analysis (see e.g. [10], [2], [1], [9], and [15]). We introduce a simple model where
fire occurrences are stochastic and study it in terms of the linear semi-group

This work was partially supported by the Polish NCN grant 2017/27/B/ST1/00100 and
by the grant 346300 for IMPAN from the Simons Foundation and the matching 2015-2019
Polish MNiSW fund.
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theory. We find that biomasses of grass and trees have a unique stationary
distribution and hence this simple model can describe stable savannas driven
by stochasticity of fires.

2. Model description. Our model is based on a simplified version of
the system of differential equations given in [4], but instead of putting fire
disturbances inside these equations we introduce an appropriate stochastic
process separately. Similarly to the cited authors we consider only amounts
of tree and grass biomasses, fires are events discrete in time, and the strength
of grass-fire feedback depends on biomass of grass.

In the absence of fires we represent the dynamics of tree biomass W and

grass biomass G' (both in T2* units) according to the competition model

W) =W () (1 52,

G'(t) = r,G(t) (1 - S0 _ V}V(—E?) , @)
where ry,,r, are the growth rates and K, K, are the carrying capacities
for tree and grass biomasses. It is easily seen that (1) has three stationary
states: (0,0), (K, 0) and (0, K,). Moreover, the point (K, 0) is locally stable,
while the points (0,0) and (0, K,) are unstable. So the system of equations (1)
provides a deterministic description of the change of wood and grass biomasses
in time where in the long time, due to species competition, the system will end
up as a woodland. The solution curves for the system (1) have the qualitative
behavior as shown in Figure 1.

Figure 1: Phase portraits for (1) with parameter values r, = 0.08, r, = 1.5
(left-hand panel) and r, = 0.25, r, = 0.5 (right-hand panel), K, = K, =1

Instead of using the amount of biomasses we will relate in our model to
ratios of these amounts to maximal capacities of wood and grass, respectively:

W (t) G(t)

w(t)=m7 9( =~ Ko
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Thus w(t) and ¢(t) take values in the unit interval, i.e. 0 < w(t), g(t) < 1 for
any time £. We now allow disturbances of the growth of biomasses due to fires
occurring at random times (t,),>1. Let tg = 0 and w(tg) = wo, g(to) = 9o,
where wg, go € [0, 1] are arbitrary. In periods between fire occurrences the
growth of the normalized tree and grass biomasses is modeled with

{ w (t) = rww(t)(l — w(t)), ()
g'(t) = rgg(t) (1 — g(t) — w(t)),

for t € (tn,tnt+1), n = 0, and a sequence of random variables (7,,) such that
tnt1 = tn + T, 3)
t
Pr (Tn+1 > t‘w(tn) = Wp, g(tn) = gn) = e fo A(”S(wmgn))dsj

where 7 (wy, gn) = (w(t), g(t)) is the solution of (2) with the initial condition
(wn, gn) and A is a nonnegative bounded continuous function. At each time
tn+1 the loss of biomasses is given by

{ w(tn-l-l) = w(tT_L—l—l) — My, UJ(t;_H), (4)
9(tnt1) = g(t 1) — Mgg(t, 1), n=0,

where M,,, My € (0,1) are constants, v(t~) = lim, ,;— v(s) for v € {w,g}.
We assume that the function A: [0,1]?> — R, satisfies

AMw,0)=0, w>=0, MNw,g)>0 forw2>=0, g>0. (5)

In Figure 2 we display graphs of wood and grass biomasses in time, with-
out and with fires. A sample behavior of the overall system in the long run
including losses due to random fires is shown in Figure 3.

0.8r
0.8

0.6
0.6

041 . “l / /
0.2/ | 02! ’ / -
//// /// :

0 10 20 30 40 0 10 20 30 40
t t

(
hand panel) with parameter values r,, = 0.25, r, = 0.5, M,, = 0.4, M, = 0.1,
A(w, g) = g and initial condition wy = 0.1, go = 0.2
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Figure 3: Sample trajectories of the stochastic process in (2)—(4) with param-
eter values r,, = 0.25, ry = 0.5, M,, = 0.4, M, = 0.1, A(w, g) = g and initial
condition wg = 0.01, gg = 0.2

The process (t) = (w(t), g(t)), t > 0, with w, g asin (2)—(4), is a piecewise
deterministic Markov process ([3]) with state space [0, 1]. It is an example of
a flow with jumps as presented in |13, Section 4.2.4]. We describe the jumps
of the stochastic process by a linear transformation S mapping (w,g) —
S(w,g), where

S(w,g) = ((1 = Mw)w, (1= My)g), (w,g) € [0,1]%. (6)

Let p(t,w, g) be the probability density of (w(t), g(t)), i.e. p is nonnegative,
Borel measurable, and satisfies

HﬂMWﬂWGB%iéMMMWM@

for any Borel subset of [0,1]? with the integral being equal to one for B =
[0,1]2. Then p is a solution of the following Fokker-Planck type equation

ap(taw7g) + a(Tww(l o w)p(t,w,g)) + 8(7“99(1 —g— w)p(t,w,g))
ot ow dg
ASHw,9)p(t 5 wg)
(1 _Mw)(l _Mg) 7

= —w, g)p(t, w, g) +

where S~ is the inverse of the transformation S defined in (6). Equation (7)
is supplemented with the initial condition

1 1
meﬁ#wm,wmeAAfmmmmzl (s)

and f is a nonnegative Borel measurable function, so that f is the probability
density of (w(0),g(0)). We have the following result - its proof will be given
in the next section.
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THEOREM 2.1 There exists a unique density p.(w,g) which is a stationary
solution of (7). Moreover, every solution of (7)—(8) converges to p, i.e.

1 1
lim/ / p(t, w, g) — p«(w, g)|dwdg = 0.
0 0

t—o0

REMARK 2.1 Let wg, go € [0,1] and w(t), g(¢) be as in (2)—(4). If wp > 0 and
go = 0 then g(t) = 0 for all ¢ > 0. In this case, assumption (5) implies that
fire can not occur when there is no grass biomass. Hence, w is defined for all
t as the solution of the differential equation w’'(t) = r,w(t)(1 — w(t)) with
initial condition w(0) = wp. Thus w(t) > 0 for all ¢ > 0 and w(t) converges to
1 as ¢ — oco. Consequently, the point measure d;(1 o)} is an invariant measure
for the process €. Similarly, if wg = 0 and go = 0 then w(t) = 0 and g(t) =0
for all £ > 0. Thus also the point measure d;(g )} is an invariant measure for
the process &. Finally, if wg = 0 and go > 0 then w(t) = 0 and g(¢) > 0 for
all £ > 0. In this case, the process ¢ has an invariant distribution which is a

product of d;gy and an absolutely continuous measure, see Remark 3.1,

REMARK 2.2 If instead of (3) we have t,,11 = t, + 7, n > 0 where 7 is a
constant then such a model is an example of an impulsive system [16, 18].

3. Existence and uniqueness of tree and grass biomasses distri-
bution. Methods in this section are mostly taken from the book [13]. To
prove Theorem 2.1 we use the method from |13, Section 6.3.2]. We begin by
recalling some notions for stochastic semigroups. Let the triple (X, 3, m) be a
o-finite measure space. Denote by D the subset of the space L' = L1(X, %, m)
which contains all densities

D={felL":f>0,|f]=1}

A linear mapping P: L' — L' is called a Markov or stochastic operator if
P(D) C D. A family {P(t)}+>0 of stochastic operators which satisfies condi-
tions:

1. P(0)=1id, P(t+s) = P(t)P(s) for s, t > 0,
2. for each f € L' the function t — P(t)f is continuous,

is called a stochastic semigroup.

Consider a stochastic semigroup {P(t) }+>0. A density f is called invariant
if P(t)f. = f« for each ¢t > 0. The stochastic semigroup {P(t)};>0 is called
asymptotically stable if there is an invariant density fi such that

tli}m |P@t)f — f«ll=0 for feD.

We will use a result of Pichér and Rudnicki [12] (see also |13, Theorem
5.6]) which requires the following conditions:
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(K) For every yp € X there exist ¢ > 0, t > 0, and a measurable function
n = 0 such that [ n(z) m(dz) > 0 and

P(t)f(z) > n(x) /B T,

where B(yo,e) ={y € X : p(y,v) < €}.

(WI) There exists a point o € X such that for each ¢ > 0 and for each
density f we have

/ P(t)f(x)m(dz) >0 for some t =t(e, f) > 0.

B(zo,¢)

(WT) There exists £ > 0 such that

sup lim sup/ Pt)f(x)m(dz) > k
FeF t—oo F

for f € Dy, where Dy is a dense subset of D and F is the family of all
compact subsets of X.

THEOREM 3.1 Let {P(t)}+>0 be a stochastic semigroup on L' (X, ¥, m), where
X is a separable metric space, X is the o-algebra of Borel subsets of X, and m
is a o-finite measure. Assume that {P(t)}>¢ satisfies conditions (K), (WI),
and (WT). Then the semigroup {P(t)}+=>0 is asymptotically stable.

Now we are ready to prove the main theorem.

PROOF (OF THEOREM 2.1) Let X = (0,1]? and m be the two-dimensional
Lebesgue measure on X. It follows from |13, Section 4.2.4] that the process
£(t), t > 0, induces a stochastic semigroup {P(t)};>0 on L' = L} (X, X, m)
and that the solution of (7)—(8) is given by p(t,w,g) = P(t)f(w,g), t > 0,
(w,g) € X. To apply Theorem 3.1 we need to check conditions (K), (WI),
and (WT).

We first show that condition (WT) holds. The extended generator L of
the process ¢ is of the form

LV (2) = (b(z), gradV («)) + @(2)(V (S(x)) = V(2)) for z = (w,g),
where gradV () is the gradient of V' (z) and b(z) is the vector with coordinates
bi(z) =ryw(l —w), ba(z)=r9(1—w-—yg), z=(w,g).

The domain D(L) of the extended generator L (see [3] or [13, Section 2.3.6])
contains the set of functions V': X — R such that for each z € X the function
t — V(m(x)) is absolutely continuous and for each t > 0, z € X, we have

(Y V() — V()] [60) = 2) < oc.

tn<t
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Let V(w, g) = —logw —log g. Since we have V((t,)) =V (§(t,)) = —log(1 —
M) —log(1 — M,) for any n, we see that V belongs to D(L) and that

LV (w,g) = —ro(1—w) —ry(1—w—g) — AMw, g)(log(1 — M,) +log(1 — M,)).

The function LV is bounded on (0,1)% and LV (w, g) — —rw—Trg as ||(w, g)|| —
0, where [| - || denotes a norm in R*. Thus we can find a 6 € (0,1) such that
LV (w,g) < —(ry +14)/2 for ||(w, g)|| < . Moreover, we have

/ V() f (x)m(dz) = / V(@)Af(z)m(dz), feD(A)N Dy,
X X

where f € Dy iff [, V(z)|f(z)|m(dr) < oo and (A, D(A)) is the generator of
the semigroup {P(t) }+>0. We conclude that V' is a Hasminskii function for the
semigroup {P(t)}+>0 and the compact set F' = {(w,g) € X : |[[(w,g)| = ¢}
implying that condition (WT) holds, by [13, Corollary 5.8].

To check condition (K) take z¢g € X and define 1 = S(z¢), x2 = S(x1),

V1 = S/(xl)S/(:vo)b(:Uo) — b(iCQ), Vg — S/(xl)b(fﬁl) — b(:ﬁg) (9)
Since S is a linear transformation, we have
v1 = 5%(b(x0)) — b(S%(20)), w2 = S(b(S(x0)) — b(S?(20)),

where S%(z) = S(S(z)). It is easily seen that vectors v; and vy are linearly
independent for each xy € X. Since the function A is strictly positive on
(0,1]2, we conclude that condition (K) holds (see e.g. [13, Section 6.3.2] or |7,
Section 4]).

Finally, if we prove that there exists xy such that foreache > 0and x € X
we can find n and times si,..., sy, Sp41 > 0 such that 7y, (z,) € B(xo,€),
where

T = S(ms, (... S(ms,))), (10)

then condition (WI) holds. To this end, we note that the point (0,1) is a
saddle point for the two-dimensional system (2) considered on R2. Its stable
manifold is the set {(0,g) : ¢ > 0} and its unstable manifold contains a curve
joining the point (0, 1) with the stable point (1,0), see Figure 1. Let us take
xg € X from this curve lying close to the point (1,0). For any point x € X

we can find n and sq, ..., s, > 0 such that z,, defined as in (10) is as close to
(0,0) as is needed. Since w5y — (1,0) for y € (0,1)2, we can find s,;1 such
that m, ., x, € B(xo,¢), which completes the proof. n

REMARK 3.1 The process ¢ restricted to the set {(0,g) : g € (0,1]}, con-
sidered with measure being the product of 479y and the Lebesgue, induces a
stochastic semigroup on L!({0} x (0,1]). Using the same type of argument
as in the proof of Theorem 2.1 it can be shown that this semigroup satisfies
conditions (K), (WI) and (WT), thus this semigroup is asymptotically stable,
implying the existence of the invariant measure mentioned in Remark 2.1.



94 A model for random fire induced tree-grass coexistence in savannas

4. Discussion. We showed that there exists the unique, absolutely con-
tinuous with respect to the two-dimensional Lebesgue measure, stationary
distribution for the positive amount of grass and wood biomasses. The sta-
tionary density is strictly positive in the region bounded by the axes and the
unstable manifold of the point (0, 1), in particular in a neighborhood of the
line {(w,1 —w) : w € (0, 1]}, showing that the coexistence of trees and grass
is possible. Finding the actual shape of this distribution, numerical analysis,
and further improvements of the model by adding more coefficients reflecting
real-world factors regulating savanna biomasses we leave for future work.

Moreover such an analysis can be implemented in models describing dif-
ferent phenomena involving random fires, such as the impact of forest fires on
population of pines and bark beetles. Modeling attempts usually are deter-

ministic (see e.g. [7]) and hence could benefit from involving stochastic nature
of fire.
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Model koegzystencji traw i drzew na sawannach indukowanej

losowymi pozarami
Pawetl Klimasara, Marta Tyran-Kaminska

Streszczenie Sawanny zajmuja ok. 20% ladowej powierzchni Ziemi. W tym ekosys-
temie korony drzew sa na tyle oddzielone od siebie nawzajem, ze do podtoza dociera
wystarczajaco duzo swiatla, aby utrzymywala sie réwnomierna warstwa traw. Takie
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dlugotrwate wspolistnienie traw i drzew, czyli brak konwersji do tgki lub lasu, jest
mozliwe dzieki ré6znym czynnikom. Uwaza sie, ze najwazniejsze z nich to powtarza-
jace sie pozary, obfito§¢ pory deszczowej oraz uszczuplanie warstwy roslinnej przez
rodlinozercow i dziatalnosé czlowieka. Wiekszo$é dotychczasowych modeli koegzy-
stencji traw i drzew jest deterministyczna, jezeli juz przyjmuje sie stochastyczne
wystepowanie pozaréw lub deszczu, to zazwyczaj w bardzo uproszczonej formie,
a analiza jest przeprowadzana numerycznie.

W tym artykule wprowadzamy uproszczony model, sktadajacy sie z uktadu réwnan
rézniczkowych, opisujacych wzrost traw i drzew w czasie oraz procesu stochastycz-
nego, odpowiadajacego za losowe pojawianie sie pozaréow. Analizujemy ten proces,
korzystajac z metod teorii pétgrup liniowych, co pozwala nam pokazaé, ze star-
tujac z dowolnego rozkltadu poczatkowego biomasy traw i drzew, po odpowiednio
dtugim czasie rozklad tych biomas sie stabilizuje. Istnieje jedyny (absolutnie ciagty
wzgledem dwuwymiarowej miary Lebesgue’a) taki rozklad stacjonarny. Planujemy
rozbudowaé zaproponowany model o dodatkowe czynniki Srodowiskowe wymienione
wczesniej oraz konkurencje o zasoby pomiedzy trawami a sadzonkami drzew. Po-
nadto podobne uwzglednienie stochastycznej natury wystepowania pozaréw mozna
uwzgledni¢ w modelowaniu innych zjawisk przyrodniczych jak zwiazek pomiedzy po-
zarami laséw a populacjg zywiacych sie korg sosen chrzaszczy.

Klasyfikacja tematyczna AMS (2010): 92D40; 60J25; 92D25.

