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Applications of topos theory
to quantum physics

by Krzysztof BIELAS

This thesis explores various applications of topoi in the realm of quantum physics. In
particular, the work employs a method of variable mathematical foundations, wherein
the conventional topos Set is consequently substituted with sheaf topoi Sh(B) (derived
from Boolean-valued models VB built upon Boolean algebras of projections on a Hilbert
space). On occasion, the Basel topos B is also utilized. It is argued that the approach
may shed new light on the cosmological constant problem by altering the structure of
real line and, consequently, the smooth structure of spacetime. Furthermore, the possible
connection with exotic smooth structures on R4 is discussed. Eventually, the problem of
randomness of quantum mechanics is addressed and it is demonstrated that a quantum
system described by the infinite-dimensional Hilbert space formally exhibits a stronger
notion of randomness.

Keywords— quantum mechanics, topoi, Boolean-valued models, exotic smoothness, random-
ness
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Chapter 1

Introduction

1.1 History and motivations

The state of physics appeared to be well-established at the turn of 19th and 20th cen-
turies, as the matter and radiation got the successful description through Newton’s laws
of motion, thermodynamics, and Maxwell’s equations. The challenging aspects were not
perceived as major obstacles in the general picture. In fact, fields like electromagnetism
or thermodynamics were regarded as mature and reliable theories that would need only
some subtle refinements to achieve completeness. The tone of a discussion of the time
could be characterized by a quite symptomatic claim, attributed to Jolly [124]: “In this
field, almost everything is already discovered, and all that remains is to fill a few holes.”

Very easygoing as it was, it turned out to be too optimistic. In fact, there were few
who could predict huge changes that would shake the foundations of our description of
Nature. Surprisingly, it was Lord Kelvin who, despite many misattributions, foresaw that
the problems of aether and equipartition theorem (referred to as "clouds" by Kelvin in [99])
would cause a revolution; as we know, these issues found resolutions in the equations of
special relativity and quantum mechanics, respectively. Indeed, starting with seemingly
innocent assumptions such as Planck’s hypothesis of radiation emitted in quanta of energy
hν for a given frequency ν one can derive the formula for the radiated energy density of a
black-body as [149]

u(ν, T) =
aν3

c3
1

exp
(

bν
T

)
− 1

which circumvented the Rayleigh–Jeans ultraviolet catastrophe and established a link with
Wien’s displacement law.

Considering atomic spectra, two key approaches evolved to adress the observational
discrepancies, namely Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics.
The former was derived from the relations

ν = cR
(

1
na
− 1

nb

)
(1.1)

where R — Rydberg’s constant; as na, nb ∈ N, discrete nature becomes apparent here. It
is worth emphasizing that (1.1) was established via experiments, without any theoretical
underpinning. Then, the remarkable insight of Heisenberg was the translation of (1.1) into
the language of matrices [79], what initialized the matrix approach to quantum mechanics
introducing the fundamental commutation relations

QiPj − PjQi = i}δij, (1.2)
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which finally led to the Heisenberg’s uncertainty principle

∆Q∆P ≥ }
2

.

A somewhat distinct path was chosen by Schrödinger who, inspired by de Broglie, sug-
gested that for an orbiting electron, one could associate a complex-valued wave function
ψ(x, t), that obeys a key relation

i} ∂

∂t
ψ(x, t) = − }

2

2m
∂2

∂x2 ψ(x, t) + Vψ(x, t), (1.3)

now known as the Schrödinger’s equation. Then, provided the interpretation for Q, P
operators (

Q(ψ)
)
(x, t) = x · ψ(x, t),

(
P(ψ)

)
(x, t) = −i

∂

∂x
ψ(x, t),

one proves these satisfy (1.2).
Initially, in spite of successes in clarifying certain aspects of the small-scale physics,

these approaches appeared to be mutually exclusive due to differences in their mathe-
matical formulations. It was von Neumann [142] who uncovered a unifying framework,
namely the Hilbert space structure, lurking behind both concepts (we will come back to
this topic in Chapter 2). In particular, it became apparent that the infinite matrices in (1.2)
represented in fact operators acting on the space `2(N), while wave functions in (1.3) were
the elements of L2(R3), and an isomorphism (unitary equivalence) between these spaces,
recognized earlier by Dirac, provided the demanded equivalence. However, this joint
framework of Hilbert spaces made the distinction between quantum and classical physics
even more severe, as it made clear that quantum mechanics operated on entirely distinct
claims, regarding what can be deemed "real".

So far we have briefly discussed the profound changes brought to life to understand
better e.g. how particles and waves behave and interact. Significantly, the revolution was
not limited to the characteristics of matter and fields, but it was extended to the stage they
operate on, i.e. to space and time. Here, the first groundbreaking concept proposed by
Einstein was the theory of special relativity, merging a so-far intuitive, global space and
time notions into a complex and dynamical object of a spacetime. The theory introduced
guiding principles such as the constancy of the speed of light and the invariance with
respect to the choice of inertial frame of reference. Consequently, classical Galilean trans-
formations were replaced by Lorentz transformations and the new invariant quantity was
the spacetime interval

ds2 = c2dt2 − dx2 − dy2 − dz2,

instead of the plain length element dl2 = dx2 + dy2 + dz2, invariant under Galilean
transformations. Therefore, the concept of an aether became obsolete and, starting with
Michelson–Morley experiment, numerous observational discrepancies have been resolved.
Several years later, special relativity was successfully merged with quantum mechanics,
giving rise to quantum field theory (QFT).

The subsequent remarkable concept, once more initiated by Einstein, was the theory of
general relativity. This time, the invariance (called general covariance) was enriched to in-
clude also non-inertial frames of reference, which led to the fundamental observation that
gravity and acceleration are locally indistinguishable. Energy-mass distribution is then
directly related to spacetime curvature and both phenomena can be covered by Einstein
equations:

Rµν −
1
2

Rgµν + Λgµν = 8πGTµν. (1.4)
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Provocatively, it is safe to end this story here. Of course, this does not imply that
no progress has been made since then. There have been numerous developments such
as the formulation of QFT as a Yang–Mills theory, the Standard Model, advancements
in cosmology, nanophysics etc. However, one could argue that since the emergence of
quantum mechanics and the "relativity breakthrough", no another revolution has arisen
that would shake the foundations of physics as significantly as the ones that occurred in
the beginning of 20th century.

This brings us to the central issue concerning contemporary physics: quantum gravity,
which aims at a desired marriage of quantum mechanics and general relativity, essen-
tial to make coherent predictions in both micro- and macroscales. Leaving details to the
subsequent section, we stress here the main difference with the matter discussed above:
while the rise of quantum mechanics and (special) relativity was fully connected with the
necessity of explaining observed phenomena, as we had no tools describing the world
of microscales and high energies, nowadays we have separate theories that describe the
world around us extremely well, at least in their scopes of applicability. Indeed, quantum
mechanics, extended by QFT, enjoys predictions of enormous precision e.g. in particle col-
liders; similarly, general relativity describes well phenomena such as large-scale structures
in the Universe, gravitational waves etc. Despite these achievements, the major theories
significantly diverge with respect to the mathematics they employ (we discuss this topic
further in Section 1.2). Not only do they differ given theoretical background, but do not
agree on the level of the ontological principles as well, since quantum theory undermines
objectivity of quantities treated within general relativity as real and meaningful [88]. Thus,
not underestimating experimental side, greater emphasis is placed on the efforts toward
explaining the origin of classical and quantum discrepancy, ultimately merging these de-
scriptions into a unified picture.

Remark 1. Ironically, the list of contemporary unsolved problems in both experimental
and theoretical physics may appear not only longer, but also more formidable than the one
encompassing early 20th century topics. Today, this list contains the puzzles such as dark
matter, high-temperature superconductors, masses of elementary particles or the value of
cosmological constant, to mention a few (naturally, these problems have been present in
the past, although not always recognized), see e.g. [69]. Now, bearing in mind the conse-
quences the problems of 19th century physics have caused, one should rather prepare for
even more dramatic reformulations that our contemporary questions may provoke.

All the above reflections on the present state of fundamental physics questions, to-
gether with lessons taken in the past, suggest that it might be beneficial to occasionally
change our course and open the door to some fresh ideas. Obviously, in doing so one has
to avoid the trap of ridiculous concepts that promise miraculous solutions to all the puz-
zles. Although physics, like the rest of contemporary science, includes some mechanisms
that dismiss questionable approaches (i.e. an experimental verification), the field of math-
ematical physics is more involved. Here, direct predictions are often reproduced, and the
emphasis is put rather on the clarification of observed relationships or highlighting pre-
viously hidden structures. Nevertheless, just as in the case of negating the spacetime as
a global time and space product, non-Euclidean geometry in general relativity, functional
analysis in quantum mechanics or local/global symmetries in gauge theory, we claim that
problems arising on the classical-quantum boundary might demand even more unconven-
tional departure from existing theoretical frameworks. One such departure we stand for
is to relax the assumption of unique "mathematical background" used in various physical
contexts. In particular, it boils down to the usage of "the same mathematics": identical
rules for logic, objects and structures, despite significant differences between the theories
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employing them. In other words, it is by default to treat notions such as the law of ex-
cluded middle or real numbers as absolute and invariant, from cosmological scales down
to subatomic particles. We advocate here a substantial generalization that comes from
topos theory. Here, both model theory and category theory give formal tools to study the
implications of such an approach.

Throughout the thesis, our focus remains on the exploration of a setup that appears
promising but may seem overly oversimplified at first glance. More precisely, we examine
a quantum system S in conjunction with the surrounding spacetime M; Although these
entities are typically treated as independent and distant, it is essential to recognize their
interplay at the formal level of mathematical structures associated with S and M. By
"oversimplified", we mean an approach, that relies on minimal assumptions concerning S
and M, namely:

• the system S is to be described by a standard quantum theory in the language of
operator algebras,

• M is a smooth manifold and the topology of M is the standard Euclidean Rn,

• the space of states of S is assumed to be infinite-dimensional, as it is a necessary
condition for canonical commutation relations between position and momentum to
be represented,

• the description of S and M is not limited to a single mathematical universe (e.g.
neither to a single category or a single ZFC model) in principle.

All the above points are discussed in Chapter 4. Based on them, we will demonstrate
in Chapter 3 an unexpected connection between the mathematical foundations of S and
M. Specifically, every quantum system S equipped with position and momentum observ-
ables gives rise to an intricate logical structure comprising yes-no propositions related to
S . While this infinite structure does not align with classical logic, it can be covered or
"approximated" by classical contexts. Surprisingly, each of these contexts serves as a seed
to entire mathematical universe, family of which is carried by S . These universes, i.e. re-
spective ZFC models, give then the opportunity to approach the local, smooth structure of
M through such logical contexts. Eventually, it appears that the smoothness of M cannot
be the standard one.

Referring to unresolved questions, we consider a specific case of the cosmological con-
stant (CC) problem, related closely to our comprehension of physical vacuum within clas-
sical gravity and quantum field theory. The CC problem may be regarded as one of the
facets of quantum gravity questions, as it lies at the intersection of these regions via Ein-
stein equations: although (1.4) describe the interplay of geometry and matter on a large
scale, one argues that the term Λgµν encompasses vacuum energy (among others), and it
is quite straightforward to show that zero-point fluctuations of quantum fields is a major
contribution here. However, the estimated magnitude of this contribution deviates from
the experimental value significantly; depending on several technicalities, the discrepancy
ranges from 55 to 120 orders of magnitude. It is thus not surprising it has been referred to
as "the worst theoretical prediction in the history of physics" [84]. Remarkably, it appears
that the approach presented in this work may shed some light onto the resolution of the CC
conundrum. Firstly, it nullifies zero-point energy of quantum fields through set-theoretic
model extension driven by forcing procedure. Secondly, it shows smooth structure of
expanding spacetime to be an exotic one and finally provides hints toward the realistic
value of CC. Next we turn to a categorical perspective on the atlas of smooth spacetime
M, indexed by Boolean subalgebras of the lattice of projections L (H). Furthermore, ap-
proaching spacetime smoothness through the local ZFC models gives rise to another local
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modification of M: here, transition functions are locally modified through the special type
of a smooth topos — a Basel topos, which again brings us to exotic smoothness. Finally we
discuss how formal tools used so far relate to the quantum-mechanical randomness and
its interpretation. In particular, we show that the recent results of Landsman [118] may be
extended to support even stronger notion of randomness realized by quantum mechanics
in infinite dimensions. It leaves also an open question of whether it will be experimentally
accessible to verify and use such strong randomness at our disposal.

As title of the thesis suggests, there is a common thread in the above. Indeed, we
discuss several alterations to the basic mathematical framework — a supposedly unique
ZFC model — and proceed with replacing it locally by various topoi. The term "local"
refers here either to:

• commutative contexts represented by Boolean subalgebras of L (H),

• open neighbourhoods in a smooth spacetime atlas.

The former typically gives rise to Boolean topoi, i.e. Boolean-valued models, while the
latter introduces Basel topos, as mentioned above.

Since topics discussed in this work might be somewhat uncommon for both mathe-
maticians and physicists, we have decided to provide a rather lengthy introduction to the
tools used. On the one hand we try to be not too encyclopedic (a more detailed back-
ground with definitions and lemmas is provided in Appendices), on the other hand it
should allow to read the Chapters 3, 4, 5, 6 without much struggle.

1.2 Classical and quantum

One of the major themes going through the thesis is the vast difference between classical
and quantum physics. In fact, their disagreement can be seen on two levels: experimental
and theoretical. These are related naturally, as the results of measurements ideally either
validate theoretical constructs (e.g. Young’s double-slit experiment) or give an impulse to
the modifications of the theory (e.g. discrete atomic spectra). Thus, one may elaborate on
the quantum-classical distinction either from experimental or theoretical standpoint.

What introduces the perspective of classical physics most effectively is perhaps the
concept of an objective reality, i.e. the existence of parameters (real-valued functions) that
characterize the system completely and independently of external observers. Put differ-
ently, the influence of apparatus on the measured object can always be made negligible,
as long as the measurement concerns classical, macroscopic regime (although one could
argue that classical chaotic systems do not fall into this category, due to their sensitivity
to initial conditions, see also Chapter 6). This boils down to characterizing a state, en-
compassing all available information about a classical system as a point x ∈ X where X
is a certain phase space (manifold, measure space etc.). Then, above parameters become
just (smooth, measurable) real-valued functions { f | f : X → R} interpreted as physical
quantities, such as energy, momentum etc.

Conversely, quantum mechanics is inherently connected with certain degree of unpre-
dictability, at least in the general setting. A classic example could be the Stern–Gerlach
experiment, where a set of polarizers not only reveals an inherently probabilistic nature
of electron’s spin, but shows also an inevitable influence that a measurement makes on
the considered system. It may seem less surprising, though, as soon as one becomes
acquainted with the mathematical formalism of a quantum theory. Here, the space of
states takes on the form of a Hilbert space H, and physical quantities are represented as
self-adjoint operators A : H → H acting on that space. Therefore, the quantum non-
determinism of a measurement results is rooted in the fact that results are not represented
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by values of operators themselves, but rather as eigenvalues with eigenvectors assigned.
Nevertheless, despite all the differences, one proceeds in a manner similar to the classical
case. We elaborate on these differences and focus on the mathematical aspects of quantum
mechanics in the Chapter 2.

1.3 (Real) numbers in physics

As mentioned earlier, one of the elements that sets classical and quantum physics apart,
lies in the inherent nature of numbers that naturally emerge in each theory. Namely, while
the continuity of real numbers seems to convey our experience of macroscopic world, the
quantumness of microworld is inevitably connected to the discreteness of natural numbers
(hence the difference lies mainly in the cardinality of the sets of experiment outcomes that
are in principle available). This observation leads to a fundamental question: Do these
distinct "natures" of various number systems have some irreducible physical significance,
or do they merely reflect the universal principle of effective theories.

To play devil’s advocate, one could naturally consider a finite precision of every mea-
surement and claim that no such "global" property of a number system could affect the
result of an experiment. After all, one may argue that any device’s precision is fundamen-
tally limited and does not allow to exactly pinpoint a physical quantity. In other words,
the way a measurement apparatus is operated in principle boils down to handling rational
numbers with a finite decimal expansion, and there is no possibility to tell apart e.g. the
numbers

√
2 and 1.414213, if the given precision is 0.001 (in certain unit). In fact, even ex-

periments designed to distinguish e.g. the rationals and irrationals cannot provide a sharp
boundary. We refer here to the series of experiments (see e.g. [154]) based on the work of
Hofstadter [85], where the (ir)rationality of a magnetic flux’ value φ through the lattice
controls the structure of energy bands of electrons on the lattice. In short, for rational φ,
energy spectrum consists of the union of intervals, while for irrational φ one can prove that
the spectrum becomes the Cantor set, a famous fractal-like object (see also Section 6.2 for
more information on this peculiar set). Nevertheless it can be proved that, given a finite
precision, one again cannot distinguish between a Cantor set and a particular interval-like
spectra within a certain length scale, cf. [157].

Remark 2. Idealization is a prevalent practice in physics research, and one illustrative
example can be found in statistical physics. In this context it is necessary to invoke the
thermodynamic limit (both number of particles and volume go to infinity) in order to
establish phase transitions. The reason is that it is impossible to obtain a singularity (non-
analytic behaviour of a thermodynamic potential) in a finite systems. As phase transitions
can be easily seen in macroscopic, ∼ 1023-particle systems, a thermodynamic limit should
be clearly not necessary, yet it seems to be "forced" by the way we formulate the theory.

To complicate things even more, not all number systems are "the same" all the way
through mathematical structures. In particular, real numbers appear to be highly depen-
dent on the mathematical universe they inhabit. We explore this topic in Chapter 2 and
apply it extensively in Chapters 4, 5, 6.

1.4 List of publications

This thesis is based mainly on the following published, co-authored material:

1. Chapter 4: [108] J. Król et al. “From Quantum to Cosmological Regime. The Role
of Forcing and Exotic 4-Smoothness”. In: Universe 3(2), 31 (2017), pp. 1–11. DOI:
https://doi.org/10.3390/universe3020031

https://doi.org/https://doi.org/10.3390/universe3020031
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Chapter 2

Mathematical toolbox

This chapter serves as a longer, though not comprehensive, mathematical introduction
to the thesis topics. It is intended to provide a background needed for Chapters 3, 4, 5,
6. Please note that the discussion related to some definitions, lemmas and other more
detailed issues has been moved to Appendices A, B to ensure it does not disrupt the main
line of reasoning.

2.1 Mathematics of quantum mechanics

2.1.1 The algebraic approach

As previously noted in Chapter 1, the conventional and first-choice approach to quan-
tum mechanics involves Hilbert spaces of states and self-adjoint operators that represent
physical, measurable quantities. In the folowing sections we introduce basic concepts and
establish their relations with an algebraic approach, that will be more relevant in the rest
of the thesis. To begin, it may be advantageous to briefly recall the most commonly used
(and sometimes oversimplified) formulation of quantum mechanics axioms, following [33]
(with some supplementary comments):

1. Given a quantum system, its attainable (pure) states are represented by unit vectors
(rays, i.e. elements of the projective space) in a complex Hilbert space H. For mixed
states, one generalizes rays to the so-called density operators, i.e. self-adjoint, trace-
class positive operators ρ : H → H such that Tr(ρ) = 1.

Remark 3. All physically relevant Hilbert spaces are usually assumed to be separa-
ble.

Remark 4. The set of all states forms a convex set S ⊆ B (H), where the set Sp ⊆ S
of extreme points coincides with one-dimensional projections on H, which agrees
with the preceding characterization of pure states by rays in H. On the other hand,
the set Sm ⊆ S of non-pure, mixed states comprises all states ρ such that

ρ(A) = tρ1(A) + (1− t)ρ2(A)

for all t ∈ (0, 1), A ∈ B (H) and ρ1 6= ρ2.

2. Physical quantities (observables) are represented by self-adjoint operators A : H →
H.

Remark 5. Some observables demand infinite-dimensional Hilbert spaces, e.g. the
position Q and momentum P operators in (1.2) have to be unbounded and by the
trace argument one easily realizes it is impossible to satisfy (1.2) in finite dimensions.
Also, by Hellinger–Toeplitz theorem [152] unbounded operators cannot be defined
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on the wholeH, thus one usually restricts the domain to some dense subspace D(H)
ofH.

3. A pair (A, ρ) determines the probability distribution for measurement of the observ-
able A in the state ρ, given by the Born rule:

ωρ(A) = Tr(ρA). (2.1)

Remark 6. In particular, if ωρ(A) = (ψ, Aψ) for some ψ ∈ H (i.e. ρ is pure, written
also as ρ = |ψ〉 〈ψ|) and {φi} ⊆ H is an eigenbasis of A with eigenvalues {λi}, one
may expand as

ψ = ∑
i

ciφi,

and the probability distribution of results λ while measuring A in a state ψ is of the
form

ωψ(A) = ∑
i

λi
∣∣(ψ, φi)

∣∣2 = ∑
i

λi|ci|2 . (2.2)

Then, measuring A in a state ψ will result in an eigenvalue λi with the probability
|ci|2.

4. The evolution of a (autonomous) system is described by a unitary operator (actually,
a one-parameter group of operators) U(t) : H → H defined by

U(t) = e
i
} tH,

where H : H → H denotes the Hamiltonian. This stands in striking contrast to
system’s evolution in case of a measurement procedure, which involves the so-called
wave function collapse.

Remark 7. For an isolated state ρ(0) at time t = 0, its state at some further time t is

ρ(t) = U(t)ρ(0)U(t)−1.

Remark 8. In general, by Stone’s theorem [152] there is a 1− 1 correspondence be-
tween self-adjoint operators and one-parameter groups of unitaries, given by A 7→
eitA.

5. Given two systems with corresponding Hilbert spaces H1 and H2, the composite
system is described by tensor productH1 ⊗H2.

Remark 9. One of the peculiar properties of a tensor productH1 ⊗H2 is that not all
the elements of H1 ⊗H2 are of the form ψ1 ⊗ ψ2, i.e. there exist ψ ∈ H1 ⊗H2 that
cannot be decomposed as ψ = ψ1 ⊗ ψ2 with ψ1 ∈ H1, ψ2 ∈ H2; we call such states
as non-decomposable, or entangled. Note that there is no counterpart of these in the
case of classical physics, where composite systems are defined through elements of
cartesian product, that are always decomposable.

Remark 10. The measurement process is canonically described as a two-stage op-
eration [178][116]: given the quantum system S and measuring apparatus A, along
with their initial states |ψS〉 ∈ HS and |ψA〉 ∈ HA, their product state |ψSA〉 lives
in the tensor product space HS ⊗HA assigned to the system composed of S and A.
Then, the process traditionally follows the rules:

|ψSA〉 = |ψS〉 |a0〉 = ∑ ci |ψi〉 |a0〉
stage 1−−−→∑ ci |ψi〉 |ai〉 (2.3)
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During stage 1, the system S and apparatus A interact, which turns |ψSA〉 into a
mixed state. By (2.3) we see that the eigenstates |ψi〉 , |ai〉 a an observable on S and
a pointer observable, respectively, become one-to-one correlated with each other. As
we know, the actual measurement picks one of the possibilities out of the sum (2.3),
what constitutes stage 2:

∑ ci |φi〉 |ai〉
stage 2−−−→ |φn〉 |an〉 (2.4)

Observe that this probability picture is postulated in principle, and there is no known
physical justification giving the reason for such a phenomenon. This point will be
raised in the Chapter 6.

6. Symmetries of a system are unitary operators {Vi}i∈I commuting with H, i.e.

[Vi, H] = 0.

The following example both illustrates some of the above and makes a good starting
point to discuss further implications such as Bell’s inequalities or randomness (see Chapter
6).

Example 1. Consider a qubit, i.e. a quantum system with a corresponding Hilbert space
C2, which may be realized practically e.g. by an electron’s spin (as the name suggests, a
qubit is a quantum version of the classical bit, i.e. the system with two possible states).
Consider two bases of C2: the standard one: {|0〉 , |1〉} and another: {|+〉 , |−〉}, defined
by

|±〉 = |0〉 ± |1〉√
2

. (2.5)

Note that above bases consist of eigenvectors of respective Pauli matrices

σz =

(
1 0
0 −1

)
, σx =

(
0 1
1 0

)

that correspond to spin’s value along z and x, respectively. It is then easy to show that,
preparing the spin in the state |+〉 (i.e. spin up in x direction) and measuring it in z
direction, one obtains either |0〉 or |1〉, both with probability 1

2 , due to Born rule (2.2).
Consider now the system composed of two spins (subsystems) A and B, described by

Hilbert space C2 ⊗C2. The state

|ψ〉 = |10〉 − |01〉√
2

≡ |1A0B〉 − |0A1B〉√
2

is the example of an entangled state. It is also a state that clearly shows the implications
of the existence of entangled states. Namely, consider a scenario where two parties (Alice
and Bob) perform the space-like separated measurements of spin in z direction; in particu-
lar, if Alice measures a value +1 (−1), then the system collapses into |0A1B〉 (|1A0B〉). This
causes Bob’s subsystem to collapse immediately after Alice’s measurement, regardless of
the separation of their laboratories. Although the instantaneous result seems to contradict
special relativity, particularly causality (cf. the seminal work [60]), a more careful analysis
shows quantum mechanics avoids precisely such problematic issues, and neither theoret-
ical nor experimental evidence has been presented to challenge special relativity thus far.
Even if Bob attempts to extract information from the way Alice makes the measurements,
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his results will remain purely probabilistic, as quantum mechanics predicts. We elaborate
on this issue further in this section.

We have encountered the conventional framework of quantum mechanics from the
perspective of Hilbert spaces, and the way it applies to a very simple physical case. Let
us introduce an equivalent yet more abstract approach, suited to model-theoretic and
categorical picture: the operator algebra approach. The theory of operator algebras, in-
troduced by von Neumann with the aim of providing a solid mathematical foundation
for quantum mechanics [142], quickly started to live its own life and gave rise to many
new notions including von Neumann algebras [139] and more broadly C∗-algebras [68],
finally planting seeds for algebraic quantum field theory [76] and noncommutative geom-
etry [49]. As we have observed, in the standard formulation of quantum mechanics the
prevailing logic dictates that observables act on states. The foundational principle of the
algebraic approach to quantum mechanics is quite the opposite: we begin with the algebra
of operators-observables as the starting point and then states are to be defined upon them.
This "duality" can be noticed e.g. in the trace prescription (2.1) and will be made precise
in the following.

We start with an abstract, unital C∗ algebra A, i.e. a Banach algebra equipped with an
involution ∗ : A→ A, i.e. an endomorphism for which

‖a∗a‖ =‖a‖2 , a ∈ A.

Example 2. We have some straightforward realizations of an abstract C∗-algebra (both
classical and quantum one):

• the algebra C0(X) of continuous functions f : X → C that vanish at infinity for a
locally compact Hausdorff space X; an involution is obviously given by pointwise
complex conjugation and ∥∥ f

∥∥
∞ = sup

x∈X
{
∣∣ f (x)

∣∣}
• the algebra B (H), where an involution is given by the adjoint and

‖a‖ = sup
ψ∈H
{
∥∥aψ

∥∥}
In fact, above examples essentially exhaust concrete realizations of an abstract C∗-

algebra, as it holds [63]

Theorem 1. (Gelfand–Naimark) Every commutative C∗-algebra A is isomorphic to C0(X)
for some locally compact Hausdorff space X and such X is unique up to homeomorphism.
More generally, every (commutative or noncommutative) C∗-algebra is isomorphic to a
subalgebra of B (H) for some Hilbert spaceH.

We start with a physical assumption that observables are to be represented by self-
adjoint elements of a C∗-algebra A, and it makes sense now to define states as functionals
ω : A → C that are positive and normalized, i.e. ω(a∗a) ≥ 0 and ω(1) = 1. In particular,
it holds that ω(a) ∈ R whenever a ∈ A is self-adjoint. It is also easy to see that (2.1) gives
a map ωρ : A → C that is linear, positive and normed, hence is a state in the latter sense.
Recall that p ∈ A is called a projection if p2 = p∗ = p; if A = B (H), we denote the
set of projections on H by L (H) and there is a 1− 1 correspondence between L (H) and
closed linear subspaces of H given by L (H) 3 p 7→ ran(p) ⊆ H. It follows immediately
that the only eigenvalues of a projection are 0 and 1. By (2.2), projections seem to be good
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candidates for yes-no questions, such as "Is the photon polarized vertically?" or "Does the
electron have spin up in the z-direction?" etc.

Now, the connection of these approaches can be shown through Gleason’s theorem
[116]:

Theorem 2. Let H be a Hilbert space with dim(H) > 2. Then every probability measure
µ on L (H) is induced by a normal state on B (H) by

µ(P) = Tr(ρP), (2.6)

where ρ is a density operator, uniquely determined by µ. Conversely, every density oper-
ator ρ ∈ B (H) defines a probability measure µ : L (H)→ [0, 1] through (2.6).

Even if elements of B (H) hardly seem to represent anything real, there is a context
that gives a precise interpretation of observables represented by self-adjoint operators: the
spectral theorem. First we provide the usual formulation of the theorem [170]:

Theorem 3. Let A ∈ B (H) be self-adjoint; then there exists a measure space (X, µ), a
bounded measurable function f : X → R and an isomorphism U : H → L2(X, µ) such
that

A = U−1M f U,

where M f : L2(X, µ)→ L2(X, µ) is defined by

M f (g) = f · g.

Thus every self-adjoint A operating onH can be represented by some L2(X, µ) together
with a measurable, real-valued function; in other words, the action of A on some ψ ∈ H is
equivalent to transforming ψ to a square-integrable function on X first, then multiplying
by a unique f ∈ L2(X, µ) and going back to another φ ∈ H finally.

Now that we are equipped with some algebraic perspective on quantum mechanics,
let us turn our attention to the structure of projections in B (H) due to their role in con-
structing self-adjoint elements of B (H) and the logic of quantum mechanics. As discussed
earlier, projections serve as "yes-no" questions. Recall that in classical physics such ques-
tions are in one-to-one correspondence with measurable subsets of the phase space, and
these build up a Boolean propositional logic. By analogy, one might wonder whether it is
possible to formulate a similar kind of logical structure connected to L (H). The answer is
affirmative: once again we will use the correspondence p 7→ ran(p) between projections
and closed subspaces ofH. Then, the set L (H) equipped with

1. a join ∨
pi = pM where M is the closed linear span of

⋃
ran(pi), (2.7)

2. a meet ∧
pi = pM where M =

⋂
ran(pi), (2.8)

3. a negation ¬p = 1− p,

4. a null operator as 0 and identity operator as 1.

gives the structure (L (H) ,∨,∧,¬, 0, 1), which is known to be an orthomodular lattice
(see A. Interpreting symbols ∨,∧,¬, 0, 1 as connectives "or", "and", "not", true and false,
respectively, we build propositions on the system in the language of the so-called quan-
tum logic, proposed first in [31]. Observe that it is not immediately evident where all the
unique quantum properties manifest within the framework of L (H). Indeed, one might



14 Chapter 2. Mathematical toolbox

argue whether the noncommutativity of observables is transferred to the logical structure
of L (H). The answer is affirmative, as one finds [142]

Lemma 1. If dim(H) > 2, the lattice L (H) is not distributive and hence fails to be a
Boolean algebra.

Thus, as long as we consider physically plausible state spaces, i.e. dim(H) 6= 1, it is
generically inevitable for the global structure of L (H) to be nondistributive, failing to be
Boolean in particular. On the other hand, one proves easily[63]

Lemma 2. Let A be a unital abelian C∗-algebra. Then L(A) is a Boolean algebra.

We have already mentioned that systems represented by infinite-dimensional Hilbert
spaces will be of major interest, mainly due to operators of continuum spectrum, such
as position or momentum, and the respective uncertainty relation. Therefore by Lemma
1, L (H) will be generically nondistributive. It is instructive to give a simple example
illustrating the nondistributivity of L (H) for a specific quantum system[46].

Example 3. Let H = L2(R3, dx) and p1, p2, p3 ∈ B (H) be mutually non-orthogonal, one-
dimensional projections contained in a single, closed two-dimensional subspace (e.g. they
can project on three mutually non-orthogonal directions lying on a plane in R3). Define
the join ∨ and meet ∧ as in (2.7), (2.8); now it is easy to see that

p1 ∧ (p2 ∨ p3) = P1 6= 0 = (p1 ∧ p2) ∨ (p1 ∧ p3),

which obviously shows that L (H) is not distributive.

Remark 11. Note that L (H), while non-distributive, still obeys the law of excluded mid-
dle, since

p ∨ ¬p = 1

by (2.7). Thus, one may conclude that such a "logic" is simultaneously peculiar (non-
distributivity) and conventional (excluded middle satisfied) at the same time (these as-
pects will be "turned over" in quantum logic formulated within some particular topoi, see
Section 2.2.3).

Let us now introduce two results that illustrate the significant departure of quantum
mechanics from classical physics when it comes to our understanding of "reality": the
Kochen–Specker theorem and Bell inequalities. First, certain experiments, such as the
Stern–Gerlach experiment, indicate that the preexistence of well-defined values of physical
quantities can be troublesome. In fact, this idea can be precisely defined and it serves as
yet another boundary between classical and quantum physics. The property of quantum
mechanics characterized by the relational nature of reality, i.e. that measurements do not
actually "reveal" the actual values of quantities that exist independently of the measuring
"context", is known as contextuality and is closely related to the hidden variables (HV)
theories concept. We make it more precise with the help of a valuation function v : X → R

that, for a given state ψ, sends a physical quantity f to its value λ in this state. Classically
we have therefore

C∞(X) 3 f 7→ vψ( f ) = f (ψ) ∈ R,

where we identified a physical quantity with the associated function f (see Chapter 1).
However, in quantum mechanics this pairing becomes

B (H) 3 a 7→ v(a) ∈ σ(a) ⊆ R,
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where σ(a) is the spectrum of a. It can be shown that there is a particular condition, called
functional composition condition (FUNC), that constrains a valuation v to be mutually ex-
clusive and collectively exhaustive, meaning that given a resolution of unity

1 = ∑ pi, p2
i = pi,

it holds v(pi) = 1 for some i ∈ I and v(pj) = 0 for all j 6= i. The FUNC condition reads
[65]

∀h : R→ R
(
v(h(a)) = h(v(a))

)
, a ∈ B (H) . (2.9)

This way one states [65]

Theorem 4. If dim(H) > 2, then there does not exist any valuation function V : B (H)→
R such that (2.9) is satisfied for all a ∈ B (H).

Informally, Kochen–Specker theorem states that as long as the state space is more than
two-dimensional, there is no function that would globally assign real values to physical
quantities in a noncontextual way. In other words, physical quantities in their totality
have no "objective" value prior to measurement. Further we will see that Kochen–Specker
theorem takes particularly simple and intuitive form from the topos-theoretic perspective.
One should note that the original formulation of Kochen–Specker theorem [104] involves
a variant of a Boolean algebra, that takes into account the noncompatibility of observables.
Define a partial Boolean algebra A to be a set with constants 0, 1 and a reflexive, symmetric
binary compatibility relation � ⊆ A × A, a total unary operation ¬ and partial binary
operations ∧,∨ defined on �, and every set of pairwise compatible elements is contained
in at least one Boolean algebra B ⊆ A. In Chapter 5 we will see how the class of partial
Boolean algebras can be made into a category pBA.

Example 4. One of the most important examples of a partial Boolean algebra is L (H).
Then, the compatibility of p, q ∈ L (H) corresponds precisely to their commutativity.

Then we have [104]

Theorem 5. There is no embedding of L (H) into a Boolean algebra if dim(H) ≥ 3.

Theorems 4, 5 bring to the scene the problem of hidden variables. Historically, from
the very beginning of quantum theory there has been a live debate on the existence of
a non-quantum, deterministic reality underlying a supposedly incomplete, probabilistic
microworld, initially centering around the work of Einstein, Podolsky and Rosen [60].
Such a reality would consist of the set Λ of unobservable degrees of freedom such that ev-
ery λ ∈ Λ determines a dispersion-free measure on L (H). Importantly, such parameters
λ ∈ Λ, called non-contextual, were refuted by Theorem 2. However, it was shown that it
was still possible to construct dispersion-free measures as long as they were defined only
on maximal Boolean subalgebras of L (H) [74]; these variables are called contextual

Remark 12. Up to this point, we have used the term "random" on multiple occasions in an
informal manner, relying on its intuitive understanding. For instance, in the context of the
Stern–Gerlach experiment we discussed within the Copenhagen interpretation, it seems to
provide a satisfactory explanation of how we characterize a property (specifically, spin) as
random. The notion of randomness in quantum mechanics is profoundly captivating and
surprisingly intertwined with the upcoming section dedicated to model theory, which we
will delve into separately in Chapter 6.
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2.2 Model theory and categories

Now we introduce formal methods, that enable us to discuss the shift from "global" math-
ematics into more "local" one. This section provides also a more solid underpinning for
the related discussion given in Chapter 1 on the approaches to real numbers. In particular,
we mentioned that it would be highly desirable to transition from one "type" of real num-
bers to another, giving the possibility to capture various problems connected to crossing
the micro-macro boundary. In the following section, we will provide a general introduc-
tion to model- and category-theoretic tools employed throughout the thesis, along with a
brief account on the history and respective literature. We try to be as rigorous as possible;
however, in order to keep the discussion instructive, some technical details are put aside
to Appendix B. Also, to get a more formal background on both model theory and category
theory in general, we refer the reader again to Appendix B.

2.2.1 Forcing and Boolean-valued models

As the forcing method is one of the thesis’ central topics, we give a more detailed account
on that subject. To truly appreciate the significance of independence results, we need to
go back perhaps to Cantor, who was the first to demonstrate that any set X is essentially
smaller than its powersetP(X), i.e. there is no surjection X ontoP(X), what is now widely
recognized as Cantor’s theorem [43]. Given that R can be identified with the powerset
P(N) (for any r ∈ R, think about digits in the decimal expansion of r as the subset of N),
since the time of Cantor it has been known that

2ℵ0 > ℵ0,

where ℵ0 = |N| and 2ℵ0 = |R|. However, whether the continuum is the next cardinal
number, i.e.

2ℵ0 = ℵ1, (2.10)

or perhaps
2ℵ0 = ℵi for some i > 1 (2.11)

and thus such ℵi lived "somewhere in the middle", was far from obvious. In fact, the state-
ment (2.10), subsequently known as the Continuum Hypothesis (CH), was considered so
profound that Hilbert placed it on the very top of his list of most-important, unsolved
mathematical problems back in 1900 [83]. (It is worth noting that another problem on the
list was Hilbert’s aspiration to provide consistent axiomatization of arithmetic.) Mean-
while, substantial progress has been made when K. Gödel demonstrated that every suffi-
ciently powerful formal system is either incomplete or inconsistent [70], and Gödel’s result
proved that Hilbert’s dream of settling the "perfect" foundations for mathematics had to
be abandoned. Essentially, as long as one considers theories like ZFC or Peano arithmetic
to be consistent (as we often implicitly do), undecidable statements (sentences one cannot
prove either true or false) will persist.

When discussing truth, one needs to be careful and distinguish between the words
true and provable, as they operate on two distinct levels: semantic (model) and syntactic
(theory) (see Appendix B). For instance, soundness tells us that given a first-order theory
(like ZFC), every provable sentence is true in all models. Conversely, given a first-order
theory T, there exist sentences true in some models of T and false in the others. These
sentences are termed undecidable, since one cannot decide their truth from T alone, and
they represent peculiarities of particular models rather than the theory itself. A somewhat
iconic example might be Euclid’s fifth axiom, called the postulate of parallel lines, that is
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independent of the other four axioms of Euclidean geometry: an independence of the fifth
axiom becomes clear once we construct two models — the Euclidean plane which satisfies
all five axioms and the hyperbolic plane, satisfying all but exactly the fifth axiom.

Coming back to CH, it seems that the hint of independence is already present in the
Löwenheim–Skolem theorem (see Theorem 40). This theorem asserts that the existence
of an infinite ZFC model implies the existence of a countable one as well. Obviously, it
may initially seem paradoxical, since inside each countable model M one finds a set of real
numbers RM expected to be uncountable. This phenomenon, known as Skolem’s paradox,
becomes clear as long as one keeps in mind that a set X is claimed to be uncountable in
the model M if there is no surjection N→ X in M. Consequently, uncountability is not an
absolute property and may vary, simply by conceiving it from within or outside a specific
model. Now, despite Gödel had shown Con(ZFC + CH) via the constructible ZFC model
L satisfying CH [70], i.e.

L |= ZFC + CH (2.12)

it was not immediately evident whether it was possible to "design" a ZFC model satisfying
¬CH, see (2.11). Thus, it gained considerable attention of the mathematics community
when P. Cohen presented forcing, a powerful technique of proving independence results
by constructing model extensions with desired properties [47]. In the case of CH, P. Cohen
used forcing to develop a model extension M[G] of a ZFC model M such that

M[G] |= ZFC + ¬CH. (2.13)

Roughly speaking, the technique involved adding ℵ2-many "missing" subsets of natural
numbers, in order to obtain

2ℵ0 ≥ ℵ2 > ℵ1. (2.14)

Note that (2.14) contradicts (2.12), thus we obtain (2.13) and Con(ZFC +¬CH). Naturally,
it is quite nontrivial to ensure that, starting with a ZFC model M, the extension M[G] still
satisfies ZFC. Since Gödel already observed Con(ZFC + CH), we conclude that CH has to
be independent of ZFC.

Let us briefly outline how the above extension actually works (cf. Appendix B for
details). As previously mentioned, we begin with a ZFC model M (typically chosen as
countable and transitive for practical reasons). What Cohen discovered was a systematic
way to construct new, extended models M[G] derived from M, by identifying a specific
set G ⊂ M, G /∈ M. This G is designed to provide M[G] to be a unique, minimal ZFC
model and containing all the elements of M including G ∈ M[G]. In order to have a
control of what sentences are true in M[G], one picks a specific separative partial order
P ∈ M (called a forcing notion); each p ∈ P (called a forcing condition) represents a
piece of knowledge about M[G], and p ≤ q means that p gives more information than q
(q ⊆ p). In order to control the extension M[G], we demand G to be a generic ultrafilter,
i.e. G ∩ D 6= ∅ for every D ∈ M, D ⊆ P that is dense in P. Since G is an ultrafilter,
one interprets its elements as those specifying truth, thus such G does not introduce any
inconsistencies; as G is generic, it gives as much information about M[G] as possible. It
is important to stress that the properties of M[G] are "accessible" from within M with the
help of the so-called forcing language, expressing sentences containing P-names, i.e. the
sets of "potential" elements composed of "potential" elements etc. (Although M decides
the truth value of sentences in M[G] upon G, and does it decisively only for sentences that
are either true or false in M.) Once the ultrafilter G is chosen, G gives an interpretation for
each P-name, which constitutes M[G]. As expected, M[G] is a countable transitive ZFC
model with M ⊆ M[G] and G ∈ M[G]. Then, we say p forces φ (written p  φ) if M |= φ
for every generic ultrafilter G with p ∈ G. Informally, if p  φ, then p ∈ G is a sufficient
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"piece of information " about φ in order to M[G] |= φ.
Just a few years after Cohen’s method was introduced, Scott and Solovay observed

that the entire procedure can be replicated by shifting truth-values from ordinary two-
valued {True, False} ≡ {0, 1} to a more general, complete Boolean algebra B = P ∪ {0}
(cf. Appendix B). This change replaces the universe V of standard sets with the universe
VB of their B-valued counterparts, where every formula φ in the language of set theory is
assigned a truth value JφK ∈ B. This reflects the "partial knowledge" of what should be
true in the extended model, similarly to P-names described above. Still, every theorem φ of
ZFC remains true in VB (see Theorem 41). Crucially, to obtain a two-valued ZFC model, a
suitable ultrafilter U ⊆ B is identified to represent "truth", i.e. we take the quotient VB/U,
identifying the elements of x, y in VB whenever Jx = yK ∈ U. This way one shows that
VB/U is a standard ZFC model, usually collapsed by Mostowski’s theorem to a transitive
ZFC model V[U]. (Note that in order to ensure that generic ultrafilters exist in general, we
often assume the model to be countable.) Notably, forcing aquires a natural interpretation
in the language of Boolean-valued models:

p  φ iff p ≤ JφKB

The introduction provided above clearly illustrates that throughout the 20th century,
mathematics developed numerous tools to make reasoning about physics "more local":
one is no longer confined to a single universe V, but can instead employ a multitude of
"small" universes. Thus several important questions arise: what rules dictated the choice
of models, how these models are interconnected and whether this has any relevance to
physics? This is the point where we return to forcing: it not only offers a means to estab-
lish independence results, but also provides a method for constructing ZFC models in a
controlled and systematic manner.

2.2.2 Model theory and physics

The first notable attempt to formally incorporate model theory in physics was perhaps the
work of P. Benioff [23, 24], soon after P. Cohen proved that neither CH nor AC are prov-
able from ZF. Benioff’s key insight was to challenge the conventional practice in physics,
which typically uses mathematical objects as they would live in a single set-theoretic uni-
verse (often denoted V). Let us outline the approach to understand the quantum world
through countable ZFC models as advocated in Benioff’s work, elaborating on the issue
of formulating physics, i.e. the mathematical structures representing physical objects —
spaces, observables, states etc. — in formal models of set-theory, rather than to treat all
the physics "uniformly", as living in the single, default universe of sets V. Under specific
assumptions, this line of reasoning led Benioff to two main observations:

B.1 The minimal, standard ZFC model M0 cannot be a carrier for the mathematics of
quantum mechanics (assuming the outcomes of infinitely repeated measurement of
a quantum-mechanical system leads to a sequence that is random in a certain sense).

B.2 No Cohen extension of M0 can serve as such a carrier (assuming additionally the
infinite sequences of outcomes to be statistically independent in a certain sense).

In this context, we define a ZFC model M as a "carrier of mathematics of quantum me-
chanics if all relevant structures such as Hilbert spaces, algebras of observables etc. can be
consistently formulated inside M and the outcomes of infinitely repeated measurements
are also accessible in M. We will see that the second criterion heavily depends on the actual
definitions of randomness and independence; the results of [23, 24] summarized above
hold true only if adopted definitions are sufficiently strong. In the subsequent discussion
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we provide a more detailed discussion of the above, setting the stage for an exploration of
the issue of randomness in quantum mechanics, which is a main topic of Chapter 6.