Stowa kluczowe: sawanna, ekologia, sprzezenie zwrotne, koegzystencja roslin, mode-
lowanie stochastyczne, kawatkami deterministyczne procesy Markowa.
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Abstract. We introduce a mathematical model of savanna vegetation dynamics. The usual
approach of nonequilibrium ecology is extended by including the impact of wet and dry seasons.
‘We present and rigorously analyze a model describing a mixed woodland-grassland ecosystem with
stochastic environmental noise in the form of vegetation biomass losses manifesting fires. Both the
probability of ignition and the strength of these losses depend on the current season (as well as
vegetation growth rates, etc.). Formally it requires an introduction and analysis of a system that is
a piecewise deterministic Markov process with parameters switching between given constant periods
of time. We study the long time behavior of time averages for such processes.

Key words. seasonality, savanna, tree-grass coexistence, herbivores, fire-vegetation feedback,
piecewise deterministic Markov process

MSC codes. 60J25, 92D25, 92D40
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1. Introduction. Seasonality is a very important feature of various ecological
systems that affects their characterization in many ways. Defined as persistent peri-
odic changes of environmental variables like temperature, rainfall, etc., it is crucial to
understand population dynamics of many systems [52]. Despite its importance and
universality, seasonality is usually not explicitly present in mathematical modeling
attempts in ecology. Existing formal inclusion of seasons in models is often analyzed
only numerically or based on Floquet theory [29, 52]. We propose a seasonal model
that is formally a stochastic hybrid process that jumps between two piecewise de-
terministic Markov processes (PDMPs, [14]) reflecting repeated switching between
two seasons. Although we focus on the example of the savanna dynamics model, we
provide a general theory that can be used for other, formally similar, models or in
situations with more than two seasons present.

Savannas are biomes characterized generally as mixed tree-grass systems [43] and
cover around 20% of Earth’s land surface. The competition for resources between
trees and grasses is regulated by many factors including herbivore activity, temporary
changes in water availability, and fires [50]. There is a rich literature on savanna mod-
els [55] based on incorporating into dynamical system vegetation losses due to fires
with constant [26, 54] or random [16, 3] frequency. Despite its ecological significance
and prospective impact on model parameters, these approaches do not include explicit
representation of seasonality. We take into account facts that in humid/mesic savannas
rainfall happens primarily in wet seasons, boosting the vegetation growth, and results
in more grass fuel for fires, happening more frequently in dry seasons, that cause
then more damage to tree cover (see [53, 40, 1, 51] and the references therein). Most
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up-to-date savanna dynamics models that take rainfall and/or soil moisture into ac-
count refer to their mean annual value (e.g., [49, 45, 44]). Even when annual mean
rainfall changes each year then these are much smaller variations in water availability
than between seasons. Moreover, the duration of wet and dry seasons usually are not
the same. Nevertheless, there is no direct presence of wet and dry seasons in these
models.

In section 2 we introduce a simple seasonal model of savanna vegetation dynam-
ics. A system of logistic equations describes the growth of tree and grass biomasses,
and without disturbances it would result in woodland (the trees outcompete grasses).
We add random fire events manifested as discrete biomass losses. The probability of
ignition and fire severity increase with grass biomass (fuel load). Later in section 3
we focus on a more complicated version of this model where we introduce two more
equations describing grazer and browser populations that additionally impact the veg-
etation dynamics. We provide figures of sample trajectories illustrating the behavior
of these systems. The resulting models are stochastic only due to randomly occurring
fires. The seasons are present in these models as repeated deterministic switching
of growth rate parameters. This is entirely different setting than random switching
between model parameters that has been used recently in PDMP models, e.g., in eco-
logical dynamics [7, 5, 10, 24, 23, 20, 21], epidemiology [8], or population genetics [19].

To follow seasonal changes we introduce an additional time variable measuring
the duration of stay in a given season. This allows us to represent the savanna
models as PDMPs in section 4 and provide sufficient conditions for their ergodicity
(Theorem 4.1). Due to periodic changes we cannot study the usual convergence of
distributions of such processes, and we must look at the convergence of time aver-
ages. In section 5 we explore formally the long time behavior of averages of homoge-
neous Markov processes, and we formulate one of the main results of the paper that
T-processes, as in [47, 36], satisfying a Foster—Lyapunov-type condition (CD2) in [36]
are mean ergodic (Theorem 5.1). Then we show that our savanna model PDMPs are
such T-processes (Theorem 5.3) which implies Theorem 4.1. In section 6 we provide
the proof of Theorem 5.1. The paper concludes with a short discussion.

2. A basic model of savanna dynamics with seasonality. We start with
adding seasonality into a simple model to grasp the actual problem with such a mod-
eling approach without intricacies of extended models rich in details and parameters.
Basically as our minimal model we continue our work from [31] based on [4] and mod-
ify the model presented there. It is a simple competition model between trees and
grasses referred to as their biomass amounts (denoted as W and G, respectively) in
the system of differential equations:

dw _ W
ar =TeW (1 Kw)’

dG _ G w
W—TgG(l—Kig—Kiw),
where r,, and 7, are the respective growth rates, while the carrying capacities for the

biomass amounts are K, and K,. We normalize both “amount of biomass” variables
to lie in [0, 1] by the change of variables

w(t)
Ky’

o= F

w(t) =

and hence the model has the form

(2.1) {Cg’?—rww(l_w)’

%:rgg(lfgfw).
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Observe that (2.1) has three stationary solutions (1,0), (0,0), and (0,1) and that the
point (1,0) is asymptotically stable.
We add fires to this model and assume that they occur randomly with

Pr (occurrence of fire in (¢, ¢+ At) |w(t) =w,g(t) = g) = Mw, g) At + o( At),

where the function A: [0,1]? — R is continuous. We denote the consecutive moments

of fire events by t1,t2,.... The impact of fire in the model is implemented as the
appropriate biomass losses according to
(22) ’U.)(tn) :w(tr_z) _Mww(tv_z)v

g(tn) =g(t;)) — My g(t,),

where M,,, M, € (0,1) are constants and v(t~) = lim, ;- v(s) for v € {w,g}. When
fires occur at fixed deterministic times ¢, 11 = t,+7, where 7 is a constant, one obtains
impulsive systems (see, e.g., [65] or [26] with a =1).

The assumption that the impact of fires is described discretely via constant
biomass losses can be improved by a more general setting of random losses. To this
end we replace the constants M, and M, with random variables. Their distribution
can depend on the current biomass amounts. Moreover such a setup can be extended
even more by including the seasonality. Thus we introduce two savanna seasons (wet
and dry) and code them with variable i, where ¢ = 0 refers to the dry season, while
i =1 refers to the wet one. Some model parameters change between seasons. Thus,
e.g., rl, and r; denote the growth rates in the ith season. The seasons are time
intervals changing alternately, and to include this fact in the model we add a new
clock variable ¢ describing how long the current season lasts, which hence schedules
the moments when variable ¢ switches its value. The length of the ith season will
be denoted by the constant value ¢! . Additionally, by introducing a 2-dimensional
variable £ for biomass amounts, the differential equation in the ith season takes the
final form

(2.3) {ﬁ‘i;f(@’ where g:(?) and bi(§)=< ruw (1 =w) )

rig(l—g—w)

Each time ( reaches its maximal value C}'n, the present season ends, and hence we
reset the “duration of stay in a season” that is the value of ¢ to 0 and swap the model
dynamics by changing all the affected parameters (via switching ¢ to 1—1i everywhere).
Note that the long time behavior of £ is the same as for (2.1).

Accordingly, the introduction of seasons changes the fire events description to

(2.4)  Pr(occurrence of fire in (t,t + At) [ £(t) =&, ((t) = (,i(t) =)
= \(& Q)AL+ o(At),

where ! is a positive continuous function. We assume that in the ith season for each
¢ and (¢ there exists a probability measure P*(,, A) describing both biomass changes
due to random fire events

(2.5) Pr(&(tn) € Al &(t,) =&,¢(t) = Ci(t,) =i) =P (£,¢, A)

for any Borel subset A of R2. In particular, we consider

(2.6) PiE.C.A) = /@ 14(S5(6))ph (&, ) (dB),
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FiG. 1. Sample trajectories of the stochastic process in (2.3)—(2.5) with parameters for the dry
season 10, = 0.05, 7”2 =2.5, M0 =0.35, Mg =0.2, \%w,g,¢) =0.09g +0.01, €9, =7 and for the wet
season T, = 0.1, r} =10.75, M}, =0.2, M} =0.05, A (w,g,{) = 0.001g 4 0.02, ¢}, =5. The green
line represents the graph of the grass biomass amount over time ¢+ g(t), and the black line refers
to the wood biomass t — w(t).

where © = (0,1)2, v is a Borel measure on O, and (0,£,¢) — p5(&,¢) is a continuous
function such that

(2.7) /O P, Qv (d6) = 1.

The transformation S} describes the biomass loss due to fire, and to simplify presen-
tation we take

(2'8) Sé(g): ((1_9w)w7(1_99)g)» f:(w,g)e((),l) X (071]7 9:(974)’99)'

Assuming that these losses are constant fractions of available amounts before the fire
incident we have p}(¢,¢) =1 and v*(df) = O(ar ari) (dB), where M, M} € (0,1) are
constants and dy is the Dirac measure at the point M = (M, Mg). On the other
hand when these losses are random we can take as v* the usual Lebesgue measure on
the unit square (0,1)%. Then for each (£,¢) the function  — pj(&,¢) describes the
density of the distribution of biomass losses due to fire. In Figure 1 we display sample
graphs of wood and grass biomasses in time, including losses due to random fires and
changes of seasons.

3. A savanna model featuring herbivores and seasonality. We extend the
model from the previous section by adding populations of herbivores depending on the
food availability (grass for grazers and trees for browsers). We start with introduction
of the population dynamics model that we later complete by adding random fire events
and seasonality. The differential equations describing the dynamics of tree and grass
biomasses contain additional terms referring to the presence of herbivores:

W, W (1= J5) = cw HpW,

aG G
ra :TgG (]. — ng — %) — CgHgG,
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where Hg, Hp are populations of grazers and browsers and cy, cg denote con-
sumption coefficients of woody/grass biomass by browsers/grazers, accordingly. We
describe the population dynamics of herbivores as in [50] by

{d{l{f = egHgG — dgH%,

dHp __ 2
dtB = ewHBW — dBHB,

where ey, eg are consumption and conversion efficiency coefficients of woody/grass
biomass by browsers/grazers and dp, dg denote death rates of browsers and grazers,
respectively.

Similarly to the model from section 2 we normalize biomass amounts and addi-
tionally redefine the herbivore population variables by

W (t) G(t) deHeg(t) dpHg(t)
wit) =2 9= ha="CE0, nyn)="ETEE,
which enforces us to change the parameters as well:
— €y — . CGw _ _
Co=Cw ——, Cg=Ca—5—, ew:(inw, eg:egKg.
da dp

These modifications lead to the simpler system of differential equations:

%’ =rpw (1 —w) — cphpw,
(3 1) %:rgg(l—g—w)—cghgg,

dZTG =egha (9 —ha),

dhp _

at eth (w - hB) .
This system has a unique positive stationary point

Tw Tg Cw

- ) g: )
Tw + Cw g+ CgTw+ Cy

hG:gv hB:w7

and it is asymptotically stable. Again, we add alternating seasons, dry (i = 0) and
wet (i = 1), by changing the plant growth rates r?,, 7"; along with them. We illustrate
the long time behavior of this system in Figure 2. A typical periodicity of seasonal
models is clearly visible in this figure.

Finally we may incorporate the fire events into this model in analogy to the basic
no-herbivore model. Now we have a 4-dimensional vector £ = (w, g, hg,hp), and the
dynamics is given by (2.3) with the values for b°(¢) taken from system (3.1). Fire-
related probabilities, (2.4) and (2.5), remain unchanged, while the transformation S
takes the form

(3'2) Sé(f):((179w)w7(1799)g7hG:hB)7 f:(w,g,hg,h3)7 9:(910799)'

A sample trajectory of the main model containing all the stochastic effects is presented
in Figure 3.

4. PDMPs and seasonality. In this section we recognize introduced savanna
models as PDMPs with the aim to show that such processes can be used to study
seasonality in ecological /population models. After a brief introduction of the theory
basics we formulate one of the main results of this paper concerning the long term
behavior of savanna models. For general background on PDMPs we refer the reader
to [15, 42].
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F1G. 2. Deterministic trajectories for system (3.1) with alternating seasons and initial condition
w=g=0.1, hg =0.5, hg =0.2. We used the same color references and parameters as in Figure 1
and additionally cy = ey =0.1, cg =eg =0.2. The red line represents the graph of the population of
grazers over time t — hg(t), while the blue line refers to the population of browsers t — hp(t).
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Fic. 3. Sample trajectories for the stochastic model of savanna vegetation dynamics with her-
bivores, random fires, and seasonality. The parameters and colors are the same as in Figure 2.

We consider two flows that arise as solutions of ordinary differential equations

(4.1) €'(t)=b'(£(1)),

where b': R? — R? is a (locally) Lipschitz continuous mapping. We assume that X;
is a Borel subset of R? such that for each & € X; the solution £(¢) of (4.1) with
initial condition £(0) = &y exists and £(t) € X; for all t > 0. We denote this solution
by i(&), i =0,1. We also introduce the clock variable ¢ and the season variable i.
Thus, the variable x = (&, ¢, ¢) changes in time according to the flow

(4.2) $r(x) = de(€,¢,1) = (1(€),C +1,1).

73:6743685920



128 PAWEL KLIMASARA AND MARTA TYRAN-KAMINSKA

If we consider the 2-dimensional model from section 2 (no herbivores) then (4.1)
and (4.2) introducing the flow ¢; correspond to (2.3) with £ = (w,g) € X;, where
X;=1(0,1)x (0,1] and ¢ =0, 1, while for the 4-dimensional model from section 3 (with
grazers and browsers) we have £ = (w, g, hg, hg) € X; with X; = (0,1) x (0,1] x (0, 00)2.

Our state space is

X:UXz- x [0,¢7,) x {i},

where (!, is the length of the ith season. The flow {¢;} can exit the set X in a finite
positive time through a boundary I" of X. Under our assumptions we have

F:UXi x {¢h} < {i},

and the hitting time of the boundary I is given by
(4.3) t(z) =inf{t >0: ¢ (x) €T} =¢" — ¢ forz=(&(,0)€X.

If the state of the process at the end of a given season is represented by the point
(€,¢¢,,1) from the boundary T, then the process moves to the point (£,0,1—4) at the
beginning of the next season. Thus, jumps are described by a stochastic kernel P

defined by
P(z,B) :/ 15(S(z,0))v(z,df), z€XUT,BeB,
)

where S: (X UT") x © — X is a measurable transformation and v(z,-) is a stochastic
kernel. In reference to (2.6), we consider

_ o (S6(6),¢0) i C< (s
(44) S(ZE,Q)—S(.’E,C,’L,Q)—{(57071_2) lfCZC:n;
and
P&, Qri(dl) it < (),
(4.5) v(z,df) = {Vi(dﬁ) oo i

Finally, let the jump rate function be defined by ¢(&,¢, i) = A (&,¢) for (&,¢,4) € X.
For each x € X we define

(4.6) Fz(t)—l[o,t*(x))(t)exp{/o q(gﬁr(x))dr}, t>0,

where ¢ is as in (4.2). If we start at the point ¥y = (&, (p,i0) at time 79, then we
follow the path ¢ — ¢1_-,(¥o) up to the occurrence of either the fire or the next
season, whichever comes first. Thus the next jump time 7y is chosen according to the
distribution

]P(Tl —T0 >t|\I/0 ::c) :Fm(t)
Then we define

(D(t)ngt—‘ro(\po)v (I)l:qSTl—Tn(\IjO)a \Illzs(q)lvﬁl)v
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where 11 is a random variable with distribution v(®1,-), and we restart the process
from the point ¥y. In this way we define a sequence ¥,, of X-valued random variables
and jump-times 7, such that the process ® = {®(t):¢t > 0} is defined by

(4.7 O(t)=¢r—r, (V) for 7, <t <Tpi1,
where
(48) \I,TL = S(¢0n (\Iln)v 19n)7 Onp =Tn — Tn—1,

and ¥, is a ©-valued random variable with distribution v(¢,,, (¥5,), ), n € N.

We conclude the section with the main theorem of this paper concerning each of
the Markov processes ® = {®(t) : t > 0} representing the models from sections 2 and
3. Let P, denote the law of the process ® with initial condition ®(0) =z, z € X.