Let M be a countable transitive ZFC model and letHM, B(HM) be a Hilbert space and a
set of bounded operators on HM inside M, respectively. More precisely, if φ(x) represents
a formula "x is a Hilbert space", then we have M |= φ(HM) and similarly for B(HM). Note
that φ(x) is not M-absolute, thus HM is not necessarily a Hilbert space outside M. In fact,
one proves [23]

Theorem 6. Let M be a standard transitive ZFC model. Then there exists a Hilbert spaceH
and a set of bounded operatorsB (H) (outside M) such that there exist isometric monomor-
phisms UM : HM → H and VM : B(HM) → B (H). In particular it holds that VM maps
projections, unitary, self-adjoint and density operators in M to respective operators outside
M, e.g.

M |=
(

p is a projection =⇒ VM(p) is a projection
)

Obviously both UM, VM /∈ M, although all the reasoning about H outside M holds for
HM inside M.

Let S, Q denote the collections of state preparation and question measuring proce-
dures, respectively: these correspond essentially to density operators and projections in
B(HM). In other words, one introduces the corresponding maps ψM : S → B(HM) and
φM : Q→ B(HM). Therefore, ψM(a) and φM(b) represent a density operator (state prepa-
ration) and projection (a yes-no question) in B(HM), respectively. Consequently, the pro-
cess of (infinite) measurement repetition can be defined by a triple (t, a, b) with t : ω → RM
and this map is interpreted as: "prepare the state according to a ∈ S, carry out the question
b ∈ Q, observe an outcome, discard the system and repeat the above at t(0), t(1), . . .. Now,
with the help of monomorphisms UM, VM given in Theorem 6, one shows that

∀a ∈ SM, b ∈ QM

(
TrM

(
ψM(a)φM(b)

)
= Tr

(
ψ(a)φ(b)

))
. (2.15)

Note that SM, QM are S, Q inside M, and due to (2.1), the equality (2.15) states that the
observers inside and outside M will obtain exactly the same measurement outcomes.

Remark 13. It is important to note that one can replace the universe of sets V by a stan-
dard transitive ZFC model N such that M ⊆ N with all the conclusions holding true; in
particular, givenHM and B(HM) there existHN and B(HN) such that there exist isometric
isomorphisms

UMN : HM → HN , VMN : B(HM)→ B(HN)

and
∀a ∈ SM, b ∈ QM

(
TrM

(
ψM(a)φM(b)

)
= TrN

(
ψN(a)φN(b)

))
. (2.16)

The identity (2.16) suggests that ZFC models are essentially equivalent as universes for
mathematics of quantum mechanics in that the observable outcomes are the same as long
as they are interpreted inside models M, N such that M ⊆ N. However, this is not true in
general, what brings us to B.1.

In order to express B.1 precisely, recall that the minimal model M0 is constructed as
follows. Let δ be the smallest ordinal for which there exists a standard transitive ZFC
model M such that δ /∈ M. Then one shows that

M0 =
⋃
α<δ

Lα

is the unique standard ZFC model that is minimal in the sense that for any standard tran-
sitive ZFC model N we have M0 ⊆ N (recall that Lα is a stage of constructible universe,
see Remark 50).
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Definition 1. We say that a probability measure µ : Bor(2ω)→ R≥0 is correct for σ ∈ 2ω if
for all B ∈ Bor(2ω) definable from µ, if µ(B) = 1 then σ ∈ B. A sequence σ ∈ 2ω is called
random if there exists a probability measure µ that is correct for σ.

Informally, the sequence is random if there exists a probability measure such that σ falls
in every definable Borel subset of full measure, and such Borel subsets may be interpreted
to carry as little information about σ as possible. Therefore, the definition seems to fit well
an intuition of what characteristics a random sequence should enjoy, and we will follow
the topic extensively in Chapter 6. Finally, one proves [23]

Theorem 7. Suppose that the outcomes of a generic quantum-mechanical experiment are
random in the sense of Definition 4. Then M0 is not a possible mathematical universe for
quantum mechanics in the sense that for a triple (t, s, q) defined above, the sequence of
outcomes ψtsq /∈ M0.

For a Theorem 7 to hold, it is necessary to assume that the probability measure µ is
nonatomic, i.e. µ(σ) = 0 for every σ ∈ 2ω or, for those s, b for which

0 < TrM0

(
ψM0(s)φM0(b)

)
< 1.

We see that above condition excludes sequences constantly equal to 0 or 1, and these are
just classical (dispersion-free) outcomes as long as ψM0(s) is pure. Therefore, M0 is a pos-
sible universe for classical mechanics, contrary to the generic quantum case.

Finally, one obtains

Theorem 8. Let randomness and statistical independence be defined as above and let
s ∈ Dom(ψM0), q ∈ Dom(φM0) and t : ω → RM0 , t ∈ M0. If ψtsq is the sequence of
outcomes with repeated s, q, then the extension M0[ψtsq] cannot be a carrier for mathemat-
ics of quantum mechanics.

A different and less technical route of applying model theory to physics was taken by
Davis [50], where he used the work of Takeuti [170] to show that Boolean-valued models
provide a way to translate quantum-mechanical, noncommutative observables to classi-
cal, real-valued quantities, such as position or momentum. As outlined in Section 2.2.1,
the point of departure is a complete Boolean algebra that serves as a collection of truth-
values assigned to formulae describing the extension. In the case of quantum-mechanical
systems, the natural choice for such collections are Boolean subalgebras of L (H) and in-
deed this choice appears frequently throughout the thesis. Due to one of the versions of
spectral theorem (see Theorem 18), for every family of commuting self-adjoint operators
{Ai} there is a maximal Boolean algebra B of projections containing all the spectral reso-
lutions of {Ai} and we say {Ai} are contained in B. The following fundamental result of
[170] claims that the elements of {Ai} can be "reinterpreted" as real quantities. (Note that
real numbers inside VB denoted by RB is not an absolute object.)

Lemma 3. For every complete Boolean algebra B ⊆ L (H) of projections, there is a bijective
correspondence between real numbers RB in VB and self-adjoint operators contained in B.

This gives an insight how one would formalize quantization in a model-theoretic lan-
guage. Indeed, as observed first by Dirac [51], quantization can be understood as replac-
ing the real-valued quantities such as position, momentum etc. with their noncommu-
tative counterparts, where fundamental relations such as Hamilton equations of motion
still hold, provided the substitution {·, ·} → ih̄[·, ·] of Poisson bracket with a commutator.
Accordingly, due to Lemma 3, for every Boolean algebra of operators one always finds a
universe (Boolean-valued model) with real numbers bijectively represented by self-adjoint
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operators that are in B, which can be seen as a way to quantize a theory. This is in agree-
ment with a general philosophy of perceiving quantum effects always through "classical
glasses", hence Boolean algebras containing necessarily only mutually commutative oper-
ators. In [50] a specific "relativity principle" is proposed, in analogy to special relativity,
where inertial frames become Boolean algebras of projections. According to this princi-
ple, non-intuitive effects in quantum mechanics are the results of considering quantum
systems from within different "classical reference frames", i.e. Boolean algebras that do
not commute with each other. To illustrate such a case, let us consider an experiment
involving a measurement of noncommuting (complementary) quantities, e.g. position Q
and momentum P in double-slit interference. Recall the peculiar behaviour here is dis-
tinct patterns on screen, that depend on the slit configuration, and it is easy to see that
having one slit covered corresponds to the position measurement, while having both slits
open measure a momentum. Thus, such measurements are done with respect to two ref-
erence frames BQ 3 Q and BP 3 P and there is no Boolean reference frame BQP such that
Q, P ∈ BQP. Observe that the analogy with e.g. time dilation as an effect of measurement
with respect to distinct inertial frames is evident here. As the analogy goes further, the role
of Lorentz transformations is played by unitary operators (e.g. Fourier transform mapping
position to momentum representation) and finally the four-vector x ∈ R4 corresponds to
the wavefunction ψ ∈ H (with metric invariant ds2 replaced by the norm ‖ψ‖).

Remark 14. Quite separately from the approach taken here, a few works discussing the
direct importance of CH independence in physics have appeared, cf. [148], [147]. A dis-
cussion on selected topics in the set-theoretic foundations for physics can be found e.g. in
[169][17][41][16].

2.2.3 Topoi

In the preceding section, we outlined why it is reasonable to question mathematical foun-
dations in physics, and we illustrated this claim with some applications. The fundamental
tool used there was forcing (both in the language of posets and Boolean algebras). Here we
introduce an alternative approach to challenge these foundational assumptions: a topos,
which is a particular category that serves as a framework for a significant portion of con-
temporary mathematics (see Appendix B). Remarkably, there exists a connection between
Boolean-valued models and topoi: given a complete Boolean algebra B, a Boolean-valued
model VB is equivalent to a topos Sh(B) of sheaves over B. Before we dwelve into that, let
us briefly describe general motivations that have brought topoi into the field of physics.

To begin with, let us refer to Grothendieck himself [117]: These ’probability clouds’, re-
placing the reassuring material particles of before, remind me strangely of the elusive “open neigh-
borhoods” that populate the topoi, like evanescent phantoms, to surround the imaginary ’points’.
This quote offers a reflection on the phenomena discussed in our introduction to quantum
mechanics. Indeed, as we approach smaller distances (and higher energies) in the experi-
ments, quantum effects enter the stage and the values of physical quantities usually cease
to be sharp and well-defined. Two most known approaches to quantum physics through
topos theory evolved from a quite similar point of departure; the earlier one, called a con-
travariant approach (developed mainly by Isham and Döring (see e.g. [88]) and another,
called a covariant approach (originated from the work [117] by Landsman, Heunen and
Spitters) (this naming convention is borrowed from a review [175]). The reasoning could
be characterized as follows:

• quantum mechanics needs a reformulation, perhaps in a way that enables one to
conceive it as a "realist" theory,
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• a quantum phase space Σ needs to be devised in a more "geometric" manner, along
with states and observables defined with the help of Σ

• quantum "logic" needs to be modified to become a legitimate logic as a result

We will provide a brief overview of the the covariant approach, also called a Bohri-
fication [82]. This approach addresses the challenges outlined above by relying on three
pillars: topos theory, Gelfand duality and an algebraic approach to Bohr’s perspective
on quantum mechanics. It is worth recalling that Bohr emphasized the need to perceive
quantum-mechanical (noncommutative in their nature) phenomena ultimately through
classical (i.e. commutative) notions, cf. [117]. Thus, the primary objective is to give a rig-
orous foundation for Bohr’s doctrine of classical concepts, asserting that all investigations
in quantum world have to be captured through classical physics eventually. In mathemat-
ical terms, this entails approaching the noncommutative algebra of quantum–mechanical
observables through its commutative subalgebras. Here, the authors of [81] have chosen
to employ C∗-algebras, introduced briefly in Section 2.1.1, as the most natural and useful
language. While it had been already recognized that topoi provide a powerful yet not en-
tirely classical formal environment for quantum mechanics [88], it was the application of
Gelfand duality in topoi [137] that gave a new insight into spatial aspects of the algebra
of observables. Before we delve into the specific construction, let us show intuitively how
topos theory enters the stage through some observations concerning the logic of classical
and quantum physics from category-theoretic perspective [80].

Remark 15. As we previously described, in classical physics the description of a given
system is provided by a phase space M together with real functions f : M → R that rep-
resent observable quantities. One acquires the knowledge through a pairing of system’s
state ω ∈ M and certain (elementary) propositions about the system via an assignment of
a value ω(P) to the probability that the proposition P is true in a state ω. For example,
P may state that an observable f has a value in U = (a, b) ⊆ R in a state ω. As ω is

essentially a map {∗} ω−→ M and the proposition P can be depicted as M
χ f−1(U)−−−−→ {0, 1}, we

get the following representation of the pairing

1 = {∗} ω−→ M
χ f−1(U)−−−−→ {0, 1} = Ω, (2.17)

where 1 denotes the initial object (a singleton) and Ω is the subobject classifier in the
topos Set. However, (2.17) cannot be naturally translated to quantum formalism in this
form. Indeed, although it is tempting to adopt the formalism introduced in Section 2.1.1
and construct the pairing through states ψ ∈ H and propositions represented by closed
subspaces of H, the characteristics of quantum logic such as nondistributivity or lack of
implication of L (H) pose a problem. Instead, the authors of [117] propose to shift the
perspective and treat the topology O(M) as the primitive notion. Then, the proposition P

can be represented by 1
f−1(U)−−−−→ O(M). States are no longer elements of M; instead they

are represented by subobjects Sω = {U ∈ O(M) : ω ∈ U}. Finally the pairing is reversed
with respect to (2.17) as

1 P−→ O(M)
χSω−−→ Ω.

Recall that O(M) gives rise to the structure known as a frame and further, a locale (see
Appendix B) and it is this localic perspective that gives an appropriate logical (although
intuitionistic) framework for quantum mechanics.

With the most important facts related to topos theory in mind (see Appendix B), let us
summarize what the covariant approach is. Let A be a unital (noncommutative in general)
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C∗-algebra and C(A) be a family of all unital, commutative C∗-subagebras of A. This way,
C(A) can be partially ordered by inclusion and turned into a posetal category. The starting
point for Bohrification is a presheaf topos (see Example 19)

T (A) = SetC(A).

As every topos carriers its own language and can be considered a "universe of mathemat-
ical discourse", we test how much will change as we move from external topos Set to the
one related to "classical snapshots" — T (A). In a sense, we assign a certain "frame of ref-
erence" with each A, and we will find out, whether it is possible to turn the total algebra A
into a commutative (i.e. classical) C∗-algebra. (All objects internal to T (A) will be under-
lined, to distinguish them from notions being described externally, from the point of view
of Set). Consider now the forgetful functor A ∈ Ob

(
T (A)

)
, which sends each C ∈ C(A)

to its underlying set and each arrow C ⊆ D to the inclusion arrow C ↪→ D. It can be
shown that that internally A becomes a commutative C∗-algebra over the internal set of
complex numbers [81]. Furthermore, using Gelfand duality one constructs internally a
locale (see Appendix B) Σ(A) representing the Gelfand spectrum of A, which becomes a
candidate for quantum phase space; the subobjects-opens 1 → O(Σ) represent elemen-
tary propositions and the observables a ∈ A regain their classical form as locale maps
δ(a) : Σ(A) → IR, where IR is a poset of compact intervals in R, ordered reversely by
inclusion. In particular, one proves the category-theoretic version of Theorem 18 [116]

Theorem 9. Let H be a Hilbert space such that dim(H) > 2 and A = B (H). Then the
locale Σ(A) has no points.

Thus the topos approach offers a different perspective on the fact that quantum ob-
servables do not have globally defined real values.

Now we turn to a specific type of a topoi, called smooth topoi, which serve as models
for synthetic differential geometry (SDG). Synthetic differential geometry traces its origins to
the work [105] and, in essence, is a formalization of the Leibnizian, limit-free approach to
understanding differential geometry ([106] is an excellent introduction to the subject). It
is kind of a folklore that differential calculus, since the very beginning, have been under-
stood in a two-fold way: the one that operates on infinitesimals (infinitely small segments)
advocated by Leibniz, and the other relying on the notion of a limit, which found its for-
mal culmination in the work of Cauchy. (Without a doubt, the latter has found much more
followers and it has become the primary description of the smooth arena in the mathemat-
ical world.) Basically, the most fundamental object of interest in SDG is the collection of
(first-order) infinitesimals

D = {d ∈ R | d2 = 0},

called the nilpotent infinitesimals. Then, the fundamental Kock–Lawvere axiom of SDG
claims that all functions coincide with straight-line segment in the infinitesimal neigh-
bourhood of 0, i.e. for every f : D → R there is a unique b ∈ R such that for all d ∈ D it
holds

f (d) = f (0) + b · d.

Observe that the object R, despite aimed at representing real numbers, has to be differ-
ent from the set standard real numbers R. The property that sets R apart from R is its
undecidability. Recall that a property P on a set X is decidable if

∀x ∈ X
(

P(x) ∨ ¬P(x)
)
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In particular, we call an object A decidable if

∀x, y ∈ A
(
x = y ∨ x 6= y

)
.

It can be proved [106] that R is not decidable, thus the Kock–Lawvere axiom is not com-
patible with the law of excluded middle and SDG is inherently intuitionistic, which means
it has to be formulated outside ZFC set theory to avoid such contradictions.

Now, a question may arise as to whether the reals R can assume the role of the "true"
real numbers within some broader context. The answer is affirmative, and we will see
that category theory gives a precise answer which is that of a smooth topos. However, it
will come at a cost of introducing some other features, that change the way of conceiving
smoothness in general. In particular, in Chapter 5 we will argue that the topos-theoretic
local description of smooth structures may reveal new information on the problem of ex-
otic smooth R4 (introduced in the Section 2.3). Here we refer mainly to [134],[11] and
occasionally to [64].

Remark 16. One may wonder why approaching problems related to smooth manifolds via
the category Mfd is not always sufficient, although seemingly most natural. The answer
is that Mfd miss two important properties, namely being cartesian closed (in particular
the exponential MN does not have to be a manifold for manifolds M, N) and lacking finite
inverse limits (pullbacks do not have to be manifolds either).

Recall that a smooth topos T is a topos that models SDG. If a category Mfd of smooth
manifolds embeds fully and faithfully in such T, we call T well-adapted. Let us construct
now a particular well-adapted topos, that will be of our interest mainly in Chapter 5.

Consider the category of finitely generated C∞-rings (smooth rings) and C∞-ring ho-
momorphisms. Then the objects are rings of the form C∞(Rn)/I where I is an ideal in
C∞(Rn) and for B = C∞(Rn)/J, A = C∞(Rm)/I, a morphism `B → `A is an equivalence
class of smooth functions φ : Rn → Rm such that f ∈ I =⇒ f ◦ φ ∈ J and φ ∼ φ′ if
φ− φ′ ∈ J for all i = 1, . . . , m. We write A⊗∞ B for a coproduct of smooth rings A, B.

The category opposite to finitely generated C∞-rings is called the category of loci (plu-
ral for locus) L, so the objects of L are again finitely generated C∞-rings; to avoid confusion,
we will use the notation `A for an object in L where A is an C∞-ring, hence the morphisms
`B→ `A are C∞-morphisms A→ B.

One of the reasons we employ the category L is a reformulation of Theorem 14 in
category-theoretic language [134]:

Theorem 10. The functor s : Mfd→ L, M 7→ `C∞(M) is a full and faithful.

We will employ now this characterization directly; given any M ∈ Ob(Mfd), there
exists n ∈N and an ideal I in C∞(Rn) such that

• s(M) = C∞(M) = C∞(Rn)/I,

• s(R) = C∞(R)

• s(M× N) = s(M)⊗∞ s(N),

• s(Rn) = C∞(Rn) = C∞(R)⊗∞ . . .⊗∞ C∞(R) = s(R)⊗∞ . . .⊗∞ s(R)

Observe that already the image of R under s gives a more complicated object R ≡
C∞(R). If we interpret R as the "reals inside" L, we see R embedded as constant functions.
All the other smooth maps are "the new reals".

Remark 17. Unfortunately L is not cartesian closed. However, we will find that the cate-
gory SetLop

enjoys demanded properties.
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We embed now the category L in SetLop
through Yoneda embedding:

Y : L→ SetLop
, Y(`A) = L(−, `A)

and composing Y with s we obtain the functor embedding (denoted again by s)

s : Mfd→ L→ SetLop
, M 7→ M = L(−, C∞(M)),

which is again full and faithfull. Importantly, SetLop
as a presheaf category is a topos (see

Appendix B) and therefore it is cartesian closed.
Let B be a site defined by L with a Grothendieck topology. Let B denote the topos of

sheaves over a site B. One can show that all "nice" properties of SetLop
are preserved:

Theorem 11. There is a full and faithful embedding s : Mfd→ B. The Yoneda embedding
L→ SetLop

factors through B ⊂ SetBop
.

We finally obtain Ob(Mfd) 3 M 7→ s(M) = B(−, C∞(M)) ∈ Ob(B). Since B is a
topos, set-theoretic operations and constructions are valid as long as they are constructive,
i.e. the logic is intuitionistic and one does not refer to the law of excluded middle nor to
the axiom of choice. Let us describe the topos B in more detail.

First of all, we go back and forth between Set and B with the help of a pair of adjoint
functors ∆ a Γ:

Mfd B Sets Γ

∆
(2.18)

The functor ∆ : Set → B is a constant sheaf functor (the sheafification of a constant
presheaf), given by ∆(X)(`A) = X for every `A ∈ L. Thus ∆ defines the embedding of
"constant sets" in the universe B of "variable sets". The functor Γ : B → Set is the so-
called global section functor, given by Γ(F) = F(1), where 1 = s({∗}) = `C∞(R)/x is the
one-point locus. Note that for all manifolds M, N ∈ Ob(Mfd) it holds

Γ(s(M))
diff∼= M, Γ

(
s(N)s(M)

) diff∼= C∞(M, N)

For example, the object of smooth real numbers RB in B is canonically defined by

RB ≡ R = B(−, C∞(R)).

Secondly, the way B is constructed leads to problems with understanding what is the
"appropriate" object of natural numbers in B. As a Grothendieck topos, B contains a natu-
ral numbers object N = ∆(N), i.e. the sheaf associated with a constant presheaf Lop → Set
given by `A 7→ N. The problem with ∆(N) is that many plausible properties, such as the
compactness of [0, 1] ⊂ R, Archimedean property of R etc. are not satisfied with respect
to ∆(N). Thankfully, there is another candidate for natural numbers object: the image of
N under the full and faithfull embedding N = s(N) = `C∞(N), called the smooth natural
numbers. Interestingly, R can be shown to contain non-standard elements: infinite natural
numbers N \N and the object of infinitesimals � (which further splits into invertible I
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and nilpotent ∆ ones):

� = {x ∈ R : ∀n ∈N

(
− 1

n + 1
< x <

1
n + 1

)
},

I = �∩U(R), where U(R) consists of invertible reals,

∆ = {x ∈ R : ∀n ∈ N
(
− 1

n + 1
< x <

1
n + 1

)
}.

By systematically replacing canonical ∆(N) with smooth N, the demanded properties,
such as preserving compactness via s : Mfd → B or the Archimedean property of R, are
restored.

One of the remarkable properties of B is the way distributions are handled there. Recall
that in the category Set of sets and functions, the concept of a distribution was brought to
life in order to deal with peculiarities like the delta "function"∫

f (x)δ(x)dx = f (0). (2.19)

The fact that is easy to verify, yet usually swept under the rug, is that the function δ(x)
above does not exist in Set at all, and it serves as a mere imagination of a map with an
infinite spike located at x = 0. The rigorous framework of introducing such an object is
that of a distribution theory. Let C∞

c (Rn) denote a vector space of smooth functions (test
functions) with a compact support in R, what leads to a generalization of a derivative:∫

(Dα f )(x)φ(x)dx = (−1)|α|
∫

f (x)(Dαφ)(x)dx (2.20)

where |α| = α1 + α2 + α3 + α4 and Dα = Dα1
1 . . . Dα4

4 with Dj =
∂

∂xj
. Observe that the in-

tegral on the right-hand side of (2.20) defines a linear functional on C∞
c (Rn) and does not

depend on differentiability of f . Let D′(R) denote the set of distributions, i.e. continu-
ous linear functionals on C∞

c (Rn). Consequently, (2.19) gets a firm basis as a distribution
δ : C∞

c (Rn)→ R given by
δ( f ) = f (0).

As stated earlier, δ is a good example of a distribution that is not regular, i.e. for which an
integral representation does not exist. On the other hand, every locally integrable function
g gives rise to a regular distribution via

Tg( f ) =
∫

f (x)g(x)dx.

Let us present the above inside B. Recall that in order not to fall into problematic issues,
we decided to replace the canonical NNO, i.e. the constant sheaf N by the object N of
smooth natural numbers. This is also crucial with respect to handle distributions in B. To
proceed, we need the object Racc of accessible reals:

Racc = {x ∈ R : ∃n ∈N (−n < x < n)}.

Then f : Rn → R is called accessible if for every multi-index α and every x ∈ Racc we have
Dα f (x) ∈ Racc. Furthermore, define (RRn

)a to be composed of functions with accessible
support:

(RRn
)a = { f : Rn → R : ∃m ∈N ∀x ∈ Rn (x ∈ [−m, m] ∨ f (x) = 0

)
}.



2.3. Exotic smooth structures 27

Here, the set Fn of test functions consists of accessible functions with accessible supports.
Then a distribution on Rn is an R-linear map µ : (RRn

)a → R which is "infinitesimally"
continuous, i.e.

∀x ∈ Rn ∀α
(
Dα f (x) ' 0 =⇒ µ( f ) ' 0

)
. (2.21)

Here a ' b means that a− b ∈ � (i.e. the reals a, b are indistinguishable "up to infinitesi-
mals").

Finally we arrive at two most important properties of distributions in B. Firstly, we
introduce predistributions — these are functions ϕ : Rn

acc → R such that ∆ϕ : Fn → R
defined by

∆ϕ( f ) =
∫

[−A,A]n

ϕ f with A such that f (x) = 0 for x /∈ [−A, A]n

is infinitesimally continuous in the sense of (2.21). We see that predistributions are the
functions giving rise to what we know as regular distributions, i.e. those representable
by locally integrable functions in the standard approach [155]. Amazingly, all internal
distributions in B are of this type due to the following fact [134]:

Theorem 12. For every distribution µ : Rn → R there exists a predistribution µ0 : Rn
acc → R

such that for all f ∈ Fn it holds

µ( f ) ' ∆µ0( f ) =
∫

µ0 f .

Secondly, it can be shown that there is a direct relation between distributions internal
to B and external distributions living in Set [134]:

Theorem 13. The functor Γ : B → Set induces a bijection between internal distributions
µ : Fn → R and external distributions Γ(µ) : C∞

c (Rn) → R), as well as between internal
distributions with compact support, i.e. R-linear maps µ : RRn → R and external distribu-
tions with compact support Γ(µ) : C∞(Rn)→ R.

The above means that we can go back and forth between distributions internal and
external with respect to B; in particular, every external distributions becomes a regular
distribution internally in B. In the next section we will get familiar with the existence of
exotic smooth structures, especially in dimension 4. As we will see, such manifolds could
be in principle analyzed given the characteristics of functions defined on them. As we
have already seen, Basel topos B gives quite a new picture on the way distributions are
represented and general functions are differentiated, what gives promising opportunities
to shed new light on the puzzle of exotic smoothness.

2.3 Exotic smooth structures

We have already discussed that physics has a rich history of challenging established as-
sumptions. In particular, the ideas related to non-cartesian mixing of space and time, the
concept of curvature or non-trivial spacetime topology have had profound impact scien-
tific research. In this section, we will briefly go through the history of questioning yet
another foundational assumption: the standard differential structure of a spacetime.

In general, the object R of real numbers may appear in various ways as:

• a set of values that physical observables attain,

• a quantitity parametrizing an arrow of time,
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• a real numbers object in any topos with NNO,

• the Cantor set 2ω of all subsets of natural numbers,

• a unique complete ordered field and further — real numbers RM formalized in ZFC
models.

It is possible that each of above contexts has its own natural approach, with a prominent
role in describing the natural world. However, all of them refer to R more or less as a set,
sometimes with a bit of an additional structure, such as ordering, or topology. At the same
time, it is rather evident that to study dynamics in the general setting, including spacetime
phenomena, more involved frameworks are required. In physics, spaces of higher dimen-
sions like the (apparently) four-dimensional spacetime, 6N-dimensional phase space of N
classical particles or infinite-dimensional Hilbert spaces, are a constant theme. Even for
configuration spaces it is occasionally necessary to formulate problems on manifolds that
do not resemble an Euclidean one, at least globally. For example, consider the configura-
tion space of a two-dimensional double pendulum: two independent circles sweep out a
surface of torus S1 × S1, which certainly does not look like a plane when viewed globally.
Furthermore, to account for phenomena that occur in a local and continuous manner (or
at least to model them, if we do not believe in such fundamental locality and smoothness),
some form of dynamics has to be incorporated. Moreover, to deal with instantaneous
rates of physical quantities like velocity, it becomes necessary to discuss limits (topolog-
ical structure) and derivatives (differential structure) in the first place. In order to reach
this point and handle the most general scenarios, one follows the usual and accepted path
through defining topological and differential structure on a given set. Finally, to develop
the full theory e.g. of fields, one introduces geometry, mostly in the language of bundles.
Therefore, the usual path goes like that [6]:

point set→ topology→ smoothness→ bundles→ geometry (2.22)

While it is tempting to delve deeper into the story and further stages, such as metrics,
connections, gauge theory etc., let us pause here and focus on the middle part of (2.22)),
i.e. the topology-smoothness aspect. For the sake of clarity, we will restrict our dis-
cussion to infinite differentiability in the context of a smooth structure. In the follow-
ing we recall several related definitions and facts. An n-dimensional, smooth manifold
(M,A) consists of n-dimensional, Hausdorff topological manifold M and a maximal atlas
A = ({U |U ⊆ M — open}, {φU}}, where charts φU : U → φ(U) ⊆ Rn are homeomor-
phisms and all compositions (transition functions) φ−1

U ◦ φV : Rn → Rn are smooth. A
map between manifolds is called smooth whenever it is smooth as expressed by charts and
such definition ensures that smoothness is well-defined. In particular, a map f : M → R

is smooth at p ∈ M whenever all coordinates {φi
U} are smooth at p ∈ M for some chart

(U, φU). Two manifolds are diffeomorphic if there exists a smooth bijection (diffeomor-
phism) between them. One has to be aware of the difference between nondiffeomorphic
smooth structures and those that are just different. For instance, in general relativity a dif-
feomorphism is interpreted as a re-coordinatization of a manifold M, i.e. every coordinate
change is connected to some diffeomorphism applied to M. Consequently, diffeomorphic
manifolds are precisely those that represent the same physical content from the perspec-
tive of general relativity.

Example 5. Let M be a manifold R with the smooth structure defined by a global chart
φ(p) = p ∈ R for p ∈ M. Now let us design a new structure M′ given by R with a different
chart ψ(p) = p

1
3 . Structures generated by (M, φ) and (M′, ψ) are clearly different, since
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the transition function
(ψ ◦ φ−1)(p) = p

1
3

is not smooth. However, it is easy to observe that there is a homeomorphism f : p 7→ p3 ∈
R that is smooth by

(ψ ◦ f ◦ φ−1)(p) = (ψ ◦ f )(p) = ψ(p3) = p.

We will also use a description of a smooth manifold M by the respective ring C∞(M)
of smooth maps M→ R. Importantly, it can be proved in several ways that nothing is lost
here (see Lemma 11) and also it holds [71]

Theorem 14. Let M, N be separated smooth manifolds, whose topologies have countable
bases. There is a natural bijection

Hom(M, N) ' Hom(C∞(N), C∞(M),

where on the left-hand side we have smooth maps and on the right-hand side there are
R-algebra homomorphisms.

Remark 18. We will be interested mainly in R4, thus it is worth noting that the topology on
R4 comes from the standard product topology of R×R×R×R. More importantly, the
standard smooth structure on Euclidean Rn is defined by the atlas that consists of a global
identity chart id : Rn → Rn. In the case of n = 4, it is the unique smooth structure such
that the product R3 × R is also smooth (more generally, it can be shown that if M is a
smooth, contractible 3-manifold, then M×R is PL-isomorphic to R4 and this is sufficient
for M×R to be diffeomorphic to standard R4 [138].

Suppose someone hands us a topological manifold M and asks whether there exists
a unique smooth structure on M (granted there is at least one). Put differently, are two
homeomorphic smooth manifolds necessarily diffeomorphic? This question was initially
explored in the context of spheres; the first constructive results were obtained by Milnor
[133] revealing smooth structures on S7, nondiffeomorphic to the "standard" one. Subse-
quent efforts led to the famous theorem by Kervaire and Milnor [100], which states that
there are only finitely many exotic smooth structures on Sn for all n ≥ 5. The cases of
n = 2 and n = 3 had already been resolved by Radó [151] and Moise [135], respectively.
However, the case of S4, called the smooth Poincaré conjecture, remains an open problem
— it is still unknown whether a four-dimensional sphere admits an exotic smooth struc-
ture (cf. e.g. [66]). Meanwhile, the situation for Rn is paradoxical, being both manifest and
challenging at the same time. Indeed, there is essentially only one differential structure for
each Rn with n 6= 4; cases n = 1, 2, 3 are relatively straightforward [136], while uniqueness
for n > 5 is due to Stallings [167] and follows in particular from the famous h-cobordism
theorem by Smale [165]. Therefore, it was quite natural to conjecture the uniqueness of
smooth structure of Rn for all n ∈N. Unexpectedly, the situation changes significantly for
n = 4: not only there exist smooth structures not diffeomorphic to the standard one, but
there are uncountably many of them [67, 53] and we call them exotic smooth (or fake) R4.
Furthermore, exotic smooth R4’s split into two classes: small exotic R4 that can be embed-
ded in the standard R4 as open subsets, and large exotic R4 for which such an embedding
does not exist. Interestingly, each class contains uncountably many different smooth struc-
tures as well. Essentially, small exotic R4 arise due to failure of smooth h-cobordism and
large exotic R4 are the consequence of a failure of surgery theorem in the smooth case.
Since small exotic R4 are of main interest here, we give a brief account on their origin and
properties.
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Firstly, recall that in dimensions greater than 4, the h-cobordism theorem states that
a smooth equivalence between compact and simply-connected manifolds M, N is con-
trolled by the h-cobordism W between them [159]. It means that whenever there exists an
(n + 1)-dimensional W such that ∂W = M̄ ∪ N (orientation of M reversed) and W is ho-
motopically equivalent to M× [0, 1], then also smoothly W ' M× [0, 1] and in particular
M, N are diffeomorphic. The crucial technique that established the theorem for n ≥ 5,
called the Whitney trick, relies on embedding an open 2-handle (a Whitney disk) in order
to eliminate the pairs of intersection points inside the cobordism. However, in 4 dimen-
sions the method breaks down since the immersed disk may introduce self-intersections
as well. What Casson proposed instead was the infinite procedure of iterative disk immer-
sion, now known as Casson handle: a union over a tower of disks with well-defined levels,
where disks of a given stage cancel self-intersection from the preceding stage, but intro-
duce new ones [45]. Surprisingly, any such Casson handle is topologically just D2 ×R2,
what resulted also in a topological h-cobordism theorem in n = 4 [67]. Still, the theo-
rem does not hold smoothly. It is worth noting that Casson handles can be reconstructed
from infinite, (+,−)-signed tree: at every level, vertices and signs on branches correspond
to self-intersections and their signs, respectively, and the number of branches attached
to given vertex is equal to the number of self-intersections on the next level, and there
are sufficiently many Casson handles to cover all trees in such a way [94]. Now, two
"simplest", linear Casson handles with one self-intersection of a constant sign (denoted
CH+ ≡ (+,+, . . .), CH− ≡ (−,−, . . .), respectively) at each level, can be shown to be
exotic [32]. At the same time, all Casson handles embeddable in either CH+ or CH− are
exotic. While it is still an open question whether a linear Casson handle with arbitrary
signs is exotic, an affirmative answer would suffice for all Casson handles to be exotic as
well [32]. Note that such a general linear (+,+,−,+, . . .) Casson handles can be repre-
sented surjectively by real numbers given their a binary expansions (one needs only to
replace +,− with 0, 1, respectively), hence equivalently to binary tree, and we will return
to this observation in Chapter 7. Now one might wonder whether it is possible to "local-
ize" exotic smoothness. The answer is surprising indeed, as given a smooth h-cobordism
between 4-manifolds M, N, inside W there exists a compact contractible sub-h-cobordism
K between compact contractible submanifolds A ⊂ M, B ⊂ N (thus ∂K = At B) such that
W is smoothly trivial outside K, i.e.

W \ IntK ' (M \ IntA)× [0, 1].

In this case A determines the smooth structure of M; we call such A the Akbulut cork, de-
scribed originally in [4]. The term "cork" comes from the fact that one obtains different
smooth structures by cutting A from M and regluing A by an involution of ∂A. Impor-
tantly, the boundary of such A is always a homology sphere [67] and moreover, Akbulut
corks are always surrounded by small exotic R4 [159]. All of the above will be crucial in
demonstrating in Chapter 4 that appropriate exotic smoothness produces realistic cosmo-
logical parameters.

Remark 19. One might obviously debate the reasons behind the complexity of dimension
4 when it comes to smooth structures on Rn. As we have discussed, from the "technical"
point of view, the case is more or less manifest. But if we ask why the things are the way
they are, there could be two interconnected, "anthropic" explanations:

• we cannot formulate hard questions about smoothness of dimensions higher than 4;
instead, we "project" our inquiries based on the low-dimensional questions instead,
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• our mathematics reflects the human way of thinking, which is inherently four-dimensional
(even if higher dimensions do exist fundamentally, we seem to be bounded to effec-
tive, four-dimensional perception), and this inherent limitation affects the approach
to higher-dimensional problems.

While the first point seems reasonable, we object to the second one: it merely does
not provide a convincing explanation for why dimension 4 should be more complicated
than other dimensions. Nonetheless, finally we would like to refer another opinion [159]:
"dimension 4 is large enough to allow strange things to happen, but too small to enable
one to undo them".

Let us now discuss the fascinating topic of the potential physical implications of just
mentioned results on the exotic smoothness of R4. In the remaining part of this Section
we will recall some applications of exotic smoothness in physics that have appeared in the
literature so far. It will also give a proper background for the results in Chapter 4. As dis-
cussed in [37], it may seem counter-intuitive that exotic smooth structures have received
relatively little attention in the physics community, given the multitude of motivations
they incorporated from physics, such as Yang–Mills and string theory. One reason for such
a situation is certainly the technical difficulties related to the subject, such as deficiency of
explicit chart descriptions; inherently infinite constructions, which we briefly discussed in
the previous section, are also not encouraging. Secondly, there is a strong belief that differ-
ential structure is inherently untestable, partly due to the existence of an unknown (if any)
fundamental length. Consequently, one could argue that the choice of smoothness does
not matter as long as it serves merely as a convenient modelling tool. Moreover, even if
we assume spacetime to be fundamentally smooth, the effects of inequivalent differential
structures would not be locally detectable, as all smooth R4 appear identical from the per-
spective of local charts (after all, the local resemblance to Rn of any smooth manifold is a
central point in the definition of a smooth manifold). In practice, it is a standard approach
in physics to deal with homeomorphic manifolds as they are also diffeomorphic, i.e. we
do not concern ourselves which smooth atlas we actually use (neglecting somehow the
mathematical reservations).

Remark 20. We refer to the above comments occasionally. Briefly, it can be argued that:

• the relationship between the notions of discrete and continuous (smooth) can be un-
derstood in both directions: the set of reals R is not only a refinement of natural
numbers N through integers Z and rationals Q, but e.g. internal natural numbers N
in a smooth topos arise as a result of sheaf construction on the given smooth algebra
(see Section 2.2.3), therefore N can be also considered as built "on top" of R. In such a
perspective, a perfect smoothness of our spacetime may coexist with a fundamental
length scale in a nontrivial way,

• the fact that nondiffeomorphic structures cannot be distinguished locally does not
exclude the possibility that smoothness might have an impact on physics. In partic-
ular, prior to the discovery of exotic smoothness, it was widely believed that the only
global effects in physics were related to topology alone (cf. e.g. Aharonov–Bohm
effect [161]). As exotic smoothness of R4 is inherently global, its potential role in
topology-like consequences in physics has to be investigated. It is important to note
that diffeomorphisms represent coordinate transformations and therefore nondiffeo-
morphic smooth structures imply inequivalent descriptions of the same spacetime.

Due to the inherently global character of exotic smoothness, physicists began to ex-
plore its implications a few years after mathematicians made groundbreaking discoveries
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in this area. This exploration dates back to the work of Witten [174], who demonstrated
that 11-dimensional exotic spheres could be interpreted as gravitational instantons, along
with the results of Baadhio et al. [18]. Around the same time, Brans started the series of
papers that significantly contributed to our understanding of the potential impact of ex-
otic smoothness on the description of spacetime. Initially one could show that, although
coordinate maps {xi} on a topological R4 cannot be globally smooth with respect to ex-
otic smooth structure, there always exists some neighbourhood such that {xi} are locally
smooth inside this neighbourhood [35]. Moreover, the "exoticness" of R4 can be "spatially
localized" in the following sense [36].

Theorem 15. There exists smooth manifolds which are homeomorphic but not diffeomor-
phic to R4 and for which the global topological coordinates (t, x, y, z) are smooth for x2 +
y2 + z2 ≥ a2 > 0, but not globally. Smooth metrics exists for which the boundary of this
region is timelike, so that the exoticness is spatially confined.

Based on this result, Brans proposed a famous conjecture, now known as Brans conjec-
ture: Localized exoticness can act as a source for gravitational field, just as ordinary matter does
[6]. Eventually, the conjecture was proven by Asselmeyer-Maluga [5] for a compact case
and by Sladkowski [164] for a non-compact case. Exotic smooth structures were later used
e.g. in Euclidean Quantum Gravity [56], string theory [9], black holes [7], cosmology [12],
geometric origin of matter [15]. Exotic smooth structures on R4 have been studied numer-
ously with the use of model theory and category theory (e.g. [110], [108], [11], [14]) and we
frequently refer to these works through the thesis. Recently, exotic R4 have been shown to
represent gravitational instantons violating Strong Cosmic Censorship Conjecture [62].
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Chapter 3

The structure of L (H)

In Chapter 2 we went through a rather heavy tour over several topics, spanning from
quantum mechanics through smooth manifolds to a highly abstract categories and model
theory. In the current chapter we shall introduce some details concerning the structure of
the latticeL (H), with the particular focus on its Boolean subalgebras. We have already got
familiar with the evolution of ideas that had drawn inspiration from the thoughts primar-
ily attributed to Bohr. Thus we have encountered the posetal categories of commutative
substructures, both within the context of von Neumann and C∗-algebra B (H) associated
with a quantum system. We propose to shift the perspective slightly and look closer at
another setup, primarily related to logic. Namely, instead of substructures of B (H), we
will deal with an orthomodular lattice L (H) and its Boolean subalgebras. The first advan-
tage of such an approach is that L (H) is glued "nicely" from the structure BSub(L (H))
of Boolean subalgebras in the language of category theory; this is rather obscure in the
setup of general C∗- or von Neumann algebras and their commutative subalgebras. The
second advantage is not visible immediately, although we will see later on that it allows to
understand the "classical snapshots" (Boolean subalgebras) as directly giving rise to "math-
ematical universes" (Boolean topoi), therefore making the connection with category- and
model-theoretic description introduced in Chapter 2. These will serve as a unifying thread,
running through subsequent chapters. Furthermore, subalgebras of L (H) give rise to
the parametrization of smooth spacetime manifold, involving also a category-theoretic
language; eventually we arrive at the problem of quantum-mechanical randomness, dis-
cussed again within the structure of L (H). Surprisingly, another reappearing structure is
an exotic smoothness that seems to connect above with the smooth topos B as well. For
details concerning lattices and Boolean algebras we refer the reader to Appendix A. We
start with some well-known concepts and propositions.

3.1 Boolean subalgebras of L (H)

Let H be a Hilbert space of a quantum system; as already justified, we will assume H
to be separable. Again, B (H) and L (H) are the C∗-algebra of bounded operators and
the lattice of projections on H, respectively. Recall that every projection operator p ∈
L (H) represents a "yes-no" question one might ask about the system, and the most basic
questions are projections on one-dimensional subspaces of H — these are the atoms of
L (H).

Remark 21. The complete, orthomodular lattice of projections L (H) always exists, pro-
vided B (H) on a separableH. However, it might fail in the more general setting of unital
C∗-algebras. In particular, despite each abstract C∗-algebra can be realised as a subalgebra
of the concrete C∗-algebra B (H) for some Hilbert space H (see Theorem 1), the specific
spaceHmail fail to be separable. This is precisely the case of a Calkin algebra C(H) which
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will be of interest later on, due to peculiar relationships with ZFC set theory. In such case,
L(C(H)) might not even be a lattice [63].

Provided the background in Chapter 2, it is clear that quantum mechanics is alge-
braically related to noncommutativity of observables. In fact, this relation is exact, which
follows from [160]

Theorem 16. A collection of observables is simultaneously observable if and only if it is
commutative.

Now that we already have observed that quantum nature is reflected somehow in the
logical structure of L (H), we still do have an access to "classical" substructures in L (H).
These are Boolean subalgebras of L (H), i.e. subsets B ⊆ L (H) that are Boolean algebras
on their own. Due to Lemma 1, L (H) cannot be Boolean whenever dim(H) ≥ 2. By
Lemma 2, it can also be viewed as yet another reflection of the simple fact, that there
is no representation of a nonabelian C∗-algebra as a commutative subalgebra of B (H).
Thus, one may use the strategy similar to Bohrification, i.e. to replace the noncommutative
structure by its commutative substructures. The first natural choice is to decompose L (H)
into its Boolean subalgebras.

We introduce BSub(L (H)) to be the set of all Boolean subalgebras of L (H), partially
ordered by inclusion, i.e.

B1 ≤ B2 ⇐⇒ B1 ⊆ B2

for B1, B2 ∈ BSub(L (H)). We ensure that every L (H) can be covered with its Boolean
subalgebras.

Lemma 4. Every p ∈ L (H) is contained in at least one Boolean subalgebra.

Proof. We propose the most trivial choice, i.e. given Bp = {0, p,¬p, 1}, p ∈ L (H).

It is then easy to see that
L (H) =

⋃
p∈L(H)

Bp.

While formally true, the claim may be of little practical importance, as algebras of the
form Bp provide a rather limited amount of information about the system. Specifically,
one would like to enlarge these as much as possible, and there appears a natural ques-
tion, whether there exists a notion of a maximal Boolean subalgebra that gives as much
information as possible, together with a "classical" picture. This is indeed possible by the
following

Lemma 5. Every Boolean subalgebra of L (H) can be extended to a maximal one.

Proof. It is known that BSub(L (H)) is a meet-semilattice (i.e. for each non-empty fi-
nite subset the greatest lower bound exists in BSub(L (H))) and every chain of its ele-
ments is well-ordered [78]. By Zorn’s lemma, every B ∈ BSub(L (H)) is contained in
B′ ∈ BSub(L (H)) that is maximal.

Therefore every B ∈ BSub(L (H)) (thus every p ∈ L (H)) can be extended to at
least one maximal Boolean subalgebra. Such maximal Boolean subalgebras will be further
called blocks and they are indeed maximal with respect to the partial order in BSub(L (H)).
It is also easy to prove that all such blocks are automatically complete as Boolean algebras,
since every block is subcomplete [153].