We assume that the functions A? and pj satisfy the following:

(i) their values depend only on w, g, and ¢ in each case (there is no direct
influence of herbivores on fire ignition nor severity);
(i) A® is strictly positive in each season (fires should be always possible but of
course much more probable during the dry season);
(iii) there are aw,aq € (0,1] and €,,&4 > 0 such that

. 1 . .
(49) )‘l(w»gag)/ |: P 1:| pzé(wmga C)Vz(de) - awr; S —Ew
o L(1—0y)
for all ¢ €10,¢%,), g € (0,1] and w from a neighborhood of 0, and
(4.10)

Xi(w,9,0) /@

1 1
[ g |
=6, 9=

(1__1;10)10} pé(w,g,C)Vi(dG)

- agr;(l —w) < —g4

for all ¢ €[0,¢%), we (0,1), and g from a neighborhood of 0;
(iv) for a = (aw,a4) as in (iil) we have

/o [(1 — ;w)“” + 5l 7199)% —In(1-(1- Gw)w)} ph(w, g,¢)vi(df) < oo

for all (w, g) € (0,1) x (0, 1], C € [0,},)-
Conditions (iii)—(iv) are technical assumptions allowing the construction of a
Lyapunov function controlling survival of woods and grasses (the behavior of the
process when w or g are close to zero). In particular, conditions (4.9) and (4.10)
prevent the total loss of wood and grass biomasses, respectively.

THEOREM 4.1. Suppose that (i)—(iv) hold. Then for each x = (§,(,i) € X there
exists a probability measure I1(x,-) on X such that
1 t
lim — [ P,(®(s) € B)ds=1(z,B) forall BeB,

t—oo t 0

and for any bounded Borel measurable f we have

P, (tlggoi/otf@(s))ds:/fdﬁ) —1

for a random measure 11 satisfying 1(z, B) =E,II(B), BEB, z € X.
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The proof of Theorem 4.1 will be given in the next section. In fact we will show
that the convergence in Theorem 4.1 is uniform with respect to all sets B and that
our savanna models are T-processes satisfying a Foster—Lyapunov-type condition (see
Theorem 5.3).

We finish the section with the conclusion regarding the model from [31] extended
by inclusion of seasonality and (possibly) herbivore activity.

COROLLARY 4.2. Suppose that the losses are constant fractions (Mme;) of the
tree/grass biomass and that \(w,g,() = Mg with Ny >0, i=0,1. If

(4.11) ri AN In(1— ML) >0, i=0,1,

then Theorem 4.1 holds.
Proof. From condition (4.11) it follows that there exists a,, € (0,1] such that

. 1 .
Nl —— 1| —aurl, <0, i=0,1,
e 1 et <o

implying condition (4.9). Now observe that the left-hand side of (4.10) is of the form

) 1 1—w .
AL — 1 9ln ——— | — (1 —
°g[<1—M;>% 9 “1—(1—Mz,>w} agy(1 =),

and for w € (0,1) and g from a neighborhood of 0, it is always negative. Consequently,
assumptions (i)—(iv) are satisfied. 0

Remark 4.3. In the simplest model as in Corollary 4.2 note that condition (4.11)
implies that rl, + Mgln(l — M{) > 0 for all g € (0,1], ¢ = 0,1. Thus the mean
growth rate of wood biomass is positive in the limit w — 0 in both seasons allowing
wood-grass coexistence (in the presence of random fires).

5. Mean ergodic Markov processes. Following [35, 36, 37], we summarize
briefly necessary concepts to study the long time behavior of Markov processes. Let
X be a locally compact separable metric space, and let B denote the Borel subsets
of X. A function T: X x B — [0,1] is called a (substochastic) kernel on X if for
B € B the function T'(-, B) is measurable and T'(z,-) is a measure on B (satisfying
T(x,X) <1 for each z € X). The kernel is called nontrivial if T(z,X) > 0 for all
x € X and stochastic if T(z,X) =1 for all z. A substochastic kernel T" defines a linear
operator on the space of finite signed measures M(X) on B. For € M(X) we define
a new signed measure p1" by

W2(B) = [ (e, B)u(do)
X
If K and T are two kernels their product KT is defined as
KT (z,B) :/ T(y,B)K(z,dy), z€X,BebB.
X

A kernel T is called a continuous component of a kernel K on X if it satisfies K (z, B) >
T(z,B) for all x € X, B € B and the function T(-, B) is lower semicontinuous, i.e.,

liminf7T'(y,B) >T(z,B), ze€X.

Yy—x
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Let ® = {®(t) : t > 0} be a continuous-time Markov process with state space X,
and let P, denote the law of the process ® with initial condition ®(0) = z, z € X.
We assume that @ is strong Markov and has right-continuous sample paths with left
limits. For each ¢ > 0 the transition probability of the process is

P'(z,B)=P,(®(t)e B), zcX,BebB,

and if the process is nonexplosive, then P? is a stochastic kernel. Recall that the
process ® is nonexplosive if there is an increasing sequence of open precompact sets
O,, such that X ={]J,, O, and for each « € X we have

P, (nlgrolomf{t >0:9(t)20,) :oo) ~1.

An operator L is called the extended generator of the Markov process ® (see [15])
if its domain D(L) consists of those measurable V': X — R for which there exists a
measurable W: X — R such that the function ¢ — W(®(t)) is integrable P -a.s. for
each z € X with the process

to V(() - Vi) _/0 W (®(s)) ds

being a P,-local martingale, and we define LV = W. A function V: X — [0,00] is
said to be norm-like if the sets {x € X : V(z) <r} are precompact for all sufficiently
large > 0. It follows from [37, Theorem 2.1] that if there exists a norm-like function
V € D(L) and constants ¢,d > 0 such that

(5.1) LV(x)<cV(z)+d, zeX,

then the process ® is nonexplosive.
For any € M(X) we define the norm

[l = sup [W(B)],  pe M(X).
BeB

It is equivalent to the total variation norm since we have ||u| < [|ul|ryv < 2|/u||. The
process @ is called Cesdro-ergodic (or mean ergodic) if for each probability measure
i there exists a measure pll € M(X) such that

D R
(5.2) tlggoHt/O wP (-)ds—,uHH =0.

In that case we define

II(z,B) =6,1I(B), BeB,zcX,

where 6, is the Dirac delta. Recall that a probability measure 7 is called invariant
for the process ® if m = P! for all t. In particular, each limiting measure pII in (5.2)
is invariant for the process ®. Finally, the process ® is called a T-process if for some
probability measure a on Ry the kernel K, defined by

(5.3) Ko(z,B) = /0 " Pla, B)a(dt)

has a nontrivial continuous component.
We now impose a Foster—Lyapunov-type condition corresponding to condition
(CD2) in [37):
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(V) there exist a nonnegative norm-like V' € D(L), a measurable f: X — [1,00),
a compact set C, and positive constants ¢, d such that

(5.4) LV(x) < —cf(x)+dle(z), zeX.

THEOREM 5.1. Suppose that condition (V) holds and that the process ® is a
T-process. Then ® is mean ergodic, and we have

<tlggo /f )ds/fdﬁ>1

for any bounded Borel measurable f and for a random measure I satisfying II(z,B) =
E,II(B), BeB, z € X.

The proof of Theorem 5.1 is given in section 6. We have the following direct
consequence of Theorem 5.1.

COROLLARY 5.2. Suppose that condition (V) holds and that the process ® is a
T-process with a unique invariant probability measure w. Then

lim sup
t—o00 BeB

(33& / F(®(s))ds = / fdw):

for all x € X and all bounded Borel measurable f.

! /t Pz, B)ds — W(B)’ —0

and

Our next result, along with Theorem 5.1, implies Theorem 4.1 and shows that
savanna models from sections 2 and 3 are mean ergodic.

THEOREM 5.3. Under assumptions (1)—(iv) the Markov processes from sections 2
and 3 satisfy condition (V) and are T-processes.

Proof. We start by showing how condition (V) can be checked for our PDMP
models. Let M(X) be the set of all measurable real-valued functions on X. We define
as in [15]

Mr(X)={VeMX):V(z)= 13f{)1V(¢_t(x)) for x € T'}.
It can be shown as in the proof of [15, Theorem 26.14] and [28, Theorem 18] that the

domain D(L) of the extended generator £ contains those functions V' € Mp(X) that
satisfy the following:

1. the function t — V(¢:(x)) is absolutely continuous on [0,t.(z)) for z € X;
2. V satisfies the boundary condition

V(x) :/XV(y)P(JU,dy), rely

3. for each z € X and t < . (x)

// [V (y) = V(¢s(2)) |P(6s(2), dy) q(¢s(z))ds < co.
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The formula for the extended generator L is
£V () = LoV (2) + a(e) [ (V(3) = V() Pla.dy),
X
where

o V(qﬁt(x)) —V(z)

For V € D(L) that is a smooth function of variables £ and ¢ we have

LV(E,C.i) = LoVI(E.Ci) + XI(E,0) L (V(S(€).C.1) — V(E.C.0))pih (€, (d6),

where

LoV (£,¢,1) Zbl £>ff< >+—C(§ .G,i), €€X;,¢€[0,¢,),i=0,1,

and the boundary condition is of the form

V(¢ 1) =V(6,0,1—1i), £€X;,i=0,1.
For d=2 and £ = (w, g) we take

o~ (= w) 6/, €,

waw q

V1(’U},g,<',i) =

while for d =4 and £ = (w, g,hg,hp) we consider

1 1
VZ(w7gahG7hB7Cai) = ‘/l(wa.%CaZ) + o +1n(1 + hG) + hi +1n(1 + hB)
B

ha
It is easily seen that both functions are in the domain of the corresponding extended
generator. Note that for V=17 and V =V, we have

VSHE: ) - V(E6) = o [ =gy — 1|+ o [~ ]

+ ln(l —w)—1In(1—(1—6,)w).

Thus condition (V) holds, since LV (&,(,i) — —oo when ¢ tends to the boundary of
X; or ¢ — (¢, by assumptions (i) and (iii).

Now we prove that the process ® = {®(¢):¢ >0} as in (4.7) is a T-process. Since
its probability transition function is given by

P'(z,B)=P,(®(t) € B) ZIP t) € B, Ty <t <Tni1)

= ZP(QZ)t*T"(\Pn) € BaTn <t< TnJrl)
n=0

for x € X, B € B, it is enough to show that for each zy € X there exist a constant
€z, > 0, an open set U, containing xy, and an open set V, such that

(5.5) / Pt(x,B)e*tdtZcmolyzo(x)m(BﬂVmo), BeB,xeX,
0
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where m is the product of the (d+ 1)-dimensional Lebesgue measure and the counting
measure on {0,1}. The kernel Ty, (z, B) = cz,1u,, (z)m(B N Vy,) is a continuous
component nontrivial at z¢ for K, with a being the exponential distribution on R .
By taking a sequence of points (z) such that X =], U, we can define the kernel
T=332,27"T,, and conclude that T is a continuous component nontrivial at every
xz € X. It implies that ® is a T-process.

We have for any n

(5.6) / P'(x,B)e tdt > / Po(¢r—r, (V) € B, Tp <t < Tpyr1)e” 'dt.
0 0
We will show that we can pick an n such that the measure in the right-hand side
of (5.6) has a lower bound as in (5.5). To this end we apply [6, Lemma 6.3] to the
(d 4+ 1)-dimensional component of X.
Assume first that d = 2, and take n =2 in (5.6). It follows from (4.7) and (4.8)
that

Gt—7,(V2) = Ot (03 40)(P2), Vo= S(¢o, (1),92), W1 =S5(¢s,(2),01),

where ¥}, is random variables with distribution v(¢y, (¥r—1),-), k=1,2, while S and
v are as in (4.4) and (4.5). Let o be an exponentially distributed random variable
independent of all other random variables. Then the right-hand side of (5.6) is equal
to

(57) P, (qﬁU,(ghLUZ)(‘I/Q) €B,oy+o02<0<0;+09+ 0’3).

Let 20 = (&o,Co,10) with & € (0,1) x (0,1], ¢o € [0,¢%), and ig € {0,1}. We take
two fire occurrences in a single season and the third jump to be the exit time from
the given season. We define i =i, & = Sj (&), and & = Sj_(&1), where 6; € (0,1)?
and 6 € (0,1)* are such that pj (£,¢0) > 0 and pj, (&1,¢0) > 0. We can always
choose such 6; and 62 by (2.7). Recall that the functions p* are continuous and
that the jump rate function g, given by q(z) = X(£,(), is also continuous. This,
together with (4.6) and (4.5), implies that there is a neighborhood of zy such that
the distribution of the random variable (o1,02,0) has an absolutely continuous part
with respect to the 3-dimensional Lebesgue measure and with density being bounded
below by a positive constant in a neighborhood of (0,0,0). Let us introduce on
Ay ={(t1,t2) : t1,t2 > 0,t; + t2 <t} the following mapping:

lie.0)(6) =P (1, 445) © S, © Pty ©Sh, 00, (§) for t=(t1,t2) € Ay,

where t >0, 8 = (61,62) € (0,1)* x (0,1)%, £ = (w,g) € (0,1) x (0,1]. To estimate (5.7)
from below it is enough by [6, Lemma 6.3] to show that the mapping

(t,t)—~ (th,g,Q)(t)7 (+1)

has the derivative of full rank 3 for small ¢ in a neighborhood of (&, (o).
Observe that

(5.8) Mol
’ £—&0,t—0 dt ’

where A is the matrix with columns vy, vy given by

v1 = DSj (£1)DS) (£0)b' (&) — b'(&2), va=DSj (£)b' (1) — b (&),
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D denotes the derivative with respect to &, and b* is as in (2.3). Now we show that
the vectors v; and vy are linearly independent. The transformation Sg is linear; thus
DSy = Sj. Let Sy = Sj, Sy = Sj,, and to simplify calculations, let S;(w,g) =
(ajw, B;9), where (1 —a;,1— ;) =0; by (2.8). Then we have

B 4 azaq(agay — 1)ri w? ' az(ag — 1)adri w?
~ \Bebirigl(azar — Dw+ (B2 — 1)g]  Bafarig[(ee —arw + (B2 —1)Big] )
We see that det A =0 if and only if

04117042 170&10&2

Bil1—B2 1-pifa

(5.9)

We conclude that

for £ close to &, sufficiently small ¢, and suitably chosen 6.

Now for the case of d = 4 we take n = 5 (two fire occurrences in each season
and a switch between the seasons) in (5.6). Let A; = {(¢t1,12,t3,t4) : t1,1t2,t3,t4 >
0,t1+t2+t3+t4<t} and

i 1 =i 1—i  ql—i _ 1-i
Vite.c.0)(t) =0, (1 ruarer —0) 06, ©Pry 0S5, O Py,
© ‘Plg‘nfgf(tler) © 552 o 90;2 © Sél © ‘let] €3]

for t = (tl,t27t3,t4) € Ay, t>0,0 = (91,02,03794) with each 0]' € (0,1)2, and
¢ = (w,9,hg,hg) € (0,1) x (0,1] x (0,00)2. We take arbitrary xo = (&, (o,%0) With
€0 €(0,1) x (0,1] x (0,00)%, (o €[0,¢%), and ig € {0,1}. We define i = iy,

G1=0u ¢ (C0)s Ea=55(&1), &="54,(%), &=55"(&), & =55 (%),

where 61,0,05,04 € (0,1)% are such that péj(fj@fn — (o) > 0 for j = 1,2 and
pg);i(fj,O) > 0 for j = 3,4. Similarly as for d = 2 by [6, Lemma 6.3] it is enough
to show that the mapping

(1) = (Vlreco (1)t — (G =)

has the derivative of full rank 5 for a short time of staying in the season 1 —1i, i.e., as
t1 ¢t — (o, and in a neighborhood of (&g, (p). It is easily seen that

(5.10) i Meeco®
£—£0,C—Co, dt ’

t,t1 =, —Co,t2—0

where now A is the matrix with columns vy, vs,v3,v4 given by

v1 = DS (€)DSj;  (€)(DS}, (£2)DSp, (€0)b'(€1) — V' (&3)),
va = DS} (64) DS} (€) (DS, (62)1 (€2) — b (&),

vy = D5 (€) DS, (€a)b' (&) — b (&),

va = DS (E)b' () — b (&)
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By using the formula for b(§) given by the right-hand side of (3.1) with £ = (w, g, hg, hp)
and by taking S(£) = (aw, 8g,he,hg) for the corresponding S§ as in (2.8), we obtain

ala—1)r,w?

(5.11) S(b(€)) - b(S(€)) = 5”99[(?‘1*_16)%;2@*1)9} for £ = (w, g, h, h).