It is known that no information is lost when we pass fromL (H) to a poset BSub(L (H)),
as orthomodular lattices are determined up to an isomorphism by their Boolean subalge-
bras via [78]
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Theorem 17. Let L,M be orthomodular lattices and φ : BSub(L) → BSub(M) be an
order isomorphism. Then, there is a lattice isomorphism φ∗ : L → M with φ∗[B] = φ(B)
for every Boolean subalgebra B ⊆ L, and φ∗ is unique provided L has no four-element
block.

One of the apparent weaknesses of studying L (H) instead of full B (H) is that L (H)
contains only particular observables-elements of B (H) and lacks some self-adjoint opera-
tors. Yet, it is important to include these in the discussion of Bohr’s doctrine. In order to
do that, we will use a variant of the spectral theorem (Theorem 3) stating that every self-
adjoint operator can be decomposed into appropriate family of projections. We refer here
to the particular form of spectral theorem, that emphasizes the role of Boolean subalgebras
of L (H) in recovering sets of commensurable observables [170].

Theorem 18. For every family {Ai}i∈I of self-adjoint pairwise commuting operators, there
exists a complete Boolean algebra of projections B, such that given the spectral decompo-
sitions of each Ai

Ai =
∫

λdEi
λ, (3.1)

it holds that ∀i ∈ I
(

dEi
λ ∈ B

)
.

In particular, for every self-adjoint A ∈ B (H) one finds at least one complete Boolean
algebra of projections such that A can be recovered from, in the sense of (3.1), which is just
a generalization of a well-known formula in finite dimensions

A = ∑ λiPi

decomposing A into projections Pi on eigenspaces of A. We will say that a self-adjoint A is
contained in a Boolean subalgebra B whenever {dEi

λ} ⊆ B for a spectral resolution {dEi
λ}

of A. Due to Lemma 5 we conclude

Corollary 1. Every self-adjoint A is contained in at least one block.

Therefore, we can base the further discussion on (maximal) Boolean subalgebras of
L (H).

Remark 22. There is a similar result for general self-adjoint operators: every such operator
can be "extended" to the maximal set of commuting operators in B (H).

It is instructive to see particular examples of atomic and atomless Boolean algebras in
the context of spectral resolutions of quantum-mechanical operators.

Example 6. Consider H = C2 with a basis {|0〉 , |1〉} (see Example 1). It is easy to observe
that given projections

p0 = |0〉 〈0| , p1 = |1〉 〈1| = 1− p0

the Boolean algebra (0, p0, p1, 1) is atomic.

Example 7. LetH = L2(R) and define the position operator Q by

Q(ψ)(x) = xψ(x).

Let BQ ⊆ L (H) be the block containing Q. It is easy to see that BQ has to be atomless,
since Q is multiplicity-free, hence it defines a maximally commuting system of observables
on H [33]. Therefore every A ∈ B (H) commuting with Q has to be of the form f (Q),
where f is measurable. Consequently, the spectral resolution of A coincides with {QA} =
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{χA} for measurable A ⊆ R. Finally, {χA} is isomorphic to the atomless measure algebra
Bor(R)/N (cf. Appendix A), whereN is an ideal of Lebesgue measure null sets. Thus BQ
is atomless as well.

Remark 23. Observe that similar reasoning may be applied to the momentum operator P
and its block BP; moreover, it can be generalized to L2(Rn) for any n ≥ 1 by introducing
BQ as a block containing all position "coordinates" Q1, Q2, . . . , Qn. Similarly, the family
{Qi} constitutes a maximally commuting system of observables on L2(Rn) and the same
conclusion holds.

We generalize above to the proposition, that every block BQ containing the full family
of position operators is isomorphic to some measure algebra.

Theorem 19. It holds that BQ
∼= Bor(Rn)/N for some n ∈N.

Proof. It is a direct consequence of Theorem 3 that BQ is isomorphic to Bor(X)/N for some
measure space (X, µ). By Riesz theorem, L2 (Rn, dnx) ∼= L2 (X, µ

)
for separable, infinite-

dimensional L2 (X, µ
)
; since the isomorphism preserves blocks, the result follows.

Nevertheless, one has to bear in mind that "block atomicity" is not an invariant associ-
ated with an operator. This is due to the fact that an operator may belong to several blocks
simultaneously, as illustrated by the following

Example 8. Let H = L2(R3) and BH ⊆ L (H) be a block containing a free-particle Hamil-
tonian H = P1 + P2 + P3. Then BH is either atomless or contains at least one atom. To
see that, observe that H by itself does not represent a maximally commuting system of
observables. One obvious way of completing H to a block is to pick spectral resolutions
for P1, P2, P3; as they commute with H, we obtain an atomless block as a result. Surpris-
ingly, for any operator A that does not form a maximally commuting system, it is always
possible to completement A with a pure-point spectrum operator B, such that {A, B} is al-
ready maximal [126]. Applying this to H we obtain a block {H, B} with at least one atom,
namely the one corresponding to one-dimensional projection in spectral resolution of B.

One can show that, in a way, atomic and atomless algebras exhaust all types of Boolean
algebras of projections in the following sense [34]

Lemma 6. Every Boolean algebra B of projections can be decomposed as

B = Ba ⊗ Bc,

where Ba is an atomic Boolean algebra (generated by finitely or infinitely many atoms) and
Bc is an atomless Boolean algebra, isomorphic to measure algebra Bor([0, 1])/N .

3.2 Automorphisms of L (H) and the Calkin algebra

In the end of this chapter, we gather several observations on the automorphisms of L (H),
that might be of importance as soon as substructures of L (H) serve as parametrizations
for a smooth spacetime manifold (see Chapter 5).

Let Aut(L (H)) denote the group of automorphisms of L (H), where φ ∈ Aut(L (H))
whenever φ is bijective and preserves order and orthogonality, i.e.

M1 ⊆ M2 =⇒ φ(M1) ⊆ φ(M2) and φ(¬p) = ¬φ(p).
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Define also Aut(B (H)) to be the group of automorphisms ofB (H), where φ ∈ Aut(B (H))
if φ is a linear or antilinear bijection and

φ(a†) = φ(a)† and φ(ab) = φ(a)φ(b).

It can be shown that Aut(B (H)) is actually isomorphic to Aut(L (H)) if dim(H) ≥ 3
(see [44] for a thorough discussion on this and the other automorphism groups related to
Aut(L (H))). Many properties of Aut(L (H)) can be deduced using the lattice version of
Wigner’s theorem [176]

Theorem 20. Every φ ∈ Aut(L (H)) is of the form

φu(p) = upu−1, (3.2)

where u ∈ B (H) is unitary or antiunitary.

By Theorem 20 it is easy to see that every automorphism preserves commutativity,
since φ([p, q]) = [φ(p), φ(q)]. Furthermore, automorphisms preserve the completeness
and maximality:

Proposition 1. Let φ ∈ Aut(L (H)) and B ⊆ L (H) be a complete (maximal) Boolean
algebra. Then φ(B) is also a complete (maximal) Boolean algebra.

Proof. First, observe that φ(B) is a poset, as a subset of Aut(L (H)). As an automorphism,
φ(B) contains all suprema and infima, hence φ(B) is a lattice. Observe φ(0) = 0 ∈ φ(B)
and φ(1) = 1 ∈ φ(B) making φ(B) bounded. As φ preserves distributivity, φ(B) is a
bounded, distributive lattice, thus a Boolean algebra.

Suppose B is complete and let {φ(pi)}i∈I ⊆ φ(B). It is easy to see that φ(B) is complete
as well, since [89, Lemma 1, pg. 143]

φ
(∧

pi

)
=
∧

φ(pi), φ
(∨

pi

)
=
∨

φ(pi)

Finally, suppose that B is maximal (i.e. B is a block) and let p ∈ φ′(B). Then by
Theorem 20 we have ∀q ∈ φ(B) ∃r ∈ B (q = uru†) and from [p, q] = 0 it holds [p, uru†] =
[u† pu, r] = 0. Since B is a block, it holds u† pu ∈ B, therefore φ(u† pu) = p ∈ φ(B) and
φ(B) is also maximal, thus it is a block.

In Chapters 4 and 5 we will argue that algebra homomorphisms between elements of
BSub(L (H)) should correspond to smooth maps between open subsets of R4. This way,
diffeomorphisms of R4 are to be represented by automorphisms of L (H) in this picture.
Surprisingly, there is a sequence of interesting results relating Aut(L (H)) with a Cohen
forcing.

Recall that P(N)/Fin is a Boolean algebra and it is easy to verify that it is atomless.
Here, Fin is the Fréchet ideal of finite subsets of N, thus A, B ∈ P(N)/Fin are equivalent
if A∆B is finite. Furthermore, let βN denote Stone-Čech compactification of N seen as a
discrete topological space, i.e. βN is the set of all ultrafilters on N, where every principal
ultrafilter corresponds to some n ∈ N. Consequently, a set βN \N is called a remainder
and consists of non-principal (or free) ultrafilters on N. At the same time, βN \N is a
Stone space of P(N)/Fin (see Appendix A).

Let K(H) be the algebra of compact operators given by

K(H) = {A ∈ B (H) | A[H] is finite dimensional}.

The quotient C(H) = B (H) /K(H) is called the Calkin algebra. It can be viewed as a
noncommutative ("quantum") analogue for βN/N [172] in the following sense. Suppose
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we fix an orthonormal basis for H; then H = `2(N). Let `∞(N) be the set of bounded
complex sequences; the elements of `∞(N) can be naturally embedded into B(`2(N)) as
diagonal operators via `∞(N) 3 a 7→ â ∈ B(`2(N)) such that â(ψ) = (aiψi). Then,
projections in the embedded `∞(N) are projections on subspaces spanned by diagonal
elements parametrized by subsets of N, thusL(`∞(N)) ' P(N). By Theorem 1, `∞(N) as
a commutative C∗-algebra is isomorphic to a concrete C∗-algebra C(X) where X is locally
compact Hausdorff and it can be shown that in our case X = βN. Similarly, the set c0 =
`∞(N) ∩ K(`2(N)) of complex sequences converging to 0 is a two-sided ideal of `∞(N),
so `∞(N)/c0 is again a commutative C∗-algebra, and we have `∞(N)/c0 ' C(βN \N).

It is an interesting fact that many properties of Calkin algebra and related structures are
of set-theoretic characteristics [172]. In particular, there are several results concerning auto-
morphisms that depend e.g. on CH. One of the examples is that, assuming ZFC+CH, there
is 22ℵ0 many automorphisms of both P(N)/Fin and C(H). The question whether all auto-
morphisms of C(H) are inner (these are the maps of the form (3.2)) is independent of ZFC,
and CH is sufficient to show the existence of an outer (i.e. not inner) automorphism. Simi-
larly in the "classical" case, every bijection between cofinite sets N \ n→N \m, n, m ∈N

induces the so-called trivial automorphism of P(N)/Fin. By analogy one shows that it is
independent of ZFC whether all automorphisms of P(N)/Fin arise this way, and again
under CH one finds a nontrivial automorphism. Observe that via Stone duality (see Ap-
pendix A), automorphisms of P(N) and P(N)/Fin correspond to self-homeomorphisms
of βN and βN \N, respectively. In the Chapter 7 we provide an outlook for the possible
future research on this topic in the context of exotic smoothness.



39

Chapter 4

Extending the universe

The introduction given in Chapter 1 raised questions about the conventional approach to
quantum mechanics. We have previously argued that, aside from the remarkable align-
ment between theoretical and experimental physics across various domains (and perhaps
a degree of simplicity), there is no inherent reason to refrain from available mathemati-
cal tools to address some gaps in our current comprehension of the natural world. In the
current chapter, we elaborate on the possibility that a quantum system attributed to the
assumed initial singularity can distinguish the large-scale structure of our observable Uni-
verse. Such a hypothesis gains support from the assumption that fundamental elements
underpinning differential geometry, such as real numbers, are not absolute in the sense of
ZFC models. This nonabsoluteness is a direct consequence of quantum mechanics’ formal-
ism, which naturally employs the tools we introduced in Chapters 2 and 3. As a byproduct,
the approach gives an opportunity to shed new light on the problem of cosmological con-
stant value, a topic we explore in this chapter; most of these results are contained in [108].
In what follows we will also use insights into the structure of L (H) and BSub(L (H))
given in Chapter 3. Results presented here are based mainly on [108][103].

4.1 From Boolean algebras of projections to forcing extensions

Currently, it is a widespread perspective within the physics community that our Universe
originated from a singular state S of high energy density through the process called Big
Bang, followed by rapid cosmological inflation phase. Given the extreme conditions as-
sumed to prevail near the start of this process (e.g. distances smaller than the Planck
length, energies larger than the Planck energy etc.), it is widely accepted that an accurate
description of S should involve a foundational theory that combines quantum mechanics
and general relativity in appropriate regimes, as both theories are believed to break down
at S. While we do not have an access to such a fundamental theory, we make rather mild
yet speculative assumptions about S:

A1 Physics at various scales can be generically expressed within distinct mathematical
"universes" (e.g. topoi, ZFC models). In particular, the smoothness in A2 may de-
pend on the specific structure of real numbers inside the "universe" it is formulated
in.

A2 Spacetime at high energies still can be modelled as a smooth manifold.

A3 Hilbert space approach in the sense of structures used (e.g. C∗-algebra of observ-
ables, orthomodular lattice of yes-no propositions) is likely to be present in a de-
scription of S.

Therefore, let us start with the quantum-mechanical system S, described by a Hilbert
space H. By A3, we demand the position Q and momentum P operators to be defined on
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H, hence by Remark 5 it follows that dim(H) = ∞. Also

H ' L2(Rn) = L2(R)⊗ . . .⊗ L2(R)︸ ︷︷ ︸
n−times

(4.1)

Note that at this point, we have refrained from making any assumptions about the num-
ber of dimensions n, which directly corresponds to spacetime dimensionality. Specifically,
we have not asserted n = 4 thus far. Another important remark is that the real line R in
(4.1) encompasses here both the quantum-mechanical parameter space and the coordinate
space employed to model a spacetime as a smooth manifold. We will see that a distinc-
tion we have just established will give rise to nontrivial characterization of the spacetime
manifold itself.

Let BQ and BP denote atomless blocks that contain P and Q, respectively, in the sense of
their spectral resolutions (recall that this way we assume BQ, BP to include complete fam-
ilies of Q and P coordinates, respectively). It is evident that P /∈ BQ and Q /∈ BP since Q, P
do not commute. Recall that due to Lemma 3, self-adjoint operators contained in BQ and
BP are in one-to-one correspondence with the real numbers RBQ , RBP from Sh(BQ), Sh(BQ),
respectively. We shall refer to RBQ , RBP as Boolean quantum real numbers. By Example 7,
both BP and BQ are atomless, hence they support non-trivial forcing (see Lemma 21).

Let us assume the existence of ultrafilters UQ, UP on BQ, BP over the universes VQ, VP,
respectively. Then we obtain the following, two-valued models:

Sh(BQ)/UQ = VQ[UQ], Sh(BP)/UP = VP[UP] (4.2)

Consequently, the two-valued models VQ[UQ], VP[UP] contain the objects of real numbers
R[UQ], R[UP], which we call quantum real numbers.

Remark 24. As shown in Example 8, a block BH containing the free-particle energy H may
contain an atom; by Lemma 21, it leads to trivial forcing and therefore

Sh(BH)/UH = VH [UH ] = VH, R[UH ] = RH (4.3)

for every generic ultrafilter UH on BH over VH.

Recall that both BQ and BP are measure algebras, isomorphic to atomless Bn = Bor (Rn) /N
(see Theorem 19). By Lemma 21, Bn leads to nontrivial forcing. It follows that [19]

Lemma 7. For every nontrivial forcing extension of the real line R in V to R[U] in V[U]
for U ∈ Bn generic over Sh (Bn) ∼= VBn , it holds that all measurable subsets of R in the
extended model V[U] have measure zero.

We consider the above lemma, together with Example 8 as a suggestive basis for the
following line of reasoning: various physical quantities such as large-scale gravitational
fields, or quantum fields, may propagate through spacetime parametrized by real num-
bers within distinct models, particularly in forcing extensions. Nevertheless, as shown in
Example 8, certain specific forms of energy, corresponding to Hamiltonians contained in
blocks possessing atoms, propagate in spacetime parametrized by real numbers from the
trivial forcing extension (4.3).

We propose a cosmological model that offers an interpretation of the inflationary phase
in the evolution of Universe from the model-theoretic perspective. This provides a alter-
native viewpoint regarding the cosmological constant problem. The subsequent section
is dedicated to a more thorough analysis of this subject from the quantum-mechanical
standpoint.



4.2. Vacuum energy vanishes 41

4.2 Vacuum energy vanishes

In Chapter 1 we briefly introduced how the cosmological constant (CC) problem confronts
quantum mechanics, specifically quantum field theory, with classical physics, particularly
in the realm of cosmology, as it appears to challenge the way quantum vacuum interacts
via gravitation on a large scale. In the current section we leverage the conclusions drawn
of Section 4.2 to suppress the substantial magnitude of zero-point fluctuations of quantum
fields. By doing so, the significant discrepancy between quantum-mechanical and macro-
scopic perspectives on CC vanishes to some extent (however, the puzzle of a tiny, non-zero
value of CC remains, and we will address this in Section 4.4). To achieve this goal, we first
describe the problem of CC in a greater detail and elaborate on the fact it falls into the
intersection of cosmology and quantum field theory.

Let us start with a short historical note. It is widely recognized that once Einstein had
formulated his equations describing the interplay between spacetime’s geometry (repre-
sented by Ricci and scalar curvature Rµν, R and the metric gµν) and its matter-energy
content (represented by the energy-momentum tensor Tµν):

Rµν −
1
2

Rgµν = 8πGTµν, (4.4)

he was dissatisfied with the generic implication of (4.4), which indicated that the universe
would either expand or contract. On the other hand, one has a freedom to introduce a
specific term Λgµν with Λ = const in (4.4), what gives

Rµν −
1
2

Rgµν + Λgµν = 8πGTµν. (4.5)

What Einstein initially regarded as an appealing aspect of his equations was the possibility
to force a universe to be static through (4.5). In fact, for an isotropic and homogeneous uni-
verse characterized by radius a(t), one can achieve ȧ(t) = 0 by setting Λ = 4πGρ = a−2,
with ρ representing energy density [27]. The drawback, however, was that such solution
was inherently unstable [59, 127]. Several years later, the work of Hubble in 1929 deci-
sively refuted static solutions and gave evidence for the expansion of Universe, as distant
galaxies were observed to redshift [87]. All of these developments led Einstein to summa-
rize his introduction of a particular Λ 6= 0 in (4.5) as his "greatest blunder". Ironically, it
is worth noting that various measurements conducted to this day have indeed confirmed
nonzero, small value of Λ, although differing from the one proposed by Einstein, obvi-
ously. So far, we have not encountered any significant issues with the experimental value
of CC, primarly because we have regarded Λ as a free parameter of the theory. However,
as previously discussed in Chapter 1, once we consider all potential sources for Λ, includ-
ing quantum effects, it appears impossible to predict the actual value of Λ by means of
any "canonical" method, and we explain what is meant by this in the following.

Let us discuss how quantum mechanics enters Einstein equations (4.5). Due to Lorentz
invariance of the vacuum, we have [173]

〈0| Tµν |0〉 = −ρvacgµν, (4.6)

where ρvac denotes a vacuum energy density; the equation (4.6) holds for all existing fields.
It is reasonable to assume that the vacuum energy gravitates just like any other form of
energy, in accordance with the equivalence principle. Thus, plugging (4.6) to (4.5), one
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obtains
Rµν −

1
2

gµνR +
(
Λ + 8πGρvac

)︸ ︷︷ ︸
Λeff

gµν = 8πGTµν.

Observe that vacuum energy acts exactly as cosmological constant, therefore we may as
well define

ρB =
Λ

8πG
(4.7)

to be the bare vacuum density, corresponding to the bare cosmological constant parame-
ter stemming from (4.5). Consequently, we introduce the effective cosmological constant
Λeff = Λ + 8πGρvac and it is Λeff that can be directly observed. Recall that term Λ is
merely a free parameter in (4.5), without any reference to quantum-mechanical descrip-
tion. At the same time, it is natural to represent 8πGρvac by zero-point fluctuations of all
quantum fields, hence quantum field theory enters cosmological regime here.

To estimate the contribution of quantum fields to Λeff, it is instructive to examine a
simple case involving a real scalar field φ with mass m and a potential V(φ) = 1

2 m2φ2 [131].
The standard solution of Klein–Gordon equation of motion, given by the combination of
creation and annihilation operators, leads to the vacuum energy density

〈ρvac〉 =
1
2

∫
d3k

1
(2π)3 ω(k) =

1
4π

∞∫
0

dk k2
√

k2 + m2, (4.8)

where ω(k) =
√

k2 + m2 and k = (k0, k) is the four-momentum. Thus, plugging (4.8) into
Λeff one arrives at

Λeff = Λ +
8πG
4π

∞∫
0

dk k2
√

k2 + m2, (4.9)

which is manifestly infinite, due to UV-divergence of the integral (4.8). In fact, quantum
field theory abounds in such divergent expressions and infinite vacuum energy on a flat
Minkowski spacetime is not an exception. Observe that in case of Einstein equations (4.4),
it causes the curvature of spacetime to be infinite. Typically, in the absence of gravity, it
is argued that absolute vacuum energy is not observable and actually can be renormal-
ized to any value. Indeed, phenomena like the Casimir effect or Lamb shift have been
demonstrated to depend only on vacuum energy differences. However, the case of (4.19)
is different, as the equivalence principle suggests that absolute value of vacuum energy
matters here and it should therefore gravitate like any other form of energy. Nonetheless,
UV-divergences such as (4.8) are usually recognized as a feature of applying given low-
energy theory "all the way down", beyond its applicable range, and the entire framework
of regularization and renormalization is devised to manage these infinities and extract
meaningful, observable insights from the theory. To illustrate this, let us follow the most
naive regularization approach and impose a hard momentum cut-off M on (4.8):

〈ρM〉 = 1
4π

M∫
0

dk k2
√

k2 + m2 =
M4

16π2

(
1 +

m2

M2 + . . .

)
, (4.10)

where we expanded the integral with respect to small parameter m2/M2. In other words,
we assume that at energy scale M our current theory breaks down, and has to be replaced
with a more fundamental one. Suppose that M = MP, i.e. we treat the theory as valid
and effective down to Planck’s energy MP ∼ 1018 GeV; this gives the prediction of QFT of
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roughly
〈ρMP〉 ∼ 1018GeV4 ∼ 1072GeV4. (4.11)

Surprisingly, it was already known to Lemaître that experimentally one finds

〈ρeff〉 =
Λeffc2

4πG
∼ 10−47GeV4. (4.12)

Comparing the numbers (4.11) and (4.12), it is indeed valid to state that the frequently
cited disparity of log(〈ρMP〉 / 〈ρeff〉) ≈ 120 orders of magnitude appears quite severe. At
the same time, one needs to take it with some caution, as there are several misconceptions
associated with this disagreement. First, the scale M = MP is a viable choice only if we
assume QFT remains a valid theory up to Planck scale. However, it can be shown that even
with a lower energy cutoff, such as M = mp (where mp is the proton’s mass), the vacuum
energy is already 46 orders of magnitude too large [131]. Secondly, our discussion thus far
has been limited to a simplified model of scalar field, and it is clear that the discrepancy
between (4.11) and (4.12) should involve all the physical fields we are aware of, including
the scalar Higgs field, fermion (including quarks and leptons) and gauge boson fields,
which together constitute the Standard Model of particle physics. Calculating carefully
above contributions, one arrives at [131]

〈ρeff〉 ≈ −2× 108 GeV4 + ρB + ρEW + ρQCD + . . . , (4.13)

where ρB represents the bare density (4.7) and the ellipsis stand for other, currently un-
known contributions. It is worth noting that, assuming supersymmetry, the contributions
of bosonic and fermionic fields to the cosmological constant exactly cancel each other [131].
However, supersymmetry must be broken, as we have not observed supersymmetric part-
ners of masses comparable to known particles. In this case, imposing a 100GeV cutoff we
obtain a discrepancy of 52 orders of magnitude [122]. Lastly, it is important to recognize
that CC problem is frequently framed as the incorrect prediction of the CC value arising
from QFT, treated effectively at any scale. However, one has to bear in mind that the
effective (i.e. measurable) CC is defined through

Λeff = Λ + ΛQFT, (4.14)

and the common misconception is the assumption that both Λ = 0 and Λeff = ΛQFT simul-
taneously hold. Note that there is no inherent reason for zero-point energies to precisely
match the value of Λeff. Indeed, it might just be the case that Λ, ΛQFT are adjusted so that
Λeff ∼ 10−47GeV4 as in (4.12). It does not resolve the problem, though: one still has to in-
vestigate what is the mechanism of this remarkably precise fine-tuning, as it corresponds
to adjusting two, possibly unrelated numbers up to 55-120 decimal places (depending on
the method adopted).

The approach outlined above can be considered the most natural and canonical means
of generating a source of cosmological constant from the standpoint of quantum field the-
ory and general relativity. However, the persistence of CC problem indicates that either
we cannot resolve it without uniting these theories, or there are substantial flaws in our
logic (both points could be true in principle). Recall that to solve the CC problem, one
has to either suppress the gravitational interactions of quantum zero-modes completely
(and leave the bare CC as a free, classical parameter), or provide the source for fine-tuning
(4.14). In the remainder of this section, we will show that it is feasible to pursue the former
option, applying the tools developed in Section 4.2.

To continue, let us briefly discuss statements A1, A2, A3. Firstly, A1 points that it might
not be reasonable to assume physics can be adequately formalized in a single model that
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Planck epoch large-scale universe

ZFC model extended ZFC model

inflation

FIGURE 4.1: Model extensions representing the inflation

spans from cosmological scales all the way down to quantum-mechanical systems. Thus,
we will introduce representations for these structures. Second, these counterparts will
involve the relativization of certain parameters that are typically considered as constants,
such as the object of real numbers. It is worth noting that, given an observable quantitity F
parametrized implicitly by real line, every such modification has the potential to influence
F, expressed as

F =
∫

d3x f (x) ≡
∫
R

d3x f (x), (4.15)

where R represents is a specific object associated with the real line. In principle, these ob-
jects are not identical when transitioning from one model to another, and consequently, the
domain of integration has to be decided. Therefore, it is reasonable to reevaluate expres-
sions like (4.15), whenever one suspects the parameter space changes. We argue that it also
affects the notion of smoothness, which is the subject of A2 and thus can be considered as a
logical consequence of A1. Lastly, we have to agree on a starting point for building model
extensions. According to A3, the logical structure of an initial, Planck-scale quantum sys-
tem is that of an orthomodular lattice of projections. Therefore, the entire framework of
Boolean-valued models described in Section becomes available, and we turn to detailed
analysis in what follows.

Suppose that during inflation the change(s) of models occured, as illustrated on Fig.
4.1. Let the Planck-era spacetime be initially modeled by V. Following the inflation
phase, we introduce extensions denoted as VQ, VH describing large-scale spacetime. Con-
sequently, inflation entails a change of the real line RV 7→ RQ, RH as well. Recall that
whenever Q and H give rise to atomless and atomic blocks, the forcing extensions VQ, VH
are non-trivial and trivial, respectively. Furthermore, we have the following relationship

RV ( RQ, RV = RH. (4.16)

We see immediately that, whenever we refer to quantities parametrized by the pre-inflationary
(non-extended) model, we should integrate over RV rather than the extended RQ. This
principle specifically applies to (4.8), resulting in the vacuum energy of a quantum scalar
field as follows

〈ρvac〉 =
1
2

∫
R3

V(R3
Q

d3k
(2π)3 ω(k), (4.17)

and we integrate over R3
V that is only a proper subset of large-scale R3

Q. To demonstrate
that we no longer struggle with an UV-divergence here, we consider several facts. For the
Lebesgue measure µ : Bor(X)→ [0, 1] and A ⊆ X, the inner measure µ∗ is defined by

µ∗(A) = sup{µ(U) : U ⊆ A, U — compact} (4.18)
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and the outer measure µ∗ by

µ∗(A) = inf{µ(U) : A ⊆ U, U — open}.

(Note that A is measurable iff µ∗(A) = µ∗(A) [19].) Recall that the set A ⊆ X is called
meagre or Baire first category in X, whenever it is a countable union of nowhere dense
subsets of X; we will need the following [114]

Lemma 8. In the case of random forcing, the real numbers RV form a meagre subset of
RQ.

Moreover, one shows [38]

Lemma 9. For the set RV = 2ω ∩ V of reals in the ground model one has µ∗(RV) = 0,
µ∗(RV) = 1 and therefore RV is nonmeasurable in VQ.

Thus, Lemma 9 raises an issue, as it renders integrals over the entire RV undefined,
due to nonmeasurability of the domain. Consequently, one cannot compute integrals such
as (4.17) in principle. On the other hand, recall that all the terms (4.13) producing cosmo-
logical constant should be considered as effective and are thus defined only on specific,
bounded subsets of RV . This observation alone is sufficient to suppress all the contribu-
tions (4.13). To show this, we use the following

Lemma 10. For every compact, Lebesgue measurable subset S of the non-measurable set
A with µ∗(A) = 0 it follows µ(S) = 0.

Proof. Immediate from definition (4.18).

Corollary 2. By Lemmas 9 and 10, all compact measurable subsets of RV have null mea-
sure, thus all integrals defined on compact X ⊂ RV vanish.

As a consequence, quantum fields in the Planck epoch propagate "within" the model
V, even though gravitational fields shall be parametrized by R[UQ] (i.e. they propagate
"within" the model VQ[UQ]). Now, the immediate implication of this postulate is that
all entities parametrized by real numbers from the initial model will be reduced, as dic-
tated by Lemma 9. It is important to recall that zero-energy modes of quantum fields
have purely quantum-mechanical origin and, therefore, propagate in V. Conversely, both
higher modes of quantum fields and large-scale gravity propagate "within" the extended
model. As discussed earlier, in the standard approach, the zero-point energy without
the cutoff (4.10) is UV-divergent. Nevertheless, due to the distinctive properties of the
Lebesgue measure of subsets of real numbers defined inside the models, our approach
yields

Corollary 3. Every contribution (4.13) with any finite UV-cutoff is suppressed, which gives
immediately 〈ρvac〉 = 0

Proof. By Lemma 9, all measurable subsets of R3 have null measure in R[UQ]
3. Moreover,

R is a meagre subset of R[U]. Thus, every integral of the form
∫

R3

(·)d3x[U] calculated in the

extended model vanishes, applying also to the particular case of
∫

R3⊂R[U]3

d3k
(2π)3

√
k2+m2

2 .

At first glance, this conclusion might appear as a drawback when compared to the cur-
rently accepted value (4.11). Indeed, even if we were to resolve the significant discrepancy
(2.20), there is no possibility of making the contribution (4.10) assume any non-zero value
due to Lemma 9. Therefore, in order to compute the realistic value of the cosmological



46 Chapter 4. Extending the universe

constant, an alternative strategy needs to be developed. Recall that we previously defined
Λeff = Λ + 8πGρvac, suggesting the presence of two potentially separate contributions.
Given our argument that the contribution from QFT vanishes, we deduce the following

Corollary 4. In the model-dependent approach, the effective cosmological constant is
equal to the bare cosmological constant:

Λeff = Λ = 8πGρB (4.19)

An obvious question emerges: can we provide a meaningful computation of (4.19)
that is not only theoretically sound, but also consistent with experimental data? In the
following section we demonstrate that this is indeed achievable and, surprisingly, one
needs to take into account the smooth structure of spacetime that appears to stem from
the lattice of subspaces of a Hilbert space of the initial quantum system.

4.3 Macroscopic smoothness from L (H)

Recall that R, defined as an Archimedean model for a Dedekind complete, ordered field, is
unique up to an isomorphism. (Note that Dedekind completeness is a second-order prop-
erty, unlike the first-order ZFC axioms, see Appendix B.) We claim that the distinction be-
tween real numbers within first-order ZFC models and the aforementioned second-order
real line R might provide a formal analogy for the physical transition from real numbers
that parametrize quantum-mechanical processes to the macroscopic real line that under-
pins large-scale physics.

Definition 2. We define the large-scale classical limits of quantum real numbers R[UQ]
and R[UP] to be the substitutions R[UQ] → R and R[UP] → R, respectively. In general,
the large-scale classical limit of quantum real numbers R[UA] from the model Sh(BA)/UA
for a self-adjoint A is the substitution R[UA] → R and, similarly, the classical large-scale
limit of R[UA]

n is the substitution R[UA]
n → Rn, also denoted by Rn/R[UA]

n.

Observe that in the case of a self-adjoint A contained in a block BA with atoms, we
obtain the substitution R → R. This is the consequence of Lemma 21, giving that for any
ultrafilter UA on BA over V we obtain

Sh(BA) ∼= V[UA] ∼= V.

Given an n-dimensional smooth manifold, we will provide a parametrization through
blocks in L (H). Let BSub(L (H)) be the family of Boolean subalgebras L (H), and

U = {UB → Rn : B ∈ BSub(L (H))}

be a local regular open cover of an n-dimensional topological manifold Mn
L(H), and each

UB is the large-scale classical limit of some Rn
B. We assume there exists the cover U with

the following properties:

∀UB ∈ U ∃B ∈ BSub(L (H)) (UB → Rn/Rn
B) (4.20)

∀K— open cover of Mn
L(H)

(
U ⊆ K =⇒

⋃
U /∈ K

)
(4.21)

∃B1, B2 ∈ BSub(L (H))
(
UB1 , UB2 ∈ U =⇒ UB1 ∪UB2 /∈ U

)
(4.22)

The condition (4.20) states that for every open UB ∈ U there exists a Boolean algebra
B ∈ BSub(L (H)) that provides an associated substitution. Secondly, (4.21) defines U to
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be unique, i.e. its union cannot be an element of a larger cover. The third point (4.22) above
is built on the fact that in a nondistributive lattice L (H) there always exists at least one
pair {Q, P} of operators (e.g. consider the particle’s position and momentum) giving rise
to BQ, BP such that BQ ∪ BP is not a Boolean algebra anymore.

Definition 3. If U satisfies above conditions and is a smooth regular open cover of a
smooth n-dimensional manifold Mn

L(H), then the pair
(

Mn
L(H),U

)
is called a smooth mani-

fold large-scale classical limit (classical limit for short) of the lattice L (H).

While it is obvious that there could be several smooth manifolds Mn as candidates for
a large-scale classical limit of given L (H), we will focus on the case of usually assumed
Mn = Rn. This brings us to an important result:

Theorem 21. If Rn is a smooth manifold large-scale classical limit of the lattice L (H) with
dim(H) > 2, then it is an exotic R4.

Proof. Let U be a regular topological open cover of a smooth R4. By (4.20), each UB ∈ L
is diffeomorphic to Rn. By (4.22), there is a pair B1, B2 ∈ BSub(L (H)) such that UB1 ∪
UB2 /∈ U . Consequently, there exists a family A ⊆ BSub(L (H)) such that

⋃A /∈ U and
further

⋃U /∈ U . Thus
⋃U 6' Rn as a smooth manifold, yet as a topological manifold it is

homeomorphic to Rn. Therefore
⋃U has to be exotic smooth, but this is possible only in

the case of n = 4.

The following corollary justifies the term "large-scale classical limit".

Corollary 5. The lattice L (H) can be considered as a source of non-vanishing large-scale
curvature of R4 and the curvature cannot be removed by any smooth coordinate transfor-
mation.

Proof. First, every exotic R4 is a curved Riemannian manifold; if such R4 had been flat, it
would be diffeomorphic to R4 with a standard smooth structure, i.e. the atlas containing
the global chart. Since R4 is not diffeomorphic to the standard flat R4, there does not exist
any smooth transformations R4 → R4.

Recall that whenever an orthomodular lattice is distributive, it becomes a Boolean al-
gebra and, in particular, it cannot model any non-trivial commutation relations. This is
also reflected in the classical large-scale limit of L (H) as follows.

Theorem 22. If L (H) is a Boolean algebra, then the smooth structure of its large scale
classical limit Rn is the standard Rn.

Proof. Let L (H) be Boolean; then every Boolean subalgebra of L (H) can be extended
uniquely toL (H), thusL (H) itself is a maximal Boolean algebra and since U = {UL(H) →
Rn} is also a singleton, it holds that the conditions (4.21) and (4.22) are not satisfied and
we have ⋃

U ∼= UL(H) ∈ U .

Hence Rn is not exotic, therefore it is standard smooth.

To conclude, the (non-)Boolean structure of L (H) characterizes the spacetime smooth-
ness given the conditions (4.20)-(4.22) and distinguishes whether the smooth structure is
standard or not. Moreover, assuming spacetime topology to be Rn for any n ∈ N, Theo-
rem 21 immediately gives the four-dimensional spacetime.
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4.4 Cosmological constant recovered

In the previous section we showed that the formalism of quantum mechanics deals inher-
ently with structures, that could potentially interact with the smooth structure of a space-
time encompassing quantum systems. In the case of Euclidean R4, we established that the
spacetime has to be exotic smooth. However, the approach does not identify specifically
the smooth structure. Indeed, providing a more detailed connection between the lattice
L (H) (or any other structure related to quantum mechanics) and spacetime smoothness
calls for further work and we discuss this in Chapter 7. Instead, we explore here the impli-
cations of M ∼= R4 being exotic smooth. It turns out that such a framework can naturally
address the cosmological constant problem. We observe that cosmological constant can be
linked with a topology change in such a manner that its value emerges as a topological in-
variant, and this theoretical result aligns remarkably well with experimental observations.

To start with, let us consider a toy model of a spacetime M with the topology M '
S3×R, which also serves as a cosmological model of the Friedmann–Lemaître–Robertson–
Walker (FLRW) of isotropic and homogeneous universe. In this model, as we trace back
in time, the sphere S3 gradually contracts and converges eventually to the point-like re-
gion, which is to be identified as an initial singularity S. It is a reasonable assertion that
a consistent depiction of this process must incorporate quantum-mechanical effects. As
argued in the previous section, the singularity S (along with the surrounding region with
a volume of at least `3

P) alters the large-scale smoothness, assuming the evolution of space-
time M originates from S. Accordingly we take M to be of the form Σ × R, although
the spatial 3-dimensional submanifold Σ can dynamically change. A complete construc-
tion of this model is described in detail in [13]; here we provide a brief overview of the key
points, that lead to agreement with recent experimental results from the PLANCK mission
[150]. We follow several important observations gathered in [14], that constrain possible
choices for spacetime. Firstly, we assume M to possibly undergo topological change(s)
of the type Σ0 ×R → Σ1 ×R, what leads to M being a 4-dimensional cobordism with
∂M = Σ0 t Σ1. Since there are mild hints toward finiteness of the spatial part of M [128],
it seems reasonable to assume spatial Σ to be compact, 3-dimensional manifold without
boundary. Furthermore, assuming compactness of Σ0, Σ1 at finite time, due to causality
and the existence of Lorentz metric on M, one demonstrates that the boundary ∂M must
have the same homology groups as S3, i.e. both Σ0, Σ1 must be homology 3-spheres. Recall
that the exotic smoothness in such a case is "localized" within an embedded Akbulut cork
A ⊂ M with a homology 3-sphere as a boundary (see Chapter 2). It can be shown [14]
that a natural choice for an initial Σ0 is then 3-dimensional sphere and the simplest choice
for a homology sphere that is smoothly cobordant to S3 is the Brieskorn sphere Σ(2, 5, 7)
defined by

Σ(2, 5, 7) = {(x, y, z) ∈ C3 : x2 + y5 + z7 = 0, |x|2 +
∣∣y∣∣2 +|z|2 = 1}

and the 4-dimensional cobordism W(S3, Σ(2, 5, 7)) is thus embedded in the Akbulut cork.
Now, it is an essential part of [13] to recognize cosmological constant as a result of an
embedding of a small exotic smooth R4 into K3# ¯CP2 (i.e. the connected sum between
K3 — unique 4-dimensional, compact, simply-connected manifold with a Ricci-flat met-
ric, and CP2 being a complex projective plane). Namely, the embedding gives rise to the
model that comprises a four-dimensional, compact cobordism M with 3-dimensional, spa-
tial submanifold undergoing two topology changes:

S3 → Σ(2, 5, 7)→ P#P (4.23)
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Considering the first topology change of (4.23), the time evolution S3 × {ti} for cross-
sections ti ∈ R is replaced with the wildly embedded sphere S3 at the initial time t0, evolv-
ing into the cross-section Σt1 ⊂ S3 ×Σ R, where Σt1 is a homology 3-sphere. In the second
topology change of (4.23), P#P stands for a connected sum of two copies of a Poincaré
3-homology sphere P (i.e. P has additionally a non-trivial fundamental group).

Interestingly, in [13] it is shown that the construction is canonical and each of the tran-
sitions (4.23) carries an inherent inflationary behaviour. Namely, if we assume a0 to be the
radius of an initial 3-sphere, one shows that expansions presented in (4.23) are specified
by

a0 → a0exp
(

3
2 ·CS(Σ(2, 5, 7))

)
→ a0exp

(
3

2 ·CS(Σ(2, 5, 7))
+

3
2 ·CS(P#P)

)
, (4.24)

where CS(·) is the Chern–Simons invariant of the hyperbolic 3-manifold (cf. [10, 13] for
complete calculations). Here the particular invariants have values

CS(Σ(2, 5, 7)) =
9

280
, CS(P#P) =

1
60

.

To find the actual effects of inflation, one should make an assumption on the volume of
initial 3-sphere. An educated guess dictates this size of the order of Planck’s length `P, i.e.

a0 =

√
hG
c3 = 1.61605 · 10−35 m. (4.25)

Thus by (4.24) and (4.25) we obtain the characteristic length of the first topological transi-
tion

a1 = `P · exp
(

3
2 ·CS(Σ(2, 5, 7))

)
= `P · exp

(
140
3

)
= 3.0 · 10−15 m.

Observe that this should be interpreted as a spatial size of the universe, represented at this
stage by Σ(2, 5, 7)), after first topological transition. The associated energy scale of the first
transition is therefore

E1 =
hc
a1

= 415 MeV.

It is interesting to observe that E1 is of the order of a QCD energy scale ΛQCD ≈ 200MeV
[163].

Crucially, through the embedding of small exotic R4, the approach [13] demonstrates
that cosmological constant can be calculated purely topologically, and is related directly to
the spatial curvature curv(M) of a 4-manifold M. In particular, let W(Σ1, Σ2) be a cobor-
dism between 3-manifolds, embedded in a hyperbolic 4-manifold. Then, a cosmological
constant of the cobordism is defined through

curv(Σ2) = curv(Σ1) · exp(−2θ),

where θ is the parameter dependent on the Chern–Simons invariant of Σ2. In the case of
(4.23), we have the cobordism encompassing two transitions between 3-manifolds, giving
the (normalized) curvature of P#P

curv(P#P) =
1

8π2 curv(S3)exp
(
− 3

CS(Σ(2, 5, 7))
− 3

CS(P#P)

)
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Accordingly, the cosmological constant is calculated in this approach as

Λ = curv(P#P) =
1

8π`2
P

exp
(
− 3

CS(Σ(2, 5, 7))
− 3

CS(P#P)

)
≈ 9.5 · 10−52 m−2

or, in Planck units, Λ · `2
P ≈ 2.5 · 10−121. To confront the obtained cosmological parameter

with experimental data from [150], we calculate the dark energy density parameter ΩΛ:

ΩΛ =
Λ

Λcrit
=

Λc2

3H2 ,

where H is the Hubble’s constant and Λcrit is the critical value that would make the
spatial geometry flat [162]. Given the latest data on Hubble’s constant H = (67.36 ±
0.54) km s−1 Mpc−1 [150] we have

ΩΛ =
c5

24π2hGH2 exp
(
− 3

CS(Σ(2, 5, 7))
− 3

CS(P#P)

)
≈ 0.9053

which is quite far from the experimental value [150]

Ωexp
Λ = 0.6847± 0.0073. (4.26)

However, it can be demonstrated that the quantum corrections to the initial transition
S3 → Σ(2, 5, 7) are derivable from the Euler characteristic χ(A) of the Akbulut cork A with
a boundary ∂A = Σ(2, 5, 7). As A is contractible, we have χ(A) = 1 and the correction is
of the form

exp

(
−χ(A)

4

)
= exp

(
−1

4

)
. (4.27)

Finally taking (4.27) into account we obtain

ΩΛ = 0.9053 · exp
(
−1

4

)
≈ 0.7050

which is much closer to the value (4.26).

Remark 25. It is worth noting that the above approach also settles several other cosmolog-
ical parameters, such as the α-parameter in the Starobinsky model, the scalar/tensor ratio
and, more recently, bounds on neutrino masses [8, 14].
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Chapter 5

Going categorical into exotic
smoothness

In Chapter 3 we discussed the difference between quantum and classical physics from the
perspective of logical structures. In particular, we demonstrated how one approximates
the lattice L (H) with the family BSub(L (H)) of its Boolean subalgebras. In Chapter 4 we
explained how the parametrization of spacetime M by BSub(L (H)) results in the exotic
smoothness of M. As this approach may appear somewhat ambiguous, in this section we
illustrate how the categorical approach might help in translating the structure of Boolean
subalgebras of L (H) into a smooth atlas covering spacetime. It is a general rule that
as soon as appropriate categories are found, some relations between seemingly distant
notions might become functorial, giving rise to a better understanding. This aligns with
the perspective presented in [30][29]. Additionally, we extend this discussion by exploring
how distribution theory, formulated separately within Set and the Basel topos B may
provide further insights into exotic smoothness, as worked out in [11].

5.1 The category pBool

We start with a categorical framework for OMLs, which, when addressed directly, appears
to be slightly too restrictive and thus requires to be extended. Let OML be a category
with orthomodular lattices as objects and lattice homomorphisms as arrows. As such,
OML contains BSub(L (H)) as a poset subcategory, since every Boolean algebra is a dis-
tributive orthomodular lattice, cf. Appendix A. Our interest lies in understanding how
L (H) ∈ Ob(OML) can be derived from BSub(L (H)) using the language of category
theory. Intuitively, this derivation can be accomplished by adopting the concept of a past-
ing [72]. In category theory, the general method of constructing an object by combining
smaller ones is known as a coproduct or a colimit in general. Let

D = {B ↪−→ L : B ∈ BSub(L (H))}

be a diagram of inclusions of Boolean subalgebras into L (H) (see Fig 5.1). This makes
D a cocone inside OML. Note that the collection of all cocones over D forms a distinct
category and a limit for D is a terminal object in that category.