(1—a)eyhpw

Let us take S; = Séj for j=1,2 and §; = 591;1‘ for j =3,4 so that S;(w,g,ha,hp) =
(ajw, Bjg, ha, hp) with (1—ay,1— ;) =6;. Applying (5.11) with r,, =7}, and r, =}
and appropriate «, 8, the vector v; with & = (w,g,hg,hp) is of the form

agazagag (agay — 1)ré w?

BaBsBafirig|(azar — Dw + (B281 — 1)g]
(1 - 52ﬁ1)eghGg
(1= asar)eyhpw

Similarly, we obtain

agazanad(ag — 1)ri w?

54,6’352517“39[(0@ - Doqw+ (B2 — 1)519]
(1 - 52)BleghGg
(1—a2)arey,hpw

Next observe that

agaz(agaz — 1)a3alrl-iw?

BaBafofrry g [(uas — Dagarw + (Bafs — 1)B2519]

vs (1 — BaPBs)B2Preghay
(1 — agaz)asaey,hpw
and
4014(&4 - 1)a§a§a%r}v_iw2
- BaBsBafiry g [(as — 1)agazanw + (s — 1) B3 P21 9]

(1 —B4)B3P2Breghcy

(1= aq)azasare,hpw
Using Gaussian elimination it is easily seen that the first two coordinates of v; and
vg can be made zero and hence det A =0 if and only if (5.9) holds or
Q3 1—0&4 o 1—0&30&4
Bs1—=Ps 1—P36s

Consequently, we can find 6; = (1 —«;,1—5;), j =1,2,3,4, such that both (5.9) and
(5.12) do not hold implying that

(5.12)

dify (t)

(t,£,¢,0)

det —a #0

for ¢ close to 0 — (o and (£,¢) in a neighborhood of (&, (). O

6. Proof of Theorem 5.1. The resolvent kernel R: X x B — [0,1] is defined as

R(x,B)z/ e 'P'(x, B)dt.
0
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The kernel R is the transition probability for the discrete-time Markov chain ® that is
defined by observing the process ® at jump-times of a Poisson process with intensity
1 that is independent of the process ®. We call this chain the R-chain. We say that
the R-chain is a T-chain if there is a probability distribution b = (by) on Z4 and a
nontrivial continuous component for the kernel

Ry(z,B)=> b,R"(z,B).
n=0

Following [35] and [36] we say that a trajectory converges to infinity if it visits
each compact set only finitely many times, and we write {® — oo} for the R-chain
and {® — oo} for the process .

LEMMA 6.1. If the R-chain disa T-chain, then ® is a T-process and
(6.1) Po{® — o0} =P, {® -0}, z€X.

IfP.{® — o0} <1 for all z € X and ® is a T-process, then the R-chain is a T-chain.

Proof. Since the nth jump of the Poisson process has the Erlang distribution, we
have

tn_l

(n—1)!

R”(z,B):/ et P'(x, B)dt.
0

If we consider the probability measure
a(dt) = ngzo bne ) dt

on R, where b= (b,,) is a probability measure on Z, then the kernel K, has the same
continuous component as Rp. The equality in (6.1) follows from [36, Proposition 3.2].
The converse statement is [36, Theorem 4.1(iii)]. 0

The R-chain is called a mean ergodic chain on X if for each probability measure
i€ M(X) there exists a measure pull € M(X) such that

n—1
. 1 k
(6.2) nh_}rgo - ;—0 wR® — ullj| =0.

Observe that the measure 7 = ull in condition (6.2) is invariant for the R-chain, i.e.,
mR =m. It is known (see [2]) that a measure 7 is invariant for the process ® if and
only if it is invariant for the R-chain. We now show that the convergence in (6.2) is
equivalent to the one in (5.2).

LEMMA 6.2. The process ® is mean ergodic if and only if the R-chain is mean
ergodic on X. Moreover, for any bounded Borel measurable f we have

t—oo t 0

lim 1 tf(q)(s))ds: ILm %if((fk)
k=1

if any of the pointwise limits exist.
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Proof. For any probability measure 1 on B we define the resolvent operator of P?
by

,uUa(B):/ e"*uP"(B)dt, a>0,BeB.
0

We have pU; = 4R and

(6.3) uUa(B):i(l—a)k_luRk(B), BeB.
k=1

First observe that the Ceséro convergence in (6.2) implies the Abel convergence

a—0t

lim aZ(l — )" uRF = uIl,
k=1

(see, e.g., [33, Theorem 2.1]) and leads to

(6.4) |apUs — pllf| =0.

lim
a—0t
Condition (6.4) implies (6.2) by [17, Theorem 3.1] and (5.2) by [17, Theorem 3.3]. Fi-
nally, the implication leading from (5.2) to (6.4) follows by using standard arguments.
The second part follows from [9, Theorem 5.1.1]. 0

We need to introduce more notation. The following notions will be presented only
for the continuous-time process ®, but analogous definitions are valid for the discrete-
time R-chain ® = {®;}. We refer to [38] for the general theory of discrete-time
Markov chains.

Given a measurable set B we define the first hitting time of the set B and the
number of visits to B, respectively, by

tp=inf{t>0:®(t) € B} and nB:/Ool{‘I)(t)GB}dt.

A set B is called (stochastically) closed for the process if B # () and P, {®(t) €
B forallt >0} =1 for x € B. A closed set B is said to be mazimal if v € B <=
P,{np =00} =1. A set H is called a Harris set for the process ® if it is closed and
if there exists some o-finite measure ¢ such that P,{np = oo} =1 for all x € H and
all B € B with ¢(B) > 0. A set H is called a mazimal Harris set if it is a Harris
set and a maximal closed set. The process restricted to a maximal Harris set H has
an essentially unique invariant measure on H. If the measure is finite, then it can
be normalized, and the process has a unique invariant probability measure on H. In
that case the set H is called a positive Harris set.

LEMMA 6.3. Suppose that condition (V) holds. Then P,{® — oo} =0 for all
x € X. If the process ® is a T-process, then the space X has the decomposition into
disjoint sets

N
X=|JHUE=HUE,
i=1
where each H; is a positive Harris set and Py{ng =00} =1 for all x € X. Moreover,
the R-chain is mean ergodic on X.
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Proof. The function V in condition (V) is norm-like and satisfies LV (z) < d1¢(z)
for all z € X. Thus condition (CD1) of [36] holds, and [36, Theorem 3.1] implies that
P,{® — oo} =0 for all z € X. The Doeblin decomposition [36, Theorem 4.1] and
[37, Theorem 4.6] show that the space X has the required decomposition. It follows
from [36, Theorem 2.1] that

P, {fn < oo} :Ex(l - exp(—nH)), reX,

where 75 = inf{k > 1 : &, € H} is the first hitting time of H by the R-chain.
Consequently, P, {Fy < oo} =1 for all z € X.

From [47, Theorem 2.1] extended in [11] to the case of Borel right process it
follows that a set is a maximal Harris set for the process ® if and only if it is a
maximal Harris set for the R-chain. Hence, the R-chain restricted to the set H; is a
positive Harris recurrent chain with the unique invariant probability measure ;. By
[25, Theorem 1.2] for each x € H; we have

n—1

1 — ke ) = s
nl;rr;nI;)R (x,) =m,

where the convergence is in the total variation norm on M(H;). Thus the R-chain is
mean ergodic on each set H;. The rest of the proof is similar to the proof of part (i)
of [35, Theorem 7.1]. O

Remark 6.4. It should be noted that the limiting measure pII in (6.2) is of the form

pII(B) = [ TG Bl

where the kernel II is given by [35, Theorem 7.1]

N
(6.5) H(z,B) =Y m(BNH;)P{g, <o}, z€X,BeB,

i=1
and m;, i =1,... N, are invariant probability measures. Moreover, as in the proof of
[35, Theorem 7.1] we obtain that for any bounded Borel measurable f

R S .
P, (nhﬁrgonkg f(@@—/fdﬂ) =1, zeX,
=1

where the random measure II is defined as

(B) = 1(%u, < oco)m (BN Hj;).

i=1

Theorem 5.1 is a direct consequence of Lemmas 6.2 and 6.3 together with
Remark 6.4.

7. Discussion. In the present paper we propose a novel approach to the study
of seasonal dynamics. It can be applied to stochastic models in population dynamics
that underlie periodic changes to its parameters. Especially we provide sufficient
conditions for the coexistence of competing species. As a model we introduce two
PDMPs describing behavior in each season as the system switches between them in
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given constant periods of time (season lengths). This may be generalized to more
seasons than two. Such description needs an additional time variable to keep track
of the duration of stay in the present season, leading to time-homogeneous Markov
processes. Therefore one cannot use the usual approach to study convergence of
distributions. We explore the time averages instead and provide sufficient conditions
for their convergence.

The common way to study the effects of seasonality on the dynamics of popula-
tions modeled with differential equations is to consider periodically forced parameters
[12, 13]. Such models are very difficult to treat analytically, although there exist gen-
eral tools for a study of nonautonomous differential equations with continuous and
periodic functions of time [18, 32]. A frequently used numerical approach is bifurca-
tion analysis, first used in this context in [34, 41], where, for simplicity, the forcing is
of the form

c(t) = co(1 + esin(2nt)),

with ¢p being any model parameter and ¢ denoting the forcing amplitude (see [46]
and the references therein).

Another attempt to model seasonal effects is related to the so-called (seasonal)
succession dynamics [30] or, formally similar, behavior shift [48], in which the model
equations change between seasons. A detailed analysis is possible in simple models
[27]. By changing growth parameters in (2.1) and (3.1) to piecewise-constant peri-
odic functions of time we get examples of this dynamics, with a particular behavior
illustrated as in Figure 2. This approach, in contrary to the situation in the previ-
ous paragraph, gives a discontinuous periodic forcing and can simplify the analysis.
Including seasonality might still not support the coexistence of species, as in the
case of model (2.1), since positive solutions of both systems converge to the same
equilibrium (1,0) representing woodland. Modeling fire impact on vegetation intro-
duces stochasticity into our systems and can have a positive effect on the survival
of all species. Especially, adding fire alone or together with herbivores prevents an
overgrowth of trees and allows existence of a mixed woodland-grassland ecosystem
reflecting savanna.

In general, savanna models incorporate fire disturbances into model equations in
a deterministic way [44, 55, 26]. To our knowledge there exists only a discrete-time
matrix model [1] that contains both seasonality and fire-vegetation feedback, but it
does not provide any analytical insight focusing mainly on simulations. We propose
the analytically tractable continuous-time models, although they are less convenient
to simulate and limited to discrete losses of the biomass, while it would be more
realistic to model impact of fire in a spatially explicit way.

We were not studying sufficient conditions for the uniqueness of invariant distri-
butions in our models and leave it to a future work. Once uniqueness is obtained then
the law of large numbers from Theorem 4.1 implies automatically stochastic persis-
tence [5, 7, 22, 19] of considered populations. It would be also interesting to study
extinction [7, 22, 39]. Our approach can be used to extend other stochastic models
like [22] by adding seasonal effects.

REFERENCES
[1] F. AccariNo AND C. DE MICHELE, Humid savanna-forest dynamics: A matriz model with

vegetation-fire interactions and seasonality, Ecol. Model., 265 (2013), pp. 170-179,
https://doi.org/10.1016/j.ecolmodel.2013.05.022.



[2 J.

[3] M.

[4] B.

[5] M.
[6] M.

[7] M.

(8] M.

[9] P.

[10] B.

[11] O.

[12] J.

[13] J.

[14] M.

[15] M.

[16] P.

[17] R.

(18] J.

(19]

20]

(22]
23]

24]

[25] O.

[26] A.

[27] S.-

A
A
[21] A.
A
A
A

A MODEL OF SEASONAL SAVANNA DYNAMICS 141

AzimA, M. KAPLAN-DUFLO, AND D. REVUZ, Mesure invariante sur les classes récurrentes
des processus de Markov, Z. Wahrscheinlichkeit., 8 (1967), pp. 157-181, https://doi.org/
10.1007/BF00531519.

BAUDENA, F. D’ANDREA, AND A. PROVENZALE, An idealized model for tree-grass coexistence
in savannas: The role of life stage structure and fire disturbances, J. Ecol., 98 (2010),
pp. 74-80, https://doi.org/10.1111/j.1365-2745.2009.01588.x.

BECKAGE, L. J. GROss, AND W. J. PLATT, Grass feedbacks on fire stabilize savannas, Ecol.
Model., 222 (2011), pp. 2227-2233, https://doi.org/10.1016/j.ecolmodel.2011.01.015.
BENAIM, Stochastic Persistence, preprint, arXiv:1806.08450, 2018.

BENAIM, S. LE BORGNE, F. MALRIEU, AND P.-A. ZITT, Qualitative properties of certain
piecewise deterministic Markov processes, Ann. Inst. Henri Poincaré Probab. Stat., 51
(2015), pp. 1040-1075, https://doi.org/10.1214/14-ATHP619.

BENAIM AND C. LOBRY, Lotka—Volterra with randomly fluctuating environments or “how
switching between beneficial environments can make survival harder”, Ann. Appl. Probab.,
26 (2016), pp. 3754-3785, https://doi.org/10.1214/16-AAP1192.

BENAIM AND E. STRICKLER, Random switching between vector fields having a common zero,
Ann. Appl. Probab., 29 (2019), pp. 326-375, https://doi.org/10.1214/18-AAP1418.

BREMAUD, R. KANNURPATTI, AND R. MAZUMDAR, Event and time averages: A review, Adv.
Appl. Probab., 24 (1992), pp. 377—411, https://doi.org/10.2307/1427697.

CLOEZ, R. DESSALLES, A. GENADOT, F. MALRIEU, A. MARGUET, AND R. YVINEC, Proba-
bilistic and piecewise deterministic models in biology, in Journées MAS 2016 de la SMAI—
Phénomeénes complexes et hétérogenes, ESAIM Proc. Surveys 60, EDP Sciences, Les Ulis,
France, 2017, pp. 225-245, https://doi.org/10.1051/proc/201760225.

L. V. Costa AND F. DUFOUR, Ergodic properties and ergodic decompositions of continuous-
time Markov processes, J. Appl. Probab., 43 (2006), pp. 767781, https://doi.org/10.1239/
jap/1158784945.

M. CUSHING, Periodic time-dependent predator-prey systems, SIAM J. Appl. Math., 32
(1977), pp. 82-95, https://doi.org/10.1137/0132006.

M. CUSHING, Two species competition in a periodic environment, J. Math. Biol., 10 (1980),
pp. 385-400, https://doi.org/10.1007/BF00276097.

H. A. Davis, Piecewise-deterministic Markov processes: A general class of nondiffusion
stochastic models, J. Roy. Statist. Soc. Ser. B, 46 (1984), pp. 353-388, https://doi.org/
10.1111/j.2517-6161.1984.tb01308.x.

H. A. Davis, Markov Models and Optimizations, Monogr. Statist. Appl. Probab. 49,
Chapman & Hall, London, 1993, https://doi.org/10.1201/9780203748039.

D’Oporico, F. Laio, AND L. RIDOLFI, A probabilistic analysis of fire-induced tree-grass coex-
istence in savannas, Am. Nat., 167 (2006), pp. E79-E87, https://doi.org/10.1086/500617.

EMILION, Mean-bounded operators and mean ergodic theorems, J. Funct. Anal., 61 (1985),
pp. 1-14, https://doi.org/10.1016,/0022-1236(85)90037-0.

GUCKENHEIMER AND P. HOLMES, Nonlinear Oscillations, Dynamical Systems, and Bifurca-
tions of Vector Fields, Appl. Math. Sci. 42, Springer, New York, 1990, https://doi.org/
10.1007/978-1-4612-1140-2.

. GUILLIN, A. PERSONNE, AND E. STRICKLER, Persistence in the Moran Model with Random

Switching, preprint, arXiv:1911.01108, 2019.

. HENING AND Y. L1, Stationary distributions of persistent ecological systems, J. Math. Biol.,

82 (2021), 64, https://doi.org/10.1007/s00285-021-01613-2.
HENING, D. NGUYEN, N. NGUYEN, AND H. WATTS, Random Switching in an Ecosystem with
Two Prey and One Predator, preprint, arXiv:2111.12750, 2021.

. HENING AND D. H. NGUYEN, Coezistence and extinction for stochastic Kolmogorov systems,

Ann. Appl. Probab., 28 (2018), pp. 1893-1942, https://doi.org/10.1214/17-AAP1347.

. HENING AND D. H. NGUYEN, The competitive exclusion principle in stochastic environments,

J. Math. Biol., 80 (2020), pp. 1323-1351, https://doi.org/10.1007/s00285-019-01464-y.

. HENING AND E. STRICKLER, On a predator-prey system with random switching that

never converges to its equilibrium, SIAM J. Math. Anal., 51 (2019), pp. 3625-3640,
https://doi.org/10.1137 /18 M1196042.