B1 B2 . . . Bi . . .

L(H)

FIGURE 5.1: Pasting of Boolean subalgebras
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Remark 26. The OML category is not (co)complete; in particular, tensor products do not
exist there in general, thus it does not neccessarily hold that L1 ⊗ L2 ∈ Ob(OML) for
L1, L2 ∈ Ob(OML).

Fortunately, there exists a notion of a partial Boolean algebra, that generalizes the no-
tion of OML (see Chapter 2). Recall that a partial Boolean algebra is essentially a set A
with a Boolean algebra structure defined only "locally": it includes a reflexive and sym-
metric compatibility (commeasurability) relation � ⊆ A× A together with 0, 1 and usual
logical operations ¬,∧,∨. "Locality" means that whenever a collection of elements are
commeasurable, it is contained in some T ⊆ A with a Boolean algebra structure imposed
on T. The category PBool comes with partial Boolean algebras as objects and functions
preserving commeasurability and algebraic structure as morphisms. Observe that total-
ity of � ⊆ A× A makes A a Boolean algebra, similarly to the commutativity of an OML
(actually, OML is a subcategory of PBool). Furthermore, PBool is (co)complete. Recall
that due to Theorem 17, every OML is uniquely (up to isomorphism) characterized by the
poset of its Boolean subalgebras. Since colimits are necessarily unique up to isomorphism
in any category, one obtains the category-theoretic version of Theorem 17 [26]

Theorem 23. Every partial (complete) Boolean algebra is a colimit of its Boolean subalge-
bras.

Remark 27. Theorem 23 singles out logical structures (OML’s, partial Boolean algebras).
In contrary, there is no analogue in the case of algebraic structures such as C∗−algebras
and von Neumann algebras; these can be determined by their commutative subalgebras
only up to a commutator, that defines a so-called Jordan structure [52, 125].

5.2 The category nMfd

Let us discuss now the part of Section 2.3 that refers to spacetime smoothness. Again, we
will rephrase crucial notions in category-theoretic terms. First of all, the notion of a n-
dimensional smooth manifold X, i.e. n-dimensional topological manifold X with an atlas
of charts φi : Ui → Rn for which transition maps φi ◦ φ−1

j are smooth, can be characterized
as follows: given an atlas {φi : X ⊇ Ui → Vi ⊆ Rn} it holds that

X =
⊔

Vi/ ∼, (5.1)

where φi(p) ∼ φj(p) whenever p ∈ Ui ∩Uj. Let us now illustrate how a manifold can be
presented in two, dual pictures by the example [119].

Example 9. Let X = S2; such a manifold may be viewed in a twofold way (see Fig. 5.2):
S2 is captured either by a commutativity of the following equalizer diagram

S2 R3 R
s

t

where s(x, y, z) = x2 + y2 + z2 and t(x, y, z) = 1, which by commutativity gives x2 + y2 +
z2 = 1 and defines the sphere as a limit, or S2 can be parametrized by the coequalizer
diagram

S1 × (0, 1) D t D S2

where D is a two-dimensional disk and the commutativity of inclusion of a cylinder S1 ×
(0, 1) is responsible for the quotient by the glued part of D ∪ D, characterizing sphere by
a colimit.
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FIGURE 5.2: The limit (left) and colimit (right) representations of a sphere
S2

Observe that the second approach in the above is coordinate-free and emphasizes the
role of "subobjects" of X, thus is closer to (5.1). Now, we generalize that to the form previ-
ously met in the case of orthomodular lattices. Let nMfd be a category of n-dimensional
smooth manifolds and smooth maps between them. Then we have [120]

Theorem 24. Let Un be a subcategory of nMfd, consisting of all open subsets of Rn and
smooth maps between them. Then every object in nMfd is a pasting of objects from Un.

Categorically, there is a straightforward version of the above fact, generalizing the co-
equalizer diagram from Example 9 [115]:

Theorem 25. Any object M in nMfd is a coequalizer⊔
Wij

⊔
Wi M

where Wi = fi(Vi) and Wij = fi(Vi ∩Vj).

Hence, by above theorem we finally obtain

Corollary 6. Every smooth manifold is a colimit of its atlas.

5.3 Functoriality of pBool→ nMfd

We recognize Theorem 23 and Corollary 6 to provide us an opportunity to expand upon
the findings in Chapter 4 on the exotic smoothness of the spacetime M. This goes be-
yond just having an atlas parametrized by Boolean contexts of L (H); the parametriza-
tion aligns categorically. This leads us to ask whether the colimit correspondence might
be of functorial character. In other words, to what extent can we assign open subsets
of Rn (i.e. objects in Un hence in nMfd) to Boolean frames of reference (i.e. objects in
BSub(L (H)) hence in pBool), such that the assignment follows the rules of a (covariant)
functor F : pBool→ nMfd. Namely, we have

F(B) = UB ∈ Ob(Un) ⊆ Ob(nMfd) and F( f ) ∈ Arr(Un) ⊆ Arr(nMfd)

for any B ∈ Ob(pBool) and f ∈ Arr(pBool), together with F( f ◦ g) = F( f ) ◦ F(g). (Note
that by an analogy, the group Aut(L (H)) would correspond to the group Diff(M), what
we mentioned already in Chapter 3.) We point out that the existence of such a functor F is
an open issue left for future research (see Chapter 7). Nevertheless we indicate two points
that may be important in the construction thereof.
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First, let us recall that BSub(L (H)) is not only a mere posetal category; it constitutes
also a meet-semilattice, as shown in [78]. In other words, for any B1, B2 ∈ BSub(L (H))
we have

B1 ∧ B2 := B1 ∩ B2 ∈ BSub(L (H)).

In category-theoretic terms, that is to say that the pullback always exists, i.e. the square

B1 ∩ B2 B2

B1 L (H)

commutes. For an analogous result in the context of smooth manifolds, we have to go to a
subcategory para−nMfd of paracompact manifolds.

Remark 28. Recall that a topological space X is called paracompact if X is Hausdorff and
every open cover of X has a locally finite open refinement (i.e. for every such cover {Ui}i∈I
one finds a family {Ũj}j∈J such that for every x ∈ X there exists an open neighbourhood
that intersects only finite subset of {Ũj}j∈J , and for every i ∈ I there exists j ∈ J such
that Ũj ⊆ Ui [61].) In fact, this is the usual category to talk about smooth manifolds, in
particular spacetimes, in the standard approach. This is due to the fact, that all second
countable and Hausdorff topological spaces are necessarily paracompact [115].

Then, one can show that each object in para−nMfd admits a good open cover, i.e.
given any X ∈ Ob(para−nMfd), all its chart intersections are diffeomorphic to Rn. There-
fore, under the functor F|para−nMfd an intersection of elements of BSub(L (H)) should
correspond again to some U ∈ Ob(Un).

Second, let us consider the construction of adjoint functors [179]

L : Set[Bor(R)/BSub(L(H))]op
[Bor(R)/L (H)] : R

where [Bor(R)/L (H)] is a "quantum" comma category over L (H). This gives an oppor-
tunity of studying [Bor(R)/L (H)] in terms of presheaves on a "classical" [Bor(R)/BSub(L (H))]
and vice versa. As the objects of [Bor(R)/L] are obviously the arrows of pBool, it seems
reasonable to look for analogous adjoint in the category n-Mfd.

5.4 Exotic smoothness through Basel topos

To conclude this chapter, we discuss yet another categorical approach to exotic smooth-
ness. In this context, we locally modify the spacetime structure using the Basel topos B
we introduced in Chapter 2. Recall that the internal logic of this topos is intuitionistic,
and it encompasses both invertible and nilpotent infinitesimal real numbers within the
smooth real numbers object. One notable consequence is the unique way distribution the-
ory is handled internally: all distributions become regular, effectively allowing us to treat
distributions as if they were functions within B.

Remark 29. The application of distributions interpreted as "regular" functions in physics
is not a novel concept and has been previously proposed and explored using non-standard
analysis, which we briefly discussed in Chapter 2. This approach has primarily been ap-
plied to quantum field theory, typically plagued with infinities, cf. [97, 140, 73, 177, 22].

Let us now give a brief overview of the work presented in [11], which established a
connection between the previous considerations and the smooth structures of a manifold
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M ∈ Mfd through embedding s : Mfd → B. We will provide a broad outline of the key
ideas; for detailed proofs cf. [11]. Let U = {(Uα, φα)}α∈I be a smooth atlas for a smooth
manifold M. To include the local modification, for each α ∈ I we impose either a map
s : Mfd → B with s : Uα 7→ s(Uα) or an identity diffeomorphism i : Uα → Uα in Set. Let
A ⊂ I be a set of elements that index identity maps, so that we assign

Uα 7→
{

i(Uα) ' Uα, α ∈ A
s(Uα) ∈ B, α ∈ I \ A

(5.2)

We say a map (5.2) is a B-cover of a smooth manifold M if both A 6= I and A 6= ∅, i.e.
it is not composed entirely of maps of a single type. Further, a B-local smooth manifold is a
smooth manifold M such that every atlas of M has an underlying B-cover UB , in the sense
that for every smooth cover (M, {Uαi}i) of M there exists a B-cover UB such that

∀Uα (Uα ' i(Uα) or Uα ' ΓUBα )

where Γ : B → Set is a global section functor (see Chapter 2). It is interesting to explore
whether B-local covers determine smoothness in any way. In the case of Euclidean Rn,
we have already established through the proof of Theorem 21 that one-element atlases
characterize standard Rn, thus we have

Proposition 2. If M = Rn and M̂ is smooth, then M̂ ' R4, where R4 is a certain exotic
smooth R4.

Remark 30. It follows from Proposition 2 that a B-local smooth R4 must be exotic smooth.
This raises an interesting question: can some (all) exotic smooth R4s be associated with
such B-local smooth R4s? This provides a promising starting point for developing tools to
distinguish between exotic smooth structures on R4.

To relate this to distributions handled inside B, let us consider the following simple
observation. First, given a standard R4 and exotic R4, all the smooth functions are always
continuous regardless which smooth structure they refer to, i.e.

C∞(R4) ⊂ C0(R4) ⊃ C∞(R4).

Second, we have the following fundamental [141]

Lemma 11. M ' N as smooth manifolds precisely when C∞(M) ' C∞(N) as algebras.

For a particular case of M, N being an exotic smooth R4 and a standard R4 respec-
tively, we obtain a way to characterize exotic smoothness through the behaviour of smooth
maps. Specifically, there exists a function f ∈ C0(R4) that is smooth with respect to ex-
otic smoothness on R4 but only continuous with respect to the standard smoothness (and
vice versa). The apparent asymmetry in the possibility of differentiation with respect to
both smooth structures can be resolved with the help of distribution theory, which pro-
vides the tools to differentiate non-smooth functions through the integral representation
(2.20). This observation is also related to Remark 30, as it helps to identify functions that
lose their smoothness when transitioning between R4 and any R4 (and vice versa), thereby
distinguishing exotic R4 structures from the standard one.

Let us now focus on interpreting merely continuous functions inside B. Recall that
given aB-local atlas, at least one patch Uα is translated intoB and therefore some transition
functions φαβ : Uαβ → Uαβ are to be replaced by φ→Bαβ : Uαβ → UBαβ. To formulate the
transition to B, we have at our disposal both geometric morphism (Γ, ∆) and the full and
faithful embedding map s : Mfd→ B, cf. (2.18). We say a B-local smooth structure UB on
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R4 is smoothly equivalent to a smooth structure U on R4 if every function that is UB-smooth
is also U-smooth. We say UB is Set-invariant if there exists smooth structure V on R4 such
that UB is smoothly equivalent to V. With above definitions, the local modification of a
smooth structure on R4 leads to the following

Theorem 26. For every B-local smooth cover UB of R4 that is Set-invariant, there exists
a continuous function f ∈ C0(R4) that is UB-smooth. Furthermore, if the Set-invariant
structure UB is smoothly equivalent to some V, then V is not diffeomorphic to U.

Corollary 7. Theorem 26 is one possible way to construct exotic smooth structure on R4

by considering continuous functions, although smooth structures that arise this way are
not known to be pairwise exotic.

As above results involve transitioning (and invariance) between topoi Set and B, it is
interesting to comment here on the principle of general tovariance, proposed by Landsman
in [80]. As the name suggests, to-variance refers to general co-variance, introduced by
Einstein, which we mentioned in Chapter 1. While the latter means that laws of physics
should be preserved under smooth coordinate transformations, the former states that the
same rule should apply to appropriate transformations between topoi. To identify what
type of transformations could be termed "appropriate", recall that to ensure frame ho-
momorphisms preserve Heyting algebra structure, only so-called geometric theories are
allowed. As topoi generalize frames, by an analogy we say a theory is geometric if it can be
axiomatized with sentences of the form ∀x (φ(x) → ψ(x)), where φ, ψ are geometric for-
mulae (again, these are formulae in the language of intuitionistic propositional logic with
finite meets) (see Appendix B). Consequently, a geometric morphism is a pair (g∗, g∗) of
functors g∗ : T1 → T2, g∗ : T2 → T1 that generalizes a frame map in that g∗ preserves finite
limits. As a consequence, g∗ preserves also any geometric theory. Finally, the principle of
general tovariance states that laws of physics must be definable in any topos T with NNO,
and these laws must be preserved with respect to geometric morphisms. Thus, given such
morphism (g∗, g∗) : T → T ′, one cannot empirically distinguish between T and T ′. This
applies also to the Bohrification program (with minor details concerning nongeometricity
of the completion of a C∗-algebras). In particular we have

Lemma 12. Let g : T1 → T2 be a geometric morphism. If N2 is a natural number object in
T2, then N1 = g∗N2 is a natural number object in T1.

Since the pair (2.18) gives rise to a geometric morphism g = ∆ a Γ between B and Set
and g∗NSet = NB , by the fact that N in B is not isomorphic to NB we have

Corollary 8. The object N of smooth natural numbers in B is not preserved under geomet-
ric morphism ∆ a Γ. Moreover, given any topos T with a natural number object NT , a
geometric morphism g : B → T necessarily does not preserve N.

As discussed in [11], the above fact is particularly interesting in the context of tovari-
ance. Namely, recall that e.g. distribution theory in B as described in Chapter 2 makes
heavy use of the smooth natural numbers N. More importantly, recall that currently it is
not known which exotic R4 correspond to certain Set-invariant B-local smooth structures.
Thus, a conjecture would be as follows: If experimental evidence points at exotic smooth R4

described in Chapter 4 and this R4 is equivalent to certain Set-invariant B-local smooth structure,
then clearly a tovariance principle must be broken.

Finally, note there is a possible connection between exotic smooth structures that a B-
local modification generates and singularities that emerge typically in physics due to the
problem of multiplying distributions with intersecting supports [30]. The key insight here
is that, thanks to the interpretation of distribution theory within B, every UV-divergence
involving the multiplication of distributions in Set can theoretically be translated and re-
solved in B. We provide some further remarks on this topic in Chapter 7.
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Chapter 6

Into the algorithmically random
world(s) and beyond

6.1 Preliminaries

In this chapter we demonstrate how the method presented in preceding sections offers
new insights into the issue of randomness within the realm of quantum mechanics, a topic
we briefly discussed in Chapters 1 and 2. The current chapter is based on the work [111].
To begin, we will provide some broad observations that concern both philosophical and
technological aspects; for a thorough discussion see [25], [118] or [101]. The concept of
randomness in the natural world is a fascinating subject on its own, as one distinguishes
between processes that initially appear random and those that are believed to be irre-
ducibly random. The former comprise a vast group of classical stochastic and chaotic
systems. Indeed, it is widely recognized that classical systems, such as a container filled
with particles, or even a relatively simple system like a double pendulum, are described
by differential equations of motion. In principle, given specific boundary conditions, the
Picard–Lindelöf theorem states that the system’s future behaviour is entirely predictable,
provided we possess a perfect knowledge about the system’s initial state (with a caveat of
a Lipschitz condition, see Remark 32). It is worth noting that over the years, there has been
extensive exploration in various contexts regarding the extent to which full knowledge is
actually necessary for making meaningful predictions, with thermodynamics as a good
example.

Remark 31. The term "initial conditions" in the realm of classical physics must be han-
dled cautiously, as the perfect knowledge of positions and momenta is fundamentally
constrained by quantum effects (most importantly Heisenberg’s uncertainty principle).
Setting aside these considerations, obtaining complete information on the initial condi-
tions would necessitate knowledge on the positions and momenta of every particle in the
observable Universe once we take gravitational interactions into account.

Remark 32. In fact, Picard–Lindelöf theorem is not sufficient to guarantee complete de-
terminism for all classical systems governed by Newtonian mechanics. One of the excep-
tions is the case of a particle being shot off to infinity in a finite time (often referred to as a
a space invader, in the reverse-time setup) [156]. This exception arises due to the fact, that
uniqueness of the solution can be established only locally in some particular cases. Another
example is a Norton’s dome [144], where a particle rests on the apex of a half-sphere, demon-
strating the breakdown of solution’s uniqueness when the force acting on the particle fails
to satisfy Lipschitz condition. (For more detailed discussion on such exceptions see [58].)
Again, these exceptions pertain to classical mechanics understood formally rather than to
behaviour of realistic systems that require completion either by special relativity (parti-
cle’s speed is limited by the speed of light) or quantum mechanics (initial conditions must
account for quantum-mechanical degress of freedom). It is worth noting that the evolution
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described by Schrödinger equation (1.3) tends to be inherently more deterministic than that
described by Newton’s equations (for quantum analogues of above pathological examples
see [57].)

Hence, we can clearly delineate between "epistemic" randomness, stemming from our
incomplete knowledge, and "ontic" randomness, that refers to inherent property of the
system [25]. In classical systems, the apparent randomness largely arises due to "practical"
constraints and precise predictions are attainable through deterministic laws. To illustrate,
consider a controlled coin-toss experiment where the outcomes can be effectively man-
aged [168]. In other words, randomness in classical systems is intricately complementary
to computational resources employed, hence can be regarded as relative. Consequently, it
is the measurement procedure that distinguishes quantum mechanics from the above. As
discussed in Chapter 2, while non-interacting quantum systems evolve deterministically
according to Schrödinger’s equations, the situation undergoes a change upon measure-
ment, with outcomes following Born’s rule (2.1)) and an irreducible event’s probability is
expected in general. We emphasize again that according to results such as Bell’s inequali-
ties, Kochen–Specker and other no-go theorems, these probabilities cannot be interpreted
as (reduced to) incomplete, uncertain or biased knowledge, that otherwise could be over-
come (cf. Chapter 2). These observations lead us to conclude that quantum-mechanical
systems are natural candidates to embody intrinsic randomness in the real world.

To show that the concept of randomness is beyond mere academic interest, it is crucial
to explain the significance of randomness in practical, real-world applications. Indeed,
random phenomena are often perceived as undesirable attributes: noise can disrupt ex-
periments, uncertainties necessitate the use of error analysis etc. From the technological
standpoint, the general objective is to minimize random behaviour, maximizing control
over experimental conditions. On the other hand, it is widely recognized that modern in-
formation technology, including domains such as cybersecurity, heavily relies on random
number generation, where an inadequate "quality" of randomness may cause a lot of dam-
age to both individuals and institutions (see [130]). To appreciate the advantages offered
by randomness generated through quantum mechanics, it is beneficial to revisit general
operational principles of contemporary random number generators (RNGs). Then it will
be easy to distinguish them from the purportedly secure random number generation ca-
pabilities of quantum mechanics.

f (r), f ( f (r)), f ( f ( f (r))) etc.

In principle, the set S is finite due to memory limitations, what makes f a finite-state
machine. The function f should possess sufficient non-linearity while still allowing for
straightforward computation. As f is finite-state, its period (i.e. the minimum number
of steps required to cycle back to a previous value) has to be finite; for instance, the most
commonly used PRNG today, known as Mersenne’s Twister, has a period of 219937 − 1,
what virtually prevents f to repeat at all in a foreseeable future [132].

By this definition, it becomes evident that PRNGs are entirely deterministic, i.e. given
a particular seed, the generator’s output will consistently remain the same. Clearly, such
a software-based procedures introduce a potential vulnerability, as one could attempt to
deduce the generating function from a sequence of numbers. Therefore, the true challenge
lies in devising a function that is virtually impossible to predict based on segments of
its values. Unfortunately, the history is full of cyberattacks exploiting vulnerabilities in
PRNGs [98, 121]; for an in-depth survey cf. [130]. This everlasting race could perhaps
be commented by a quote by von Neumann: "(...) anyone who considers arithmetical
methods of producing random digits is, of course, in a state of sin" [143]. Nevertheless,
as more and more powerful cryptographic tools are developed, we currently seem to be
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relatively safe with the prevalence of PRNGs. Still, this may evolve in future, as the field of
quantum computing revolution becomes more mature and will start to challenge classical
encryption algorithms.

Remark 33. Note that the well-known potential for circumventing "randomness" by using
a more powerful machine is yet another illustration of "relative randomness". In the same
spirit, the issue of epistemic randomness in classical physics was raised, where this rela-
tivity was strictly connected to purely practical limitations (see Remark 31). As we will
see, this relativity phenomenon also manifests itself in the formal quantum-mechanical
randomness, although overcoming it appears to be prohibited by the very structure of
quantum mechanics.

So far, we have employed the notion of randomness in relatively loose and informal
manner, with particular emphasis on number generation. However, we will see that as
one tries to pin it down more precisely, the more elusive it appears. Let us discuss various
approaches to define randomness in a mathematically precise manner in the next section.

6.2 What is randomness, precisely?

Let us temporarily set aside sequence generation processes and direct our attention to the
outcomes they produce, namely numeric sequences (for simplicity, w.l.o.g. we will refer
mainly to binary strings). Now, suppose someone hands us a (finite or infinite) sequence
of numbers and asks a question: "Is this sequence random?". Naturally, we have certain
intuitions here, and confronted with two sequences like

110010010000111111011010101000 . . . and 000011110000111100001111000011 . . .

we would easily identify the second sequence as a regular, non-random one, while the
first one would seem to devoid of any structure whatsoever. In fact, the seemingly ran-
dom digits on the left are just initial digits of binary expansion of π and these are perfectly
deterministic, with a closed-form formula for calculating successive members. This ele-
mentary observation challenges our common-sense perception of randomness, and calls
for more sophisticated methods. Unfortunately, basic probabilistic intuition will not help
us in this context: given any sequence σ ∈ 2<ω of length |σ|, the probability of σ resulting
from a perfect coin-toss follows the uniform probability distribution given by P(σ) = 2−|σ|.
This situation persists even when dealing with the space 2ω, as now all sequences have
a probability 0 under the uniform distribution. Consequently, although it appears that
non-random, regular outcomes should show up less frequently, it cannot be supported by
individual probabilities alone.

These simple observations reveal two crucial issues: firstly, one needs to carefully ex-
amine the "hallmarks" of randomness, allowing us to distinguish sequences that are "suf-
ficiently random" from those that are not. Secondly, given that heuristically all sequences
seem equally likely, it might be a good idea to certify the randomness through some un-
derlying process. In other words, a sequence would be claimed random if it was generated
exclusively by process, whose randomness is guaranteed by fundamental laws. Quoting
von Neumann again: "There is no such thing as a random number — there are only meth-
ods to produce random numbers." [143]. Similarly, A. Khrennikov proposed to regard
randomness as an entirely physical process, which cannot be defined in a mathematically
consistent way [101]. In the following we elaborate on the problems making randomness
so hard to define rigorously.