HERNANDEZ-LERMA AND J. B. LASSERRE, Further criteria for positive Harris recurrence
of Markov chains, Proc. Amer. Math. Soc., 129 (2001), pp. 1521-1524, https://doi.org/
10.1090/S0002-9939-00-05672-0.

HOYER-LEITZEL AND S. IAMS, Impulsive fire disturbance in a savanna model: Tree—grass co-
ezistence states, multiple stable system states, and resilience, Bull. Math. Biol., 83 (2021),
113, https://doi.org/10.1007/s11538-021-00944-x.

B. Hsu anND X.-Q. ZHAO, A Lotka—Volterra competition model with seasonal succession,
J. Math. Biol., 64 (2012), pp. 109-130, https://doi.org/10.1007/s00285-011-0408-6.



142

(28]
29]

(30]

(31]

32]

33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

42]

(43]

[44]

[45]

[46]

[47)

(48]

[49]

PAWEL KLIMASARA AND MARTA TYRAN-KAMINSKA

. JAacoD AND A. V. SKOROKHOD, Jumping Markov processes, Ann. Inst. Henri Poincaré

Probab. Stat., 32 (1996), pp. 11-67.

. A. KLAUSMEIER, Floquet theory: A wuseful tool for understanding nonequilibrium dynamics,

Theor. Ecol., 1 (2008), pp. 153-161, https://doi.org/10.1007/s12080-008-0016-2.

. A. KLAUSMEIER, Successional state dynamics: A novel approach to modeling nonequi-

librium foodweb dynamics, J. Theoret. Biol., 262 (2010), pp. 584-595, https://doi.org/
10.1016/j.jtbi.2009.10.018.

. KLIMASARA AND M. TYRAN-KAMINSKA, A model for random fire induced tree-grass co-

existence in savannas, Math. Appl. (Warsaw), 46 (2018), pp. 87-96, https://doi.org/
10.14708 /ma.v46i1.6382.

. E. KLOEDEN AND M. RASMUSSEN, Nonautonomous Dynamical Systems, Math. Surveys

Monogr. 176, American Mathematical Society, Providence, RI, 2011, https://doi.org/
10.1090/surv/176.

U. KRENGEL, FErgodic Theorems, De Gruyter Stud. Math. 6, De Gruyter, Berlin, 1985,

A.

S.

R.

R.

A.

A.

R.

P.

R.

F.

https://doi.org/10.1515/9783110844641.

. A. KuzNETSOV, S. MURATORI, AND S. RINALDI, Bifurcations and chaos in a periodic

predator-prey model, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2 (1992), pp. 117-128,
https://doi.org/10.1142/S0218127492000112.

. P. MEYN AND R. L. TWEEDIE, Stability of Markovian processes 1: Criteria for discrete-

time chains, Adv. Appl. Probab., 24 (1992), pp. 542-574, https://doi.org/10.2307/
1427479.

. P. MEYN AND R. L. TWEEDIE, Stability of Markovian processes 11: Continuous-time pro-

cesses and sampled chains, Adv. Appl. Probab., 25 (1993), pp. 487-517, https://doi.org/
10.2307/1427521.

. P. MEYN AND R. L. TWEEDIE, Stability of Markovian processes Ill: Foster—Lyapunov

criteria for continuous-time processes, Adv. Appl. Probab., 25 (1993), pp. 518-548,
https://doi.org/10.2307/1427522.

. P. MEYN AND R. L. TWEEDIE, Markov Chains and Stochastic Stability, 2nd ed., Cambridge

University Press, Cambridge, UK, 2009, https://doi.org/10.1017/CB09780511626630.

. H. NGUYEN AND E. STRICKLER, A method to deal with the critical case in stochastic

population dynamics, SIAM J. Appl. Math., 80 (2020), pp. 1567-1589, https://doi.org/
10.1137/20M131134X.

B. N'pri, T. D. Soro, J. GigNoUx, K. Dosso, M. Kong, J. K. N'Dr1, N. A. KONE, AND
S. BAROT, Season affects fire behavior in annually burned humid savanna of West Africa,
Fire Ecol., 14 (2018), 5, https://doi.org/10.1186/s42408-018-0005-9.

RINALDI, S. MURATORI, AND Y. KUzZNETSOV, Multiple attractors, catastrophes and chaos in
seasonally perturbed predator-prey communities, Bull. Math. Biol., 55 (1993), pp. 15-35,
https://doi.org/10.1007/BF02460293.

RUDNICKI AND M. TYRAN-KAMINSKA, Piecewise Deterministic Processes in Biological Mod-
els, SpringerBriefs Appl. Sci. Technol., Springer, Cham, 2017, https://doi.org/10.1007/
978-3-319-61295-9.

SCHOLES AND S. ARCHER, Tree-grass interactions in savannas, Ann. Rev. Ecol. Syst., 28
(1997), pp. 517-544, https://doi.org/10.1146 /annurev.ecolsys.28.1.517.

C. STAVER, S. ARCHIBALD, AND S. LEVIN, Tree cover in sub-Saharan Africa: Rainfall and
fire constrain forest and savanna as alternative stable states, Ecology, 92 (2011), pp. 1063—
1072, https://doi.org/10.1890/10-1684.1.

D. SynobpiNnos, B. TIETJEN, D. LOHMANN, AND F. JELTSCH, The impact of inter-annual
rainfall variability on African savannas changes with mean rainfall, J. Theoret. Biol., 437
(2018), pp. 92-100, https://doi.org/10.1016/j.jtbi.2017.10.019.

A. TAYLOR, J. A. SHERRATT, AND A. WHITE, Seasonal forcing and multi-year cycles in
interacting populations: Lessons from a predator-prey model, J. Math. Biol., 67 (2013),
pp. 1741-1764, https://doi.org/10.1007/s00285-012-0612-z.

TUOMINEN AND R. L. TWEEDIE, The recurrence structure of general Markov processes,
Proc. London Math. Soc. (3), 39 (1979), pp. 554-576, https://doi.org/10.1112/plms/
$3-39.3.554.

TysON AND F. LUTSCHER, Seasonally varying predation behavior and climate shifts are
predicted to affect predator-prey cycles, Am. Nat., 188 (2016), pp. 539-553, https://doi.org/
10.1086/688665.

VAN LANGEVELDE, C. A. D. M. VAN DE VUJVER, L. KuMAR, J. VAN DE KOPPEL,
N. DE RIDDER, J. VAN ANDEL, A. K. SKIDMORE, J. W. HEARNE, L. STROOSNIJDER,
W. J. BonD, H. H. T. PrINS, AND M. RIETKERK, Effects of fire and herbivory on the
stability of savanna ecosystems, Ecology, 84 (2003), pp. 337-350, https://doi.org/10.1890/
0012-9658(2003)084[0337:EOFAHO]2.0.CO;2.



A MODEL OF SEASONAL SAVANNA DYNAMICS 143

[50] F. VAN LANGEVELDE, C. A. D. M. VAN DE VIJVER, H. H. T. PriNs, AND T. A. GROEN, Effects
of grazing and browsing on tropical savanna vegetation, in The Ecology of Browsing and
Grazing II, I. J. Gordon and H. H. T. Prins, eds., Springer, Cham, 2019, pp. 237-257,
https://doi.org/10.1007/978-3-030-25865-8_10.

[51] P. A. WERNER, Growth of juvenile and sapling trees differs with both fire season and un-
derstorey type: Trade-offs and transitions out of the fire trap in an Australian savanna,
Austral Ecol., 37 (2012), pp. 644-657, https://doi.org/10.1111/j.1442-9993.2011.02333.x.

[52] E. R. WHITE AND A. HASTINGS, Seasonality in ecology: Progress and prospects in theory, Ecol.
Complex., 44 (2020), 100867, https://doi.org/10.1016/j.ecocom.2020.100867.

[53] R. J. WiLLiams, G. D. Cook, A. M. GIiLL, AND P. H. R. MOORE, Fire regime, fire intensity
and tree survival in a tropical savanna in northern Australia, Austral Ecol., 24 (1999),
pp. 50-59, https://doi.org/10.1046/j.1442-9993.1999.00946.x.

[54] 1. V. YaTaT DJEUMEN, Y. DuMONT, A. Doizy, AND P. COUTERON, A minimalistic model
of wvegetation physiognomies in the savanna biome, Ecol. Model., 440 (2021), 109381,
https://doi.org/10.1016/j.ecolmodel.2020.109381.

[55] 1. V. YATAT DJEUMEN, A. TCHUINTE TAMEN, Y. DUMONT, AND P. COUTERON, A tribute to the
use of minimalistic spatially-implicit models of savanna vegetation dynamics to address
broad spatial scales in spite of scarce data, Biomath, 7 (2018), 1812167, https://doi.org/
10.11145/j.biomath.2018.12.167.



1A%

Randomly switching evolution

equations

83



Nonlinear Analysis: Hybrid Systems 39 (2021) 100948

Contents lists available at ScienceDirect

Nenlinear Analysis
Hybrid
Systems

Nonlinear Analysis: Hybrid Systems

journal homepage: www.elsevier.com/locate/nahs

Randomly switching evolution equations™ g

Check for
updates

Pawet Klimasara ?, Michael C. Mackey ”*, Andrzej Tomski ¢,
Marta Tyran-Kaminska

2 Chair of Cognitive Science and Mathematical Modelling, University of Information Technology and Management in
Rzeszow, Sucharskiego 2, 35-225 Rzeszéw, Poland

b Departments of Physiology, Physics & Mathematics and Centre for Applied Mathematics in Biology and Medicine, McGill
University, 3655 Promenade Sir William Osler, Montreal, QC, Canada, H3G 1Y6

€ Institute of Mathematics, University of Silesia in Katowice, Bankowa 14, 40-007 Katowice, Poland

ARTICLE INFO ABSTRACT

Article history: We present an investigation of stochastic evolution in which a family of evolution
Received 19 July 2019 equations in L' are driven by continuous-time Markov processes. These are examples of
Received in revised form 29 May 2020 so-called piecewise deterministic Markov processes (PDMP’s) on the space of integrable
25‘;?12;612 ﬁ [ﬁ;geuzgzli)jo £ 2020 functions. We derive equations for the first moment and correlations (of any order) of

gus such processes. We also introduce the mean of the process at large time and describe its

MSC: behaviour. The results are illustrated by some simple, yet generic, biological examples
35R60 characterized by different one-parameter types of bifurcations.

60J60 © 2020 Elsevier Ltd. All rights reserved.
60K37

92C40

Keywords:

Stochastic Liouville equation

Stochastic semigroup

Piecewise deterministic Markov processes
Bifurcations

1. Introduction

The theory of piecewise deterministic Markov processes (PDMP’s) has generated considerable interest in the scientific
community over the past three decades, having been first introduced in [ 1]. From the point of view of modelling in natural
sciences the class of PDMP’s is a very broad family of stochastic models covering most of the applications, omitting mainly
diffusion related phenomena. A recent monograph [2] surveys the applicability of PDMP’s to problems in the biological
sciences.

Briefly, a PDMP is a continuous-time Markov process with values in some metric space. The process evolves deter-
ministically between the so-called jump times that form an increasing sequence of random times. Usually deterministic
evolution is described by ordinary differential equations (ODE’s) inducing dynamical systems (or flows). However, in a
PDMP at the jump times one considers a different type of behaviour such that there is an actual jump to a different point
in the phase space or a change of the dynamics. The latter are referred to as randomly switching dynamical systems or
switching ODE’s.
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The class of PDMP’s is widely used in many areas of science, especially in biology [2,3], and these include the
applications of randomly switching dynamical systems. A prototype of PDMP’s is the telegraph process first studied by
Goldstein [4] and Kac [5] in connection with the telegraph equation where a particle moves on a real line with constant
velocity alternating between two opposite values according to a Poisson process. An extension of such a process is a
velocity jump process where an individual moves in a space with constant velocity and at the jump times a new velocity
is chosen randomly [6,7]. Another example is a multi-state gene network where the gene switches between its active and
inactive state at the jump times [8-10].

Existing models usually describe the underlying phenomena for some population from the point of view of a single
individual. In physics this is often known as a particle perspective [11]. That means that the dynamics of every single
individual is driven by separate stochastic laws depending on a variety of factors, e.g. its mass or energy. However, there
are alternative situations in which the entire population is affected by randomly switching environmental conditions,
e.g. particles driven by a common environmental noise [11] or the response of a metabolic or gene regulatory system to
an environmental stimulus [12]. This is known as a population perspective [11], and is the approach that we use in this
paper since we consider one common source of randomness which affects all individuals in a population.

Here we treat the evolution of the density of a population distribution in the situation where every individual has its
own deterministic dynamics but the whole population is affected by some continuous-time Markov process with finite
state space that changes the current state of all individuals. In this approach, a state is represented by a population
density — an element of an infinite dimensional space. It is particularly difficult to study the evolution of such densities
and thus we investigate their moments and correlations of all orders. These infinite dimensional processes are dual to
the class of PDMP’s known as random evolutions introduced earlier by Griego and Hersh [13], motivated by the work of
Goldstein [4] and Kac [5], see [14]. (For an amusing and non-technical account of this history see [15] and [16].) They are
particular examples of models governed by so-called switching Partial Differential Equations (PDEs) that recently have
a growing interest in the literature [17-21]. Most of these papers focus on applications in biological sciences. From the
mathematical point of view they are based on diffusion processes and PDEs of parabolic type.

In [17,22] the authors provide the moment and correlation equations in the case of diffusion processes. The current
study is a generalization of their work by giving moment and correlation equations for a broader class of processes.
The main result of our paper is that the mean of a process described by randomly switching PDEs can be viewed as
an appropriate stochastic semigroup (see Theorem 5.1 and Corollary 5.3). This has further important consequences,
especially that the mean of random density in the population perspective can be seen as identical to a density from
the individual perspective (see Section 6). We study the mean of the process at large time for a variety of examples that
are biological applications. It allows us to investigate the asymptotic behaviour for the mean of the process in the cases
of fold, transcritical, pitchfork, and Hopf bifurcations. We also provide numerical simulations for the mean of the process
which were prepared by using FiPy [23].

This paper is organized as follows. In Section 2 we provide some basic material from the theory of stochastic semigroups
on L. Section 3 briefly reviews randomly switching dynamical systems in Euclidean state spaces. In Section 4 we introduce
randomly switching semigroups with the state space being the set of densities leading to a stochastic evolution equation
in an L' space. We study the first moment of its solutions in Section 5 where we stress the correspondence between
this moment equation and the Fokker-Planck type equations from Section 4. Section 5 contains the main results of this
paper, namely Theorem 5.1 and Corollary 5.3. The behaviour of the mean at large time is considered in Section 6, where
we also give examples of applications of our results to situations in which the underlying dynamics display a variety
of bifurcations. In Section 7 we study second order correlations of solutions of the stochastic evolution equation. We
conclude in Section 8 with a brief summary. The appendix contains relevant concepts from the theory of tensor products
that are used in Section 7.

2. Preliminaries

In this section we collect some preliminary material. We begin with the notion of stochastic (Markov) semigroups and
provide examples of such semigroups.
Let a triple (E, £, m) be a o-finite measure space and let L' = L'(E, £, m). We define the set of densities D C L' by
D={fel':f=0,lfll=1).

A stochastic (Markov) operator is any linear mapping P: L' — L' such that P(D) C D [24]. A family of linear operators
{P(t)}s=0 on L! is called a stochastic semigroup if each operator P(t) is stochastic and {P(t)}¢=o is a Co-semigroup, i.e. the
following conditions hold:

1. P(0) = Id,
2. P(t +5s)=P(t)P(s) forall t,s > 0,
3. for every f the function t — P(t)f is continuous.

The infinitesimal generator of {P(t)};>o is, by definition, the operator A with domain D(A) C L! defined as

DA) = {f eL': lim 1(P(t)f — f) exists},
ti0 t
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1
Af = ltlfgl L (P(Of = f). | €DA).

We will use stochastic semigroups to represent solutions of evolution equations. One of the simplest examples of
such equations is the deterministic Liouville equation which has a simple interpretation [25]. Consider the movement of
particles in the phase space RY, d > 1, described by a differential equation:

X'(t) = b(x(t)), (2.1)
where b(x) is a d-dimensional vector. Then the Liouville equation describes the evolution of the density of the distribution
of particles, i.e. if x(t) has a density u(t, x), then u is the solution of the following equation:

ou(t, x)

ot

Let, for any xo € R?, Eq. (2.1) with initial condition x(0) = x have a solution for all t, which we denote by 7 (t, xo), and let
the mapping xo > 7(t, Xo) be non-singular with respect to the Lebesgue measure Leb on RY, i.e. Leb({x € R? : 7(t, x) €
B}) = 0 for all Borel sets B with Leb(B) = 0. If f: RY — [0, +00) is the density of the R%-valued random vector &, then
the density of 7 (t, &) is given by

= —div(b(x)u(t, x)). (2.2)

d
P(t)f (x) = f(m(—t, X))dEt[aﬂ(—t» X)].

The family of operators {P(t)};>o forms a stochastic semigroup on the space LY(RY) and u(t, x) = P(t)f(x) is the solution
of (2.2) with initial condition u(0, x) = f(x).

3. Randomly switching dynamics

In this section we recall a classical setting of PDMP based models seen from the perspective of individual units and
taking place in a finite dimensional space. This well-known situation will be contrasted in the following sections with
a population perspective approach, thus moving the analysis to infinite dimensional space. See [11, Figure 1] for a nice
pictorial distinction between the individual and populational perspectives.

Consider sufficiently smooth vector fields b;,i € I = {0, 1, ..., k}, k € N, defined on an open subset G of R%. Let E C G
be a Borel set with non-empty interior and with boundary of Lebesgue measure zero. We assume that for each i and
X € E the equation

X(t) = bi(x(1)), (3.1)

with initial condition x(0) = xq, has a solution m;(t, xo) for all ¢ > 0 in the set E. The mapping (t, xg) — m;i(t, Xo) is
continuous. We assume that each i(t, -) is non-singular with respect to the Lebesgue measure on E. Now let f:E —
[0, +00) be a density of an E-valued random vector &,. Then the density of m;(t, &) is given by

d
PO (%) = 1p(mi( =t X))f (i =t X)) det[ (L. X)]. (3.2)

For every i € I the family of operators {Pi(t)};~o forms a stochastic semigroup on L!(E) called a Frobenius-Perron
semigroup [24, Section 7.4].

A randomly switching dynamics is a Markov process &(t) = (x(t), i(t)) on the state space E x I such that the dynamics
of x(t) is given by the solution of the equation

X'(t) = biy (x(1)), (3.3)

and i(t) is a continuous-time Markov chain with values in I and intensity matrix [q;]. If the system initially is at time &,
at the state (xo, i) then x(t) changes in time according to Eq. (3.1) as long as i(t) = i and &(t) = (mwi(t — to, Xo), i). If i(t)
changes its value to some j with intensity gy, i.e. the probability of switching from i to j after time At is g;At + o( At),
j € 1,j # i, then we choose the vector field b; and we start afresh. Let t; be the moment of switching from i to j and
X1 = mi(ty — to, Xo). Then we have &(t) = (mj(t — t1, X1), j) until the next change of the state of the process {i(t)};>o. This
construction repeats indefinitely. We set

qi = qu‘]’ and g3 =—q;, i€l (3.4)
J#
Note that if k = 1, then we have g0 = —q11 = q1 and ¢g1 = —qoo = qo.
For each i € I, let {P;(t)};>0 be the stochastic semigroup as in (3.2) and let (A;, D(A;)) be its generator. If f = (f;)ie is
a column vector consisting of functions f; such that f; € D(A;), we set Af = (Aif;)ieg Which is also a column vector. We
denote the matrix [g;] by Q and its transpose [g;;] by Q. Then the operator A + QT is the infinitesimal generator of a
stochastic semigroup {P(t)};~o on the space L'(E x I) = L'(E x I, B(E x I), u). Here B(E x I) is the o-algebra of Borel
subsets of E x I and u is the product of the d-dimensional Lebesgue measure and the counting measure on I.
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Thus if we define u(t) = P(t)f, then u satisfies the evolution equation

w'(t) = Au(t) + QTu(t),

{U(O) =f. (3.5)
Now using the notation f = (fi)ier and u(t) = (u(t));e;, we can rewrite (3.5) as

ui(t) = Ai(t) + Y., qiu(t),

{ui(o) _f el (36)

Moreover, the process £(t) = (x(t), i(t)) induces the stochastic semigroup {P(t)};>o (see [2, Section 4.2]), i.e. if f is the
density of £(0) then P(t)f is the density of &£(t) and

P(x(t) € B,i(t) =1) = / P(t)fdu = /u,-(t,x) dx, iel.
i B

Bx{i}

4. Randomly switching densities

In this section we look at the role of stochasticity in explaining biological phenomena from the point of view of
the whole population in an environment affected by some random disturbances. We illustrate this approach using two
examples, namely a population model with two different birth rates [26], and a model of inducible gene expression with
positive feedback on gene transcription [27].

Example 4.1 (Population Model with Two Different Birth Rates). Consider a population of size x > 0, a death rate x and
birth rate 8 — cx with 8 changing in time between two possible values 8y and ; in response to some environmental
disturbance. The growth of the population is assumed to be determined by the differential equation (3.1) with

bo(x) = (Bo — cx)x — ux and bq(x) = (B1 — cx)x — ux. (4.1)

For each value of i, Eq. (3.1) induces a stochastic semigroup {P;(t)};>o given by Eq. (3.2). If the population initially grows

with birth rate related to a value i € {0, 1} and has a distribution density g, then after time t > 0 the population

distribution density is given by P;(t)g. We consider the switching between the semigroups {Py(t)};>0 and {Pi(t)}r>0

according to a Markov chain i(t) € {0, 1} and obtain a stochastic Liouville equation (as introduced by Bressloff in [11]):
au(t, x) 3 (bin(x)u(t, x))

- _ , 42
at 0x (4.2)

where u(t, x) = P;(t)g(x) for i(t) = i is the population density. This is an infinite dimensional version of Eq. (3.3).

Example 4.2 (One Dimensional Inducible Goodwin Model with Positive Feedback on Gene Transcription). We consider the
inducible operon model [27] which describes the expression of genes driven by positive feedback control of gene
transcription. This provides an effective mechanism by which a protein can maintain the expression of its own gene
as well as switch between two levels of expression (un-induced and induced). We look at a cluster of identical copies
of a selected gene, e.g. the cluster of multiple copies of the same gene in the case of bacteria, where one of these genes
is 16S ribosomal RNA — the component of prokaryotic ribosome [28]. We denote the concentration level at time t by
x(t) > 0 and assume the degradation rate is changing with constant intensities between two values y, and y; driven by
environmental noise.
For a given i € {0, 1} the concentration level is assumed to evolve according to the nonlinear differential equation:

x"(t
X(t)= X
1+ x™(t)
where n is a natural number. This equation induces a semigroup {P;(t)};>o as in formula (3.2). If the gene cluster initially
has a degradation rate y; and a distribution density g then after time t > 0 the population distribution density is given

by P;(t)g. By taking b;(x) equal to the right-hand side of Eq. (4.3) we obtain the stochastic Liouville equation (4.2) as in
the previous example.

— yix(t), (4.3)

We next consider the general case of a population of individuals living in an environment with random disturbances.
This situation with a population of particles affected by a common environmental noise was considered from a statistical
physics viewpoint by Bressloff in [ 11]. The dynamics of a population is described by Eq. (3.1) with a state space being some
Borel subset of RY and i taking values from a given finite set I. The environmental disturbances correspond to switching
between different values of i. Thus the total population density u(t, x) is described by the equation:

ou(t, x)
ot

where i(t) is a Markov chain on a discrete state space I. We supplement equation (4.4) with an initial condition u(0, x) =
g(x). Note that Eq. (4.4) is a more general case of the stochastic Liouville equation (4.2). Randomly switching environments

= —div(bi)(x)u(t, x)), (4.4)
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have also been analysed in the case of diffusion processes [22]. In such situations the stochastic Liouville equation is
replaced by an appropriate parabolic equation. We may generalize all these cases by looking at a general scheme for
randomly switching stochastic semigroups.

Let LY(E) = LY(E, B(E), m), where (E, p) is a separable metric space and m is a o -finite measure, and letI = {0, 1, ..., k},
k € N. For every i € I, consider a linear operator (A;, D(A;)) which is the generator of a stochastic semigroup {P;(t)};>0 on
L'(E). We assume that the stochastic process {i(t)};>o is a continuous time Markov chain with state space I and constant
intensities gy, i, j € I. We consider the following stochastic evolution equation:

u'(t) = Ajnyu(t), 45
{u(O) =g. 4>

Eq. (4.5) generates a well-defined PDMP [2, p. 32]
X(t) = (u(t),i(t)), t=0, (4.6)

with values in the space L'(E) x I.
Now we derive the solution u(t) of (4.5). Let t; = 0 and for each n € N let t, be the nth jump time of the Markov
process i(t) so that

P(tgyq — bty > tli(ty) = i) =e %, n>0.

Let P; be the probability measure defined on sample paths w of the process {i(t)};>o with i(0) = j. Denote integration
with respect to the measure P; by E;, set U(ty) = U(0) = Id and define

U(t) = Pyg,y(t — ty) o U(ty) fort € [ty, thyq),n =0,
where

U(ty) = Pye, )(tn — ta—1) 0 ... 0 Pyg)(ta — t1) o Pyoy(t1).
Further, let

N(t)=max{n >0:t, <t} (4.7)
be the number of jumps of the process {i(t)}:>¢ up to time t. Using N(t) we can write

U(t) = Pieye(t — tne))U (), €= 0. (4.8)

Then u(t) = U(t)g for g € L'(E) is the solution of (4.5). Note that U(t) depends on w. For each t > 0, g € L!(E), and o, if
t € [ty(w), thr1(w)) for some n = n(w) then for i = i(t,(w)) we have
U(t, w)g = Pi(t — ty())U(ta(®))g,

and U(t, w) is a composition of a finite number of stochastic operators. Thus
jute. el = [ 10te, oleiman < [ leimtan = lel
E E

and U(t)g can be regarded as a random variable with values in L'(E). It is, in fact, a Bochner integrable L!(E)-valued
random variable, by [29, Theorem 3.7.4]. Furthermore, for each j € I, E;(U(t)g) is represented by the a.e. finite function
E;(u(t, x)) where u(t, x) = U(t)g(x), i.e. for any h € L*°(E, B(E), m)

/EJ(U(t)g)(x)h(x)m(dx) = ij(u(t,x))h(x)m(dx).

E E

In the next sections we derive equations for the moments of u(t, x) and compare them to the evolution equation (3.5)
from Section 3.

5. First moment equations

We continue with the general setting from Section 4 and study the first moment of the solution u(t) of (4.5). Recall
that u(t, x) = U(t)g(x), where U(t) is given by (4.8). Using a simple decomposition, the first moment of u(t, x) can be
written as

V(t,X) = E(u(t, x) = Y _Bu(t,x)) =Y Y E(lo=yu(t.x)), x€E.t >0,
Jjel jel el
where E denotes the expectation and 1r is the indicator function of an event F. If we take

Vi(t, x) = ZEj(l{i(t)ﬁ}U(t,X)), (5.1)

jel
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then
V(t,x) = Z Vi(t,x), xeE,t>0. (5.2)

iel

We will show that:

d :
o Vi= A +;qﬁvj, iel (5.3)

It will turn out that (V;);c; can be represented as a stochastic semigroup.

Let LY(E x I) = LY(E x I, B(E x I), i), where p is the product of the measure m on E and the counting measure on I.
We denote elements of the space L'(E x I) by f = (fi)ig € L'(E x I), where f; € LY(E), i € I, and define the family of
operators {P(t)};>o on the space L'(E x I) by

(P(t) )i = ZEj(hi(t):i}U(t)ﬁ), iel. (54)
jel
We impose the following conditions:

(I) There exist a Banach space B, a set of Borel measurable functions # C B, and a family C of Borel subsets of E
that is closed under intersections and generates the Borel o-algebra B(E) such that for each set F € C there is a
nonincreasing sequence of function h,, € H satisfying

lim h,(x) = 1(x), x €E. (5.5)
n—oo
(I1) Let {P,(t)};=0 be a stochastic semigroup on L'(E) with generator (A;, D(A;)), i € I. For each i € I there is a
Co-semigroup {Ti(t)};>o on B such that
(P(t)g, h) = (g, Ti(t)h), g eL'(E).,heB,t>0. (5.6)
Here, the scalar product of two functions g, h with their domain E is defined by (g, h) := fE g(x)h(x)m(dx).
Now we state and prove one of the main results of this paper.
Theorem 5.1. Assume conditions (1) and (I1). Then the family of operators {P(t)}:>o defined in (5.4) is a stochastic semigroup

on L'(E x I). Moreover, the infinitesimal generator of the semigroup {P(t)}¢=o is the operator A+ QT where Af = (Aif)ic; and
QTf = (ZJ jSfj)iel fOTf = (fi)iel Withfi € D(Ai)- iel

Proof. Given B and {Ti(t)}¢>0, i € I, as in conditions (I) and (II), we define the random evolution family {M(t), t > 0} of
operators on the space B by [13]

M(t) = Tio)(t1)Tiey)(t2 — t1) - - - Tiey ) (E — tnee)),

where N(t) is as in (4.7). Consider the product space B x B x - - - x B = B¥t1, where k+ 1 denotes the number of elements
of the set I, and for any h := (h;)ic; € B¥t', i € I define

(T(O)h); = Ei(M(t)hi)). (5.7)

Griego and Hersh [13] showed that the family {T(t)};>o forms a strongly continuous semigroup of bounded linear operators
on B!, The integral in (5.7) with respect to P; is understood in the sense of Bochner. Observe that M(t) depends on w
and that w — M(t, w)hjyw) is Pj-Bochner integrable for each j € I (see [13, Lemma 2]). By Hille’s lemma for the Bochner
integral [29, Theorem 3.7.12] in B we obtain

(E{(M(Dhiry), 8) = Ei({(M(t)hiry, 8)), jel, g eL'(E), heB", (5.8)

where the integral on the right-hand side of (5.8) is in the sense of Lebesgue.
For f € L'(E x I) and h € B¥t!, set

60 = 6 = Y [ e om.
jel jel E
We first show that
(T(t)h, f) = (h, P(t)f). (5.9)
It follows from (5.8) that

(T(Oh. f) =Y (EM(Ohio). ) = > B(M(Dhie). fi)).

Jjel jel
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Using (5.6) it is easily seen that
(M(t)hir), fi) = (hiey, UE)f;), ¢ >0.

Hence
£ = E((hi, UK)) = D Ei({hi, L=y UDR)).

jel jiiel
Using Hille’s lemma for Bochner integrals in L'(E), we see that

(T(OR.f) =Y (i, Y B(i=pU))) = (b, P(E)F),

iel jel
as claimed.
Now, we check the semigroup property P(t +s)f = P(t)oP(s)f for t,s > 0, f € L'(E x I). Since {T(t)}¢=o is a semigroup,

it follows from (5.9) that

(T(t) o T(s)h, f) = (T(t + s)h, f) = (h, P(t + s)f)

forany t,s > 0 and f € L'(E x I), h € B“*1. This together with (5.9) gives
(h, P(t + s)f) = (T(s)h, P(t)f) = (h, P(s) o P(t)f),

implying that for each i € I and h € # we have
/ h(P(t + s)f )idm = / h(P(s) o P(t)f )idm. (5.10)
E E

Since for each i the semigroup {Pi(t)};=o is stochastic, we see that each operator P(t) is stochastic on L'(E x I). Thus
decomposing an arbitrary f into its positive and negative parts, we can assume that f € L'(E x I) is nonnegative. Since
(5.10) holds for each h,, the Lebesgue convergence theorem implies that (5.10) holds for 1¢, showing that

/(P(t + s)f Jidm = /(P(t) o P(s)f )idm (5.11)
F

F

for all sets F € C. The family C is a w-system, i.e., F; N F, € C for F;, F, € C, and equality (5.11) holds for all F € ¢ U {E}.
Hence we conclude that (5.11) holds for all Borel subsets of E. Consequently, (P(t+s)f); = (P(t)oP(s)f); forall t,s > 0 and
i € I. Since almost all sample paths of the stochastic switching process i(t) are right-continuous functions, we conclude
that {P(t)};>o is a Cp-semigroup, completing the proof that {P(t)};>¢ is a stochastic semigroup.

Finally, it was shown in [13] that the generator £ of the semigroup {T(t)};>¢ is given by

(ch); = cihi + Z q,-jhj
Jjel

for h = (h)ier € B! with h; € D(£;), i € I, where (£;, D(£;)) is the generator of the semigroup {Ti(t)};=o on B, i € I.
Observe that

(f, h) = Z(fi’ Lih; + ZQijhj) = Z(fi, Lihi) + Z Z(fi, qijhj)
iel jel iel iel jel
for f = (fi)ie; with f; € D(4;), i € I. Since we have
(fi, £ihi) = (Afi, i), i€l
by assumption (II), we conclude that
(f, chy = (A hi) + > O aifi, ) = (A+ Q") h),
iel jel el

implying the form of the generator of the semigroup {P(t)};>o. O
We next show that Theorem 5.1 can be applied to semigroups of Frobenius-Perron operators given by (3.2).

Corollary 5.2. Let E be a Borel subset of R? and for each i € I let {Pi(t)};=o be given by (3.2). Then conditions (1) and (II)
hold, and Theorem 5.1 does also.

Proof. Let B be the space C(E) of continuous functions on E if E is compact or the space Cy(E) of continuous functions on
E which vanish at infinity, otherwise. Recall that the o -algebra of Borel subsets of E is generated by the family of compact
sets. For each compact set F the function h,, defined by

hn(x) = max{1 — np(x, F), 0},
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where p(x, F) denotes the distance of the point x from the set F, is globally Lipschitz. Since h, belongs to B and satisfies
(5.5), we conclude that condition (I) holds. We define T;(t): B — B by Tj(t)h(x) = h(i(t,x)), t > 0, x € E, h € B. Note that
Ti(t) is a Cp-semigroup on B, see [30, Section B-II] and condition (5.6) holds, see [24, Section 7.4]. O

Using Theorem 5.1 we obtain the following, which is the second main result of this paper:

Corollary 5.3. Assume conditions (1) and (11). Let {P(t)};=o be given by (5.4) and u(t) by (4.5). For each g € L'(E) and | € I
such that u(0) = g and i(0) = I we have V(t, x) = (P(t)f )i(x), where V; is as in (5.1) and f = (f;)jer is of the form

_Jg. i=1L
hi= {o, i#l
In particular, the mean of the process in (4.6) is given by
V(t, X) = B(u(t, X)) = Y (P(E) §(X). (5.12)

iel
6. Mean of the process at large time

We consider the relationship between Fokker-Planck type systems (3.5) for a distribution of processes in RY space, and
the first moment equation (5.3). The latter has the same form as (3.6) and P(t)f is the solution of the evolution equation

(3.5) with initial condition f. Hence, if (uo, u1, Uy, ..., uy) is a solution of (3.6) and for each i € I there exists f* € LY(F)
such that
lim /|u,-(t,x) —fi*(x)| m(dx) = 0, (6.1)
t—o00 E

then, by Corollary 5.3, we have
tim [ 6.0 = 70| ) = 0
and, by Eq. (5.2),
lim [ |V(t,x) — V*(x)| m(dx) =0 (6.2)

t—o00 E

where V*(x) = ) ., f*(x). The function V* is called the mean of the process at large time. In particular, condition (6.1) holds
if the semigroup {P(t)};>o is asymptotically stable, i.e. there exists f* € L'(E x I) such that for each density f € L'(E x I)

Jim [[P(6)f —f*] = 0 (6.3)

Note that f* in (6.3) is an invariant density for {P(t)};>o, i.e. P(t)f* = f* for all t > 0.
On the other hand, if the semigroup {P(t)};>o is sweeping from compact subsets of E x I, i.e. for each compact subset F
of E,any f € L'(E x I) and i € I we have

lim [ (P(t)f )i(x)m(dx) = 0,
t—o0 F
then the mean of the process in (4.6) at large time is equal to zero, since for any compact subset F of E we have
lim | V(t,x)m(dx)=0. (6.4)
t—o0 F

We now provide sufficient conditions for asymptotic behaviour of the stochastic semigroup {P(t)};>o induced by the
randomly switching dynamics £(t) = (x(t), i(t)) with x(t) satisfying (3.3) as described in Section 3 with E € RY. We follow
the work of [31,32] and [2,26].

Recall that the Lie bracket of two sufficiently smooth vector fields b; and b; is defined by

[bi, bjl(x) = Dbj(x)bi(x) — Dbi(x)bj(x)

where Db(x) is the derivative of the vector field b at point x. Given vector fields by, ..., b, sufficiently smooth in a
neighbourhood of x we say that Héirmander’s condition holds at x if the vectors

bi(x) — bo(x), ..., bi(x) — bo(x), [bi, bjl(x)o<ij<k. [bi, [bj, bill(X)o<ij i<k - - -
span the space R. This condition is called the hypo-ellipticity condition A in [31] and the strong bracket condition in [32].
From [31, Theorem 2] (see also [32, Theorem 4.4]) and [2, Corollary 5.3] we obtain the following

Corollary 6.1. Suppose that Hormander’s condition holds at every x € E. If the semigroup {P(t)}:>0 has no invariant density,
then it is sweeping from compact subsets of E x I.
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A point x € E is called reachable from y if we can find n € N, indices iy, ...,i, € I and times sq, ..., s, such that
X = m;,(Sn, ..., i, (s1,¥)), where for each i the function t +— m(t, Xo) is the solution of (3.1) with initial condition
x(0) = Xo. Finally, a point x is called accessible from y if each neighbourhood of x contains a point reachable from y.
Now, combining [31, Theorem 1] with [32, Theorem 4.6] we have

Corollary 6.2. Suppose that the semigroup {P(t)};>o has an invariant density. If Hormander's condition holds at a point x € E
that is accessible from any point in E then the semigroup {P(t)}:>o is asymptotically stable.

We illustrate the behaviour of the mean of the process at large time for some simple examples exhibiting bifurcations
in their trajectory dynamics [33]. Note that in [34] direct bifurcations of the heat equation with randomly switching
boundary conditions were studied. We will use the results from [35] and [26], and we start by recalling some notions
from them.

We consider E C (0, o0) and I = {0, 1} so that we have a switching between by and b, leading to a Markov process
&(t) = (x(t),i(t)), t = 0 on the state space E x {0, 1}. By q; = gj1—i), i = 0, 1, (see (3.4)) we denote constant positive
intensities of switching from b; to b;_;. Additionally we assume that by(0) = b1(0) = 0 and that either by or b; has one
more stationary point a that is accessible from any point in E. Hérmander’s condition holds at x if b(x) — bg(x) # 0. Let

do a1 X
r(x) = + and R(x) =/ r(s)ds,
bo(x) = b1(x) %o
where Xy € (0, a). Then the functions given by
efR(x) efR(x)
folx) = d filx)=
" Ibo()] RN NES]

are stationary solutions of the corresponding Fokker-Planck equation (3.6). Now if

a
K = / (folx) + fi(x))dx < o0, (6.5)
0
then the semigroup {P(t)}:>¢ is asymptotically stable and the mean at large time is given by

V(%) = 7 (folx) + Fix) 0.0 (). (6.6)

If by(0)b)(0) # 0 then condition (6.5) holds for A > 0 where this parameter depends on the form of the functions bo, by
and is defined by

A = poby(0) + p1b(0) (6.7)
with
Do = q1 and p; = qo
qo + q1 qo + q1

representing the probability of choosing the function by and by, respectively. In the opposite situation with A < 0 this
semigroup is sweeping from the family of all compact subsets of the state space implying that the mean at large time is
zero. The parameter A turns out to be the mean growth rate if the population is small [26].

Example 6.1 (Transcritical Bifurcation). Transcritical bifurcations appear in many biological models, c.f [36-39], and we
thus re-consider Example 4.1. The functions by and b; are given by (4.1) with 8y < u and 81 > w. Thus, (3.1) withi =0
has the form X’ = (8y — cx)x — ux and there are two stationary points, 0 and ag = (89 — i)/c, where the first one is stable
and the second is unstable. However, for i = 1 the quantitative character of the stationary points of X' = (8; — cx)x — ux
is exchanged. That is, O is an unstable stationary point while a; = (8; — u)/c is stable. Hence, we have a transcritical
bifurcation. We take a = a;. Again, we look at the value of the parameter A in (6.7). For A < 0 the mean of the process
at large time is 0, while for A > 0 the mean is positive and given by the corresponding V* with f;, i = 0, 1 given, up to a
multiplicative constant, by

fix)

1 _(qio ’L) 4o a1
= ———X “0 (X —ap) (a; — X)“ (g q;)(X). (6.8)
x|x — aj
We illustrate the behaviour of the mean V(t, x) as in (5.12) for chosen times and parameters in Figs. 1 and 2(a). Fig. 1
shows convergence of V to the mean at large time V* for A > 0 while Fig. 2(a) presents sweeping to 0 for A < 0.

Example 6.2 (Fold Bifurcation). We next go back to the inducible operon model of Example 4.2. Consider the following
nonlinear differential equation

o= KO

= T~ MO (6.9)
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Fig. 1. Numerical simulations of the mean V(t, x) (solid line) in Example 6.1. The initial density is shown in (a). The dashed line represents the
graph of the mean in large time V*(x). Consecutive times are t = 0.25 (b), t = 0.5 (c), t = 0.7 (d), t = 1 (e), and t = 2.5 (f). The values of
parameters used in this example are: o =5,¢q1 =3, fo=1, 1 =4, c=2, u=2.
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Fig. 2. Numerical simulations of V(t, x) when the mean at large time is 0: (a) Example 6.1 with parameters: go =2, q; =6, fo =1, 1 =4, c =2,
=2, (b) Example 4.2 with parameters: qo = 6, q; = 2, Y0 = 2, 1 = 0.25, (c) Example 6.3 with parameters: qo = 4, q; = 2, a9 = —0.5, &1 = 1.

where x(t) > 0 denotes the concentration level of protein molecules at time ¢, v is a degradation rate and n > 1. It is
known (see [27]) that if the parameters satisfy the condition

n"y" > (n—1)""1, (6.10)
then 0 is the only stationary point of Eq. (6.9) and it is stable. In the opposite case to (6.10), there are also two additional
stationary points of this equation; one of them is stable and the other one is unstable. Hence, we choose the values of
the parameters y and y; in such way that a fold bifurcation occurs. Thus we take y, such that n*y > (n — 1)" ! and y,
such that n"y;' < (n — 1)"~1. By using the same type of argument as in the proof of [35, Theorem 4.2] together with the
properties of the dynamics x(t), we see that x(t) reaches a neighbourhood of 0 in finite time and hence we deduce that
the semigroup {P(t)};>o is sweeping from the family of all compact subsets of (0, +o00) x {0, 1}. Consequently, the mean
at large time is equal to zero. This behaviour is illustrated in Fig. 2(b).



P. Klimasara, M.C. Mackey, A. Tomski et al. / Nonlinear Analysis: Hybrid Systems 39 (2021) 100948 11

2 2F 2
/—_\ - EN /—_‘\
’ ~ ’ ~ . ~
’ ~ , ~ , N
1.5 ’ \ 115 ’ S 115 ’ S
4 ~ 4 ~ 4 ~
4 4 4
’ ’ ’
L ’ L v | ’
1 7 1 / 1 /
’ ’ 4
’ ’
’
0.5 4 1 057 4 1 051 4
/ / /
/ / 4
4 4 7/
’/ 4 4
0 | 0 L L 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X X
(a) (b) (c)
2 2F 2
/—_\\
2 ~
N
N
<115
/4 ~
4
’
4 L
f 1
’
’
’
’ 1051
/
/
4
4
\ . 0
0.2 0.4 0.6 0.8 1 0
X X X
(d) (e) (f)

Fig. 3. In this figure we provide simulations of the mean V(t, x) (solid line) in Example 6.3 for parameters qo = 4, q; = 2, g = —0.5, oy = 1 at
times t =0 (a), t =0.25 (b), t = 0.7 (c), t =2.5 (d), t =5 (e), and t = 10 (f). The dashed line graph represents the mean at large time V*(x).

Example 6.3 (Pitchfork Bifurcation). The normal form for a supercritical pitchfork bifurcation is
X(t) = ax(t) — x°(¢). (6.11)

For o < O there is a single stationary point x, = 0 while for « > 0 there is an unstable stationary point at 0 and two
stationary points x. = +./a that are locally stable. Now let g < 0 and a; > 0 be two fixed parameters. We consider
equation (6.11) with & = «;. Thus we have bg(x) = aox — x> and by(x) = a1x — Xx°.

First we take E = (0, oo) and a = ,/o. Then for positive A from (6.7) we have a positive mean at large time with f;
given by

fix)

while for A < 0 the mean of the process at large time is equal to 0. The situation with E = (—o0, 0) is analogous to
stationary solutions of the corresponding Fokker-Planck equation given by fi(—x), x < 0 where this function is as in
(6.12). The behaviour of the mean V(t, x) in this example is shown in Figs. 3 and 2(c). The convergence of V to the mean
at large time V* for A > 0 is illustrated in Fig. 3 while sweeping to 0 for A < 0 is presented in Fig. 2(c).

1 9 _ 91 90

a1
— @ o 2 20 2\2aq i
= — X “ 1(x° — o 0 (o X 11 a(X), 1€ 0’1’ 6.12
X — X2 ( 0)*0 (en ) Y () 0.1 ( )

Our last example treats the normal form of a supercritical Hopf bifurcation, see also [35].

Example 6.4 (Hopf Bifurcation). Another commonly reported class of models in biology is one which exhibits a Hopf
bifurcation. The normal form for a supercritical Hopf bifurcation, after changing to polar coordinates (6, r), is

0'(t) = w + br(t),
r'(t) = pr(t) — r3(t).

For 1 < O there is a single steady state (6., r,) = (0, 0) while for « > 0 there is an unstable steady state at (0, 0) and a
co-existing limit cycle with r = ,/u. In analogy to the previous cases, we take w = w; and u = p;, i =0, 1, in (6.13) with
o < 0and g > 0.Let E = S! x (0, 0o), where S! is the unit circle in R%. To simplify the analysis we assume that b = 0.
If wy # w1 then the Hérmander condition holds at every point (¢, r) € E. Note that the point (0, /1) is accessible from
any point in E. The asymptotic behaviour of the mean given by (5.12) again depends on the sign of the parameter A in
(6.7) with bj(0) = u;, i = 0, 1. If A is positive then the mean at large time is equal to

(6.13)

1
Vi,r) = E( o(r) + f1(r)) 11 (6).

where f; has the form as in (6.12) with o; = w;. On the other hand for A < 0 the mean of the process at large time is zero.
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If w = wg = wy then the angular variable 6 is independent of the radial variable r and it satisfies the same equation
6'(t) = w for each i. Thus, the process (6(t), r(t), i(t)) can be decomposed into two independent processes: 6(t) that is
deterministic and (r(t), i(t)) that behaves as the process in Example 6.3.

The asymptotic behaviour of the process in (4.6) is now different when A > 0. If we take the initial g in (4.6) as the
product of two marginal densities g(6, r) = g1(0)g,(r) then the mean V satisfies

lim | |V(t,0,1)— —g1(<9 wt)(fo(r) + f1(r))|dédr = 0,

t—00 E

where fy and f; are as above.
7. Second and higher order correlations

In this section we continue the study of the stochastic process (4.6) by looking at equations for correlations. These
are extensions of the moment equations considered in Section 5. We provide the full analysis only for second order
correlations, but higher order cases are straightforward and can be easily obtained by similar considerations. We use some
notation from the theory of tensor products, and for a brief summary of standard definitions used here see Appendix.

We start with the definition of second order correlations:

G(t, x,y) = E(Ajji—pyu(t, x)u(t,y)), x,y€E, iel, t>0. (7.1)
We will show that the following equation holds:

0 .

.G = (A ®14)Ci + (Id ®A)G; + > g6, el (7.2)

jel

where A; ® Id and Id ®A; are defined on functions (x, y) — f(x, y) with f € L'(E?) as tensor products of operators A; and
Id. Especially, if A;f (x) = — div(b;(x)f (x)) then we have

(A @ Id)f (x, y) = — div(bi(x)f (x, ¥)), (7.3)
(Id ®Af (x,y) = — div(bi(y)f (x, y)). (7.4)

We consider equation (7.2) in the space L'(E? x I) = L'(E? x I, B(E? x I), u?), where u? is the product of two copies
of the measure m on E and the counting measure on I. We define the family of operators on L'(E? x I) by

)i =Y By UO) @ UL, i€l (7.5)
jel
for f = (f)jer € L'(E? x I), fj € L'(E?), j € I, and where U(t) is as in (4.8).

Theorem 7.1. Assume conditions (1) and (11). Then the family of operators {S(t)}:>o defined in (7.5) is a stochastic semigroup
on L'(E? x I). The infinitesimal generator of this semigroup is the operator A+ Q, where

Alfdier = (A @ Id)fi + (I @A), and Q'(fier = (Y _ gifiier (7.6)

jel
with f; € D(A;) ® D(A;),i € L

Proof. Observe that

U(t) @ U(t) = (Piey)(t — tnie)) ® Piteye(t — tney)) o (Ultnen) @ Ultny)), ¢ = 0.

Let i € I. Since {P,(t)}¢=o is a stochastic semigroup on L'(E), we see that P;(t) ® Pi(t) is a stochastic semigroup on L'(E?),
see Corollary A.2. Taking the injective tensor product space B®B (see Appendix for the notation), we see that Tj(t) ® Ti(t)
is a Cp-semigroup on B®B satisfying

(Pi(t) ® Pi(t)(fi ® 2), h1 ® ha) = (f1 ® fo, Ti(t) ® Ti(t)(h1 ® h2)), (7.7)
where fi ® f» € LN(E)® L'(E), h ® h, € B® B, t > 0. Thus we have
((Pi(t) ® Pi(t))f, h) = (f, (Ti(t) ® Ti(t)h), t >0, (7.8)

forall f € L'(E)® LY(E) and h € B® B. Since L'(E) ® L'(E) is dense in L'(E?) and B ® B is dense in B®B, we conclude that
(7.8) holds for all f € L'(E?) and h € BRB.

The o-algebra B(E?) is generated by the w-system of sets C x C = {F; x F, : F1, F, € ¢}. Given the set F = F; x F,
we consider the sequence h,(X1, X2) = hq 5(x1)h2 1(X2), where hy , and h, , are sequences approximating the functions 1,
and 1g,. Since h, converges to 1z, we see that condition (I) holds. Consequently, Theorem 5.1 implies that {S(t)};>o is a
stochastic semigroup on L'(E? x I). It follows from Proposition A.1 that for each i € I the generator of the semigroup
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P;(t) ® Pi(t) is the closure of the operator A; ® Id 4+ 1d ®A; defined on the core D(A;) ® D(A;). Thus the closure of the
operator A defined in (7.6) is the generator of the stochastic semigroup (P;(t) ® Pi(t));c;. Hence, Theorem 5.1 implies that
the generator of the semigroup {S(t)}>o is the operator A+ Q'. O

Using Theorem 7.1 we obtain the following:

Corollary 7.2. Assume conditions (1) and (I1). Let S(t) be given by (7.5) and u by (4.5). For each g € L'(E?) and | € I such
that u(0) = g and i(0) = [ we have G(t, x,y) = (S(t)f )i(x, y), where C; is as in (7.1) and f = (f;)jes is of the form

- _J&. i=1,

Remark 7.3. If for each i € I the semigroup {Pi(t)};>o is as in (3.2) then the operator A + QT from Theorem 7.1 is also
the generator of a stochastic semigroup induced by the stochastic process (x(t), y(t), i(t)), where (x(t), y(t)) satisfies the
system of equations:

{X’(t) = bin(x(t)),
y'(t) = bin(y(t)).

8. Conclusion

In this paper we introduced the concept of randomly switching stochastic semigroups. We investigated a stochastic
evolution equation in L! space. Such a regime could explain the source of stochasticity when observing the evolution
of some population driven by a common environmental stimulus. Next, we studied the first moment of the stochastic
evolution equation solutions and found the correspondence between this moment equation and a deterministic system
of Fokker-Planck type equations for the distributions of the process in Euclidean state space. We concluded that the mean
of the process at large time can be expressed by the stationary solutions of a Fokker-Planck type system providing that
they exist. Similarly, we connected the mean of the process at large time with sweeping property. We gave then some
examples of the application of our results to biological models in which the underlying dynamics display a variety of
bifurcations and provided numerical simulations for them. Finally, we studied second order correlations of solutions of
the stochastic evolution equation and we provided a rigorous way to extend our considerations to correlations of higher
order. Thus, this paper extends and justifies analytically the numerical results of Bressloff [11].

The next step would be to show convergence in distribution of the infinite dimensional process (u(t),i(t)) to a
stationary distribution. In particular examples connected with diffusion processes such convergence is known, see [18,40].
However, the results of [18,40] are not applicable to our stochastic semigroups {P;(t)};=o on L! spaces because we have
preservation of the norm while in these papers strict contraction on average was required. We hope to find in the future
yet another approach that could be used for stochastic semigroups.

One possible future extension of this work is connected with addition of switching to stochastic PDEs driven by
Gaussian noise or, more generally, by Lévy noise, see [41]. Another one could be related to randomly occurring phenomena
in more complex systems like networks subjected to Markovian switching topology appearing in filtering problems as
in [42] and [43]. More careful recognition of these relations require further research.
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Appendix. Tensor products

We recall some standard notation from the theory of tensor products [44]. Let A; and X, be two Banach spaces of
functions, i.e., either &; is an L' space or it is a subspace of the space of all bounded measurable functions defined on a
given set and equipped with the supremum norm. For f; € &7 and f, € X, we identify the function (x1, x2) — f1(x1)f2(x2)
with the tensor f; ® f,. We define the tensor product space X; ® A5 as the set of all linear combinations of such tensors.
The completion of the linear space x; ® &, when equipped with the projective norm

n n
Ihlle = inf> " Ifellligell < fi € X80 € A2 h =Y fi® i)

k=1 k=1

is called the projective tensor product of the spaces X; and X, and will be denoted by X;®X5.
It is known [44, Chapter 2] that L'(Eq, &, m1)®LY(E,, &, my) is isometrically isomorphic with L'(E; x E,, & X &, mq X
my). If instead we consider X; ® &> with the injective norm
[hlle = sup{l(y1 ® ¥2)(h)| : yi € &7, Iyl < 1},

where X is the dual of X; and

(n @ya)h) =Y nldrnlg) forh=7) fi@g,
k=1

k=1

then the completion of X; ® &5 is called the injective tensor product and it will be denoted by X;®2X5. In particular, if C(E;)
is the space of continuous functions on a compact space E; then C(E;)®C(E,) is the space C(E; x E;), by [44, Section 3.2].
Note that if ); is a closed linear subspace of the Banach space &; then Y;®X5 and X;®)% are closed linear subspaces of
X1RX,.

Given two linear and bounded operators S;: X; — X; the linear mapping S1 ® S»: X1 ® X, — X; ® &, defined by

(51 ®@ S)(fi ®f2) = S1(f1) ® S2(f2)

has a continuous extension to tensor product spaces. We will use the following result from [30, Section A-1.3, Proposition]:

Proposition A.1.  Let {Si(t)}r>0 and {Si(t)}>0 be Co-semigroups on some Banach spaces X;, X, and let the operators
(A1, D(A1)), (A2, D(Ay)) be their generators. Then the family

{$1(£) ® Sa(t)} >0 (A1)
is a Co-semigroup on both projective and injective tensor products of X and X,. The closure of
A; ® 1d + 1d ®A,, (A2)

defined on the core D(A1) ® D(A,), is its generator.

Corollary A.2. If {Si(t)}=0 and {Sy(t)};>0 are stochastic semigroups on the spaces L'(Ey, &, my) and L'(E,, &, my),
respectively, then {S(t) ® Sy(t)}e=o is a stochastic semigroup on L'(Ey x Ey, £ X &, My x my).

Proof. For f; € L'(E;, &, m;) we have

/ (S1(6) ® Sy(E)(s ® fo)d(my x my) = /
EqxEy

Ey

S1(t)f1dmy / Sy(t)fdmy.

Ey

This implies that the operator S;(t) ® S,(t) preserves the integral. It is easy to see that S1(t) ® S,(t) is a positive operator,
completing the proof. O

References

[1] M.H.A. Davis, Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models, J. R. Stat. Soc. Ser. B Stat. Methodol.
46 (3) (1984) 353-388.

[2] R. Rudnicki, M. Tyran-Kaminska, Piecewise deterministic processes in biological models, in: SpringerBriefs in Applied Sciences and Technology,
Springer, Cham, 2017, SpringerBriefs in Mathematical Methods.

[3] P.C. Bressloff, Stochastic switching in biology: From genotype to phenotype, ]. Phys. A 50 (13) (2017) 133001.

[4] S. Goldstein, On diffusion by discontinuous movements, and on the telegraph equation, Quart. J. Mech. Appl. Math. 4 (1951) 129-156.

[5] M. Kac, A stochastic model related to the telegrapher’s equation, Rocky Mountain ]. Math. 4 (1974) 497-509.

[6] T. Hillen, K.P. Hadeler, Hyperbolic systems and transport equations in mathematical biology, in: Analysis and Numerics for Conservation Laws,
Springer, Berlin, 2005, pp. 257-279.

[7] D.W. Stroock, Some stochastic processes which arise from a model of the motion of a bacterium, Z. Wahrscheinlichkeitstheor. Verwandte Geb.
28 (1974) 303-315.



P. Klimasara, M.C. Mackey, A. Tomski et al. / Nonlinear Analysis: Hybrid Systems 39 (2021) 100948 15

[8] A. Bobrowski, T. Lipniacki, K. Pichér, R. Rudnicki, Asymptotic behavior of distributions of mRNA and protein levels in a model of stochastic
gene expression, ]. Math. Anal. Appl. 333 (2) (2007) 753-769.
[9] A. Tomski, The dynamics of enzyme inhibition controlled by piece-wise deterministic Markov process, in: Semigroups of Operators - Theory

and Applications, in: Springer Proceedings in Mathematics & Statistics, vol. 113, Springer, New York, 2015, pp. 299-316.

[10] S. Zeiser, U. Franz, V. Liebscher, Autocatalytic genetic networks modeled by piecewise-deterministic Markov processes, J. Math. Biol. 60 (2)
(2010) 207-246.

[11] P.C. Bressloff, Stochastic Liouville equation for particles driven by dichotomous environmental noise, Phys. Rev. E 95 (1) (2017) 012124.

[12] A. Belle, A. Tanay, L. Bitincka, R. Shamir, E.K. O'Shea, Quantification of protein half-lives in the budding yeast proteome, Proc. Natl. Acad. Sci.
USA 103 (35) (2006) 13004-130009.

[13] R. Griego, R. Hersh, Theory of random evolutions with applications to partial differential equations, Trans. Amer. Math. Soc. 156 (1971) 405-418.

[14] M.A. Pinsky, Lectures on RandOm Evolution, World Scientific Publishing Co., Inc., River Edge, NJ, 1991.

[15] R. Hersh, RJ. Griego, Brownian motion and potential theory, Sci. Am. 220 (3) (1969) 66-77.

[16] R. Hersh, The birth of random evolutions, Math. Intelligencer 25 (1) (2003) 53-60.

[17] P.C. Bressloff, S.D. Lawley, Moment equations for a piecewise deterministic PDE, ]. Phys. A 48 (10) (2015) 105001, 25.

[18] S.D. Lawley, J.C. Mattingly, M.C. Reed, Stochastic switching in infinite dimensions with applications to random parabolic PDE, SIAM ]. Math.
Anal. 47 (4) (2015) 3035-3063.

[19] S.D. Lawley, J.A. Best, M.C. Reed, Neurotransmitter concentrations in the presence of neural switching in one dimension, Discrete Contin. Dyn.
Syst. Ser. B 21 (7) (2016) 2255-2273.

[20] A.M. Berezhkovskii, S.Y. Shvartsman, Diffusive flux in a model of stochastically gated oxygen transport in insect respiration, J. Chem. Phys. 144
(20) (2016) 204101.

[21] P.C. Bressloff, S.D. Lawley, P. Murphy, Effective permeability of a gap junction with age-structured switching, SIAM ]. Appl. Math. 80 (1) (2020)
312-337.

[22] S.D. Lawley, Boundary value problem for statistcs of diffusion in randomly switching environment: PDE and SDE perspectives, SIAM ]. Appl.
Dyn. Syst. 15 (2016) 1410-1433.

[23] J.E. Guyer, D. Wheeler, J.A. Warren, FiPy: Partial differential equations with Python, Comput. Sci. Eng. 11 (3) (2009) 6-15, http://www.ctcms.
nist.gov/fipy.

[24] A. Lasota, M.C. Mackey, Chaos, fractals, and noise, in: Applied Mathematical Sciences, vol. 97, Springer-Verlag, New York, 1994.

[25] R. Rudnicki, K. Pichér, M. Tyran-Kamiriska, Markov Semigroups and their applications, in: Dynamics of Dissipation, in: Lectures Notes in Physics,
597, Springer, Berlin, 2002, pp. 215-238.

[26] R. Rudnicki, M. Tyran-Kamirska, Piecewise deterministic Markov processes in biological models, in: Semigroups of Operators - Theory and
Applications, in: Springer Proceedings in Mathematics & Statistics, vol. 113, Springer, New York, 2015, pp. 235-255.

[27] ]. Griffith, Mathematics of cellular control processes II. Positive feedback to one gene, ]. Theoret. Biol. 20 (2) (1968) 209-216.

[28] R. Case, Y. Boucher, I. Dahllof, C. Holmstrom, W. Doolittle, S. Kjelleberg, Use of 16S rRNA and rpoB genes as molecular markers for microbial
ecology studies, Appl. Environ. Microbiol. 73 (1) (2007) 278-288.

[29] E. Hille, R.S. Phillips, Functional Analysis and Semi-Groups, vol. 31, American Mathematical Soc, 1996.

[30] W. Arendt, A. Grabosch, G. Greiner, U. Groh, H.P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, U. Schlotterbeck, One-parameter semigroups of
positive operators, in: Lecture Notes in Mathematics, vol. 1184, Springer-Verlag, Berlin, 1986.

[31] Y. Bakhtin, T. Hurth, Invariant densities for dynamical systems with random switching, Nonlinearity 25 (10) (2012) 2937-2952.

[32] M. Benaim, S. Le Borgne, F. Malrieu, P.-A. Zitt, Qualitative properties of certain piecewise deterministic Markov processes, Ann. Inst. Henri
Poincaré Probab. Stat. 51 (3) (2015) 1040-1075.

[33] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, vol. 112, Springer Science & Business Media, 2013.

[34] S.D. Lawley, Blowup from randomly switching between stable boundary conditions for the heat equation, Commun. Math. Sci. 16 (4) (2018)
1133-1156.

[35] T. Hurth, C. Kuehn, Random switching near bifurcations, Stoch. Dyn. (2019) 2050008.

[36] H. Boudjellaba, T. Sari, Dynamic transcritical bifurcations in a class of slow-fast predator-prey models, J. Differential Equations 246 (6) (2009)
2205-2225.

[37] FE. Brauer, C. Kribs, Dynamical Systems for Biological Modelling: An Introduction, second ed., Chapman and Hall /| CRC, 2015.

[38] B. Buonomo, A note on the direction of the transcritical bifurcation in epidemic models, Nonlinear Anal. Model. Control 20 (2015) 38-55.

[39] Y. Wang, H. Wang, W. Jiang, Hopf-transcritical bifurcation in toxic phytoplankton-zooplankton model with delay, J. Math. Anal. Appl. 415 (2)
(2014) 574-594.

[40] B. Cloez, M. Hairer, Exponential ergodicity for Markov processes with random switching, Bernoulli 21 (1) (2015) 505-536.

[41] S. Peszat, J. Zabczyk, Stochastic partial differential equations with Lévy noise, in: Encyclopedia of Mathematics and its Applications, vol. 113,
Cambridge University Press, Cambridge, 2007, An evolution equation approach.

[42] Q. Liu, Z. Wang, X. He, D. Zhou, Event-based distributed filtering over Markovian switching topologies, IEEE Trans. Automat. Control 64 (4)
(2018) 1595-1602.

[43] L. Ma, Z. Wang, Y. Liu, E.E. Alsaadi, Distributed filtering for nonlinear time-delay systems over sensor networks subject to multiplicative link
noises and switching topology, Internat. J. Robust Nonlinear Control 29 (10) (2019) 2941-2959.

[44] R.A. Ryan, Introduction to tensor products of banach spaces, in: Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London,
2002.

105:5812508283



	Autoreferat
	Wstęp i motywacja
	PDMPs i półgrupy stochastyczne
	Przegląd najważniejszych wyników
	Modele współistnienia traw i drzew na sawannach
	Sezonowość w modelach populacyjnych
	Półgrupy stochastyczne z losowymi przełączeniami


	Extended Abstract
	Introduction and Motivation
	PDMPs and Stochastic Semigroups
	Overview of the Main Results
	Models of Tree-Grass Coexistence in Savannas
	Population Dynamics Models and Seasonality
	Randomly Switching Stochastic Semigroups


	References
	I Revisiting the logistic growth with random disturbances
	II A model for random fire induced tree-grass coexistence in savannas
	III A Model of Seasonal Savanna Dynamics
	IV Randomly switching evolution equations