Recall that the probabilistic nature of quantum phenomena stems from both experi-
mental evidence (consider an electron with spin up along the x-axis and then measuring
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its spin along the y-axis) and the underlying mathematical structure (cf. Born’s rule in
Chapter 2). In particular, the impossibility of the existence of local hidden variables, as
discussed previously, agrees with the violation of the principle of sufficient cause [102]
(namely, it might be impossible to point out the reason for a particle to have e.g. a def-
inite spin in either direction). Moreover, we discussed how the results of measurement
fall withing Born’s rule, giving therefore at least a probabilistic flavour to quantum effects.
However, the path that connects these probabilistic effects with a rigorously defined no-
tion of random sequences is not as straightforward as one would initially assume. In fact,
there is no single, universally accepted definition of randomness, what we briefly describe
now.

Throughout history, three primary approaches have emerged for defining randomness.
Namely, a random sequence σ should possess the following attributes: [118][101]

1. be incompressible (or sufficiently complex), implying that it should be impossible to
provide a recipe for generating σ that is shorter than σ itself. This is mostly related
to the work of Kolmogorov and his followers [123];

2. be unpredictable, meaning that there should not exist a martingale that succeeds on
σ;

3. omit all specific characterizations or, put differently, devoid of patterns; here we refer
mainly to works by Martin-Löf and others [55].

Remark 34. It is worth noting that the characteristic of random sequences that appears
most crucial for practical applications is their unpredictability; the efforts of designing
statistical tests and studying the complexity are made mainly due to their usefulness in
predicting actual digits. Cryptography research on randomness emphasizes this even fur-
ther, as nearly all algorithms aim to prevent the prediction of consecutive digits.

Before we will go into details of randomness pictures, let us review some fundamental
facts regarding binary sequences, which will ultimately be interpreted as the outcomes
of experiments in quantum mechanics. First, recall that given a topological space X, we
define the Borel algebra Bor(X) to be the smallest σ-algebra that contains all opens from
X (here, a σ-algebra of subsets of X is a collection F ⊆ P(X) such that X ∈ F , if A ∈ F ,
then X \ A ∈ F and for every countable collection {An} ⊆ F we have

⋃
An ∈ F ). Further

we define a probability measure by µ : Bor(X) → [0, 1] ⊆ R by µ(X) = 1, µ(∅) = 0
and µ (

⋃
An) = ∑ µ(An) whenever the elements of {An} are pairwise disjoint. We call

a subset A ⊆ X to be measurable if there exists B ∈ Bor(X) such that the symmetric
difference A4B = (A \ B) ∪ (B \ A) is null, i.e. µ(A4B) = 0.

The simplest {0, 1}-sequences are the elements of the so-called Cantor space 2ω = {σ :
ω → 2}, and 2ω is equipped with topology defined by opens [τ] = {σ ∈ 2ω : τ < σ},
where τ ∈ 2<ω is a finite {0, 1}-sequence. Here, τ < σ means that τ is a prefix of σ
(equivalently σ extends τ). This makes 2ω a Polish space with a product measure µ defined
by

µ([σ]) = 2−|σ| (6.1)

(recall that a topological space is called Polish if it is homeomorphic to a complete met-
ric space with no isolated points). The expression (6.1) provides yet another reason why
probability alone cannot be of much use in determining randomness, as one observes that
all the opens with the same prefix length possess identical probabilities, regardless of how
much the prefixes differ in terms of apparent randomness. Note that one may consider
random sequences in terms of various structures: R, ωω = {σ : ω → ω} and 2ω just
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introduced. Indeed, these spaces not only have the same cardinality, but also share sim-
ilarities in terms of their Borel structure. We call f : X → Y a Borel isomorphism if for
every B ∈ Bor(Y) it holds f−1(B) ∈ Bor(X). Then we have the following

Lemma 13. Let f : X → Y be a Borel isomorphism. Then A ⊆ X is Lebesgue measurable
(of first category, with Baire property, measure zero) iff f (A) ⊆ Y is Lebesgue measurable
(of first category, with Baire property, measure zero).

Furthermore

Theorem 27. The sets 2ω, ωω and R can be made into Borel isomorphic Polish spaces, that
are homeomorphic up to countable sets.

Let us go back to three approaches to randomness, in which we follow mainly [118,
93] (for an in-depth discussion see [54, 55]). To explore the concept of incompressibility of a
binary string σ ∈ 2<ω, we introduce the notion of (Kolmogorov) complexity of σ. First, it
is essential to have a basic understanding of Turing machines: these can be thought of as
mathematical models for executing computation according to a program. More precisely,
a Turing machine T takes a binary string σ as input and either halts, producing an out-
put T(σ), or it runs indefinitely. A Turing machine U is called universal if for any Turing
machine T there exists τ ∈ 2ω such that for any σ ∈ 2ω it holds

T(σ) = U(τσ),

i.e. for each T, a machine U always finds a string τ that computes all inputs of T through U.
Further, recall that the set A of finite binary strings is called prefix-free, if for any σ, τ ∈ A,
neither σ is a prefix of τ nor τ is a prefix of σ. Then, a prefix-free Turing machine is a
Turing machine with a prefix-free domain. In order to treat also infinite sequences σ ∈ 2ω

in general, one defines Kolmogorov prefix-free complexity C(σ) for σ ∈ 2<ω by

C(σ) = min{|τ| : U(τ) = σ, U — universal and prefix-free}

i.e. it is the length of the shortest program run on a fixed, prefix-free universal Turing
machine U, that computes σ. We say σ ∈ 2ω is c-compressible if C(σ) < |σ| − c, and call
σ Kolmogorov random if it is not c-compressible for any c ∈ N (i.e. one has C(σ) ≥ |σ|).
Finally, a sequence σ ∈ 2ω is called Kolmogorov–Chaitin random if

lim
N→∞

C(σ|N)
N

= 1,

i.e. a Kolmogorov prefix-free complexity C(σ|N) of initial N digits of σ grows as fast as N
when N → ∞.

Next, we discuss the unpredictability. Informally, we may describe a binary string (se-
quence) σ as unpredictable if we cannot predict any digit of σ given the other digits. In
other words, if one considers a digit prediction in terms of betting, a string σ would be
called unpredictable if there were no successful betting strategy on σ. This can be made
rigorous with the help of a martingale, i.e. a function d : 2ω → [0, ∞) such that for every
σ ∈ 2<ω the so-called averaging condition holds:

d(σ) =
1
2
(
d(σ0) + d(σ1)

)
,

where σ0, σ1 denotes the concatenation of σ with 0 and 1, respectively. Such a function
represents a betting strategy in that d(σ|N) is a payoff after N bets according to strategy d.
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We say that a martingale d succeeds on a set A ⊆ 2ω if

lim sup
N→∞

d(σ|N) = ∞ for all σ ∈ A. (6.2)

Clearly, if (6.2) holds for a singleton {σ}, it implies that one can successfully predict
digits of σ using a strategy d, hence we naturally arrive at the following notion of ran-
domness: it should be impossible to find a succeeding martingale against a truly random
(unpredictable) sequence. Unfortunately, it was Ville who proved

Theorem 28. For any A ⊆ 2ω, there exists a martingale that succeeds on A iff µ∞(A) = 0.

Particularly, above result excluded all singletons from being considered random, ren-
dering the condition too restrictive. To address this, one possible approach is to restrict
considerations to computably enumerable martingales [158] (recall that a subset A ⊆ 2<ω

is computably enumerable if it is a domain of some partial computable function, i.e. a func-
tion f : 2<ω → 2<ω for which a Turing machine T exists such that for every σ ∈ dom( f )
we have T(σ) = f (σ) and T(σ) halts). By Theorem 29 we will observe that this is an
appropriate way of defining randomness in terms of unpredictability.

Finally, we discuss the notion of patternlessness. When we encounter a sequence σ that
is non-random, we suspect such σ is atypical in some way. In other words, there is usually
a specific property σ is characterized by (think of σ ∈ 2ω such that σ(2n) = 0 for n ∈ N).
On the contrary, a random sequence σ should be as typical as it is possible, meaning there
should be no distinguishing "property" that singles out σ. In the present context, typicality
and randomness are to be considered measure-theoretically. A prime example of such a
property is provided by the outcome of a fair coin flip. It can be shown that the expression

lim
N→∞

1
N

N

∑
i=1

σi =
1
2

(6.3)

is typical in 2ω, i.e. for A ⊆ 2ω, that consists of all sequences satisfying (6.3), it holds
µ∞(A) = 1. Thus almost all coin flips turn out to be "fair" (random), and the non-random
ones belong to the set 2ω \ A which represents a specific property, since µ(2ω \ A) = 0.
It seems natural, then, to extend this idea and define a sequence to be random if it does
not belong to any measure-zero set T, referred to as a "test" here. Thus, random sequences
should omit all such tests. However, this approach leads to a serious issue, as it implies
no sequence σ can deemed be random at all. This is because for every σ we have σ ∈ {σ}
and µ∞(σ) = 0 evidently. We can see it resembles the case of martingales (see Theorem
28) and requires a similar resolution, but we need to introduce a few definitions first.

Thus, a set A ⊆ 2ω is called Martin-Löf null if there exists a uniformly computably
enumerable sequence (recall that a collection of sets U0, U1, . . . is uniformly computably
enumerable if ∀n

(
Un = dom( fn)

)
for a uniformly partial computable collection { fn}, i.e.

for a partial computable function f such that f (n, x) = fn(x) for all x ∈ 2ω, n ∈N) {Un} of
computably enumerable subsets Un ⊆ 2ω such that µ(Un) ≤ 2−n and A ⊆ ⋂n Un. Again,
the set T =

⋂
n Un is called a Martin-Löf test and we say σ ∈ 2ω is Martin-Löf random if

σ /∈ T for any Martin-Löf test T. Thus the collection of measure-zero tests is seriously
restricted to countably-many collection of Martin-Löf tests. Moreover it holds that there
exists a universal test U such that σ /∈ U iff σ is Martin-Löf random.

Having established the three fundamental types of randomness that can be rigorously
defined, a powerful result demonstrates that they are actually equivalent: [118, 55]

Theorem 29. A sequence σ is Kolmogorov–Chaitin random iff it is Martin–Löf random iff
it is Schnorr random.
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Since 1-randomness remains "invariant" when transitioning through contexts described
above, one should ask whether it is connected to the randomness of quantum mechanics
in any way. We close this section with a reference to the main result of the work [118].
Observe that the generic way of generating binary sequence in quantum mechanics is
to measure an observable represented by a projection P multiple times. Then, the Born
measure µP on σP = {0, 1} = 2 (see Chapter 2) can be extended to 2ω according to the
following general procedure. Let (X, µ) be a measure space and consider the cylindrical
σ-algebra S ⊆ P(Xω), generated by the sets of the form

C =
N

∏
n=0

Cn ×
∞

∏
k=N+1

X (6.4)

where Cn ∈ Bor(X), n = 1, 2, . . . , N. The probability measure µ∞ on sets of the form (6.4)
is defined by

µ∞(C) =
N

∏
n=0

µ(Cn),

and this measure naturally leads a unique extension µ∞ on Xω of the probability measure
µ on X. Returning to quantum mechanics, consider 1

2 -spin as a demonstrative quantum
system (cf. Example 1). First, we prepare the system S in a certain state; w.l.o.g. let S
be in a state ψ = |+〉 i.e. a spin-up along x-axis. It can be shown that a subsequent
measurement of the spin along z-axis will give equal, 1

2 -probabilities of obtaining either
spin up or down along z-axis, what stems directly from (2.5). The extension of the Born
measure µP on {0, 1} to µ∞

P on 2ω is defined accordingly, and the fair coin-flip Bernoulli
process is recovered by the following [118]

Theorem 30. The following procedures for repeated identical independent measurements
are equivalent (as they give the same possible outcome sequences with the same probabil-
ities):

1. quantum mechanics is applied to the whole run, described as a single quantum-
mechanical experiment with a single classically recorded outcome sequence (note
that applying quantum mechanics to the whole run (at once) means employing a
measurement of a family of commuting operators a = (a, . . .) defined on an infi-
nite tensor product H⊗∞; the above equivalence stems from the identity between
measures

µa = µ∞
a ,

2. quantum mechanics is applied to single experiments (with classically recorded out-
comes), upon which classical probability theory takes over to combine these.

Hence, either of the aforementioned methods ensures that the Born probability µa for
a single outcome extends to a Bernoulli process characterized by the probability µ∞

a on
the infinite sequence of experiments. Note that 2ω represents the infinite sequences of re-
peated measurements of an observable P. Here, the measurement repetition is understood
once again as a triple (t, a, b) with a time step t : ω → R, state preparation a ∈ S (corre-
sponding to state-density operator) and b ∈ Q (corresponding to question-projection) (see
Chapter 2). Thus we have

Corollary 9. The Born measure µP determines the infinite-product measure µ∞ on the
Cantor space 2ω of measurement outcomes in quantum mechanics.

Crucially, one shows the following [118]
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Theorem 31. Almost every binary sequence σ ∈ 2ω is 1-random with respect to µ∞.

In other words, we have

µ∞({σ ∈ 2ω : σ is 1-random} = 1. (6.5)

Equivalently, the set of non-1-random sequences has null measure (has probability 0), or
there is a zero probability of obtaining a sequence of outcomes that is not 1-random.

Remark 35. As emphasized in [118], it is important to distinguish here the probability of
an outcome and of a property. In particular, for every outcome σ ∈ 2ω we have µ∞(σ) = 0,
irrespective of whether σ is random or not (as we discussed at beginning of this chapter).
However, (6.5) still remains valid for a property of 1-randomness.

6.3 Another level of randomness

Here we advocate for the concept that quantum mechanics may demand yet another, dis-
tinct approach to randomness, where a random sequence should be characterized by its
genericity. This arises due to the nontrivial forcing extensions, inherent in the mathematical
structure of quantum mechanics, described extensively in Chapter 2. In particular, recall
that in [23] it was demonstrated that there exists a countable, transitive ZFC model M0
capable of expressing the formalism of quantum mechanics, although the strong random-
ness of measurement outcomes rules out M0 (as well as any forcing extension M0[G] of
M0) from being a complete description of quantum mechanics. (Note that Benioff’s defini-
tion of randomness is tied with definability, which mirrors Gödel’s constructible universe
Lα.) In the subsequent discussion, we extend this approach and assert that any random
sequence σ ∈ 2ω of experiment outcomes should omit Borel-measure zero sets "coded" in
the model M in which quantum mechanics is formalized. Consequently, these sequences
live rather in a generic extension M[σ], and it becomes apparent that there is a natural
distinction between finite- and infinite-dimensional cases. The former extends Martin–
Löf 1-randomness to the ω-randomness and the latter corresponds to the Solovay generic
randomness. Moreover, we will argue that Boolean valuation of truth, inevitable along
any forcing extension, suggests a modification of a measurement formulation due to von
Neumann, see (2.3)-(2.4).

6.3.1 Finite-dimensional case

Recall that 1-randomness of quantum mechanics is a consequence of the way Born mea-
sure acts on the Cantor space 2ω [116]. Based on this result, we will show that the formal-
ism of quantum mechanics is actually not limited to 1-randomness. In order to extend it to
n-randomness and further to ω-randomness, we need a couple of definitions. Recall that
a sequence σ ∈ 2ω is Martin–Löf null if σ passes all Martin–Löf tests and in general, σ is
called n-random σ passes all MLn tests (moreover, we say σ is arithmetically random if it is
n-random for all n ∈N). To fix the notation we propose the following

Definition 4. Let T be a theory that assigns probabilities to outcomes of experiments via
some probability measure µ. We say T is n-random for n ∈N+, if this probability measure
extends uniquely onto a probability measure on the set of infinite sequences of outcomes
and additionally, almost all these sequences are n-random. If above is true for all n ∈ N,
we call T ω- (arithmetically) random.

Example 10. By Corollary 9 and Theorem 31, quantum mechanics is a 1-random theory,
since the Born measure extends uniquely to 2ω and almost all infinite sequences of out-
comes in 2ω are 1-random.



6.3. Another level of randomness 65

To show the n-randomness of QM, we first prove the following

Lemma 14. For every n ≥ 1 it holds

µ∞({σ ∈ 2ω : σ is n-random} = 1.

Proof. It is an immediate consequence of the Definition 4 of n-random sequences, namely
that they omit all measure-zero sets that belong to the n-th arithmetic class and equiva-
lently, every n-random sequence belongs to a full-measure subset of 2ω.

Theorem 32. QM is n-random for every n ≥ 1, .

Proof. Let µ∞ be a unique extension of the Born measure, whose existence is guaranteed
by Corollary 9. Based on Lemma 14, the set of all non-n-random sequences of quantum
mechanical outcomes has null measure.

By Definition 4 we conclude

Corollary 10. QM is ω-random.

Finally, we make a connection between randomness defined through arithmetic sets
and Solovay genericity. First we define a sequence σ ∈ 2ω to be weakly n-random if σ is an
element of every n-arithmetic set of measure 1. Interestingly, this notion of randomness
of σ ∈ 2ω falls right in between n- and (n− 1)-randomness as the following implications
hold [95]

σ is n-random =⇒ σ is weakly n-random =⇒ σ is (n− 1)-random (6.6)

Additionally we have

Theorem 33. A set is Solovay n-generic iff it is weakly n-random.

Observe that since QM is n-random for any n ∈N+, by (6.6) it is also weakly n-random
for any n ∈ N+. Defining ω-genericity in analogy to ω-randomness, by Theorem 33 we
obtain

Corollary 11. QM is Solovay ω-generic.

In order to proceed with infinite-dimensional case, we make an important remark
about Solovay n-genericity [95]. So far we have met a characterization of n-randomness
as a property of omitting n-arithmetic sets of null measure. In fact, this can be shown
to be equivalent to omitting null sets definable in the step Lω of building a Gödel’s con-
structible universe L (see Appendix B). Let φ be a sentence in the language of Peano arith-
metic and let σ ∈ 2<ω; we say σ forces φ (written σ  φ, as usual) if A |= φ for every
A ∈ {τ ∈ 2ω : σ < τ}. Then for general A ∈ 2ω we have A  φ if for some σ ⊂ A it holds
σ  φ. Finally [95]

Proposition 3. A is Solovay n-generic iff for each σ0
n or Π0

n sentence φ we have A  φ iff
A |= φ.

Thus, one refers to the above as a miniaturization (effectivization) of set-theoretical Solo-
vay forcing.
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6.3.2 Infinite-dimensional case

Once we conclude that above description of randomness relies upon hereditarily finite
sets of Lω, we have good reasons to anticipate an enhancement of the approach in the
case of infinite-dimensional Hilbert space H. Firstly, Lω is a ZF model without the axiom
of infinity, what suggests heading towards full-fledged, countable transitive ZFC models
(if not a universe V, eventually). Secondly, Boolean subalgebra B ⊆ L (H) can now be
atomless, what is impossible in finite dimensions. This fact suggests a set-theoretical non-
trivial forcing comes into play (see Lemma 21 for a fundamental importance of atomicity
of B). Thirdly, this picture emphasizes the role of homomorphisms h : B → 2 as a two-
valued, classical reduction of a quantum-mechanical description. Suppose that such a
reduction h is M-completely additive, i.e. for any A ⊆ B such that sup A exists in B it
holds

h(sup A) = sup{h(a) : a ∈ A} (in M).

Then we have the following [166]

Lemma 15. A Boolean homomorphism h : B→ 2 is M completely additive iff U = h−1(1)
is a generic ultrafilter over M in B.

But due to Lemma 21 we already know that a generic ultrafilter of a Boolean algebra is
absent in M if and only if B is atomless in M. Therefore we conclude

Corollary 12. If M = Lα and B — atomless, then h : B → 2 and U = h−1(1) are not in Lα.
Moreover U ∈ Lα[U] is the random Solovay extension of Lα.

Observe that the formalism of quantum theory (i.e. an orthomodular lattice of projec-
tions together with the family of its maximal Boolean subalgebras) dictates that the classi-
cal reduction to two-valued logic has to go via random forcing extensions, namely choos-
ing an observable a (or a family of compatible observables {ai}i∈I) to be measured, one
effectively selects a (non-unique in general, see Example 8) maximal Boolean subalgebra B
containing a (or {ai}i∈I). This choice gives rise to a specific Boolean-valued model LB

α and
generally to the family {LB

α}B indexed by BSub(L (H)). The choice of an Lα-completely
additive homomorphism h : B → 2 then boils down to the choice of the ultrafilter U such
that LB

α /U is a genuine two-valued ZFC model (a random forcing extension Lα[U]).

Remark 36. Up to this point, we have implicitly assumed that our discussion takes place
within a countable transitive ZFC model (specifically Lα) and its extensions. For a com-
plete picture we need to comment on the premises that quantum mechanics could be for-
mulated in the universe of sets V (see Appendix B) instead. Suppose that quantum me-
chanics is Solovay generic random and it is formulated in V. In particular, there exists a
random σ ∈ 2ω that omits all null sets in V. Therefore one needs to consider an extension
of V that contains σ. As V contains already all sets, the possible way out is to build a
Boolean-valued model VB inside Lα and find an ultrafilter U in B such that VB/U = V[σ].
This reduces in fact to working with a countable transitive model again, what indicates
one should consider the latter instead of V to formulate QM.

Recall that, according to Benioff [24], given countable transitive ZFC model M there
is no Cohen extension M[σC] that contains a random σC. We reformulate this fact in the
case of Solovay generic randomness. Let R(M), C(M) be the sets of random and Cohen
reals, generic over M, respectively. Let N , M be ideals of null and meagre Borel sets.
Then, N ∩M andM∩M represent null and meagre Borel sets coded in M, respectively.
Likewise, 2ω ∩M consists of all real numbers in M; replacing M for any extension defines
real numbers in that extensions. To obtain the result, first we state [114]



6.3. Another level of randomness 67

Lemma 16. Let r ∈ R(M), c ∈ C(M). It is provable in M[r] that 2ω ∩ M ∈ M and
2ω ∩M /∈ N . Also, it is provable in M[c] that 2ω ∩M ∈ N and 2ω ∩M /∈ M.

Thus we obtain a variant of Benioff’s result (see Chapter 2):

Corollary 13. For any Cohen extension M[c] we have R(M) = ∅, hence no Cohen exten-
sion contains any random Solovay real.

Let us now discuss in more detail how random forcing affects the measurement proce-
dure (for the background on measurement, see Chapter 2).

Remark 37. A toy model for representing logical independence measurement on appro-
priately prepared quantum state was proposed in [145]. In particular, it was noted that the
axioms can be materialized as qubits’ states; furthermore, if a measurement representing
proposition gives a random outcome, then this proposition is logically independent of the
axioms.

Above remarks suggest the following definition. We will call a quantum measurement
of an observable a in a state ψ generic if (ψ, φ) 6= ±‖ψ‖ · ‖φ‖, where φ is a state ψ trans-
formed by the measurement (in other words, the measurement is generic if states before
and after measurement do not belong to the same ray in a Hilbert space).

Lemma 17. Any generic measurement of a quantum system in a state that belongs to
infinite-dimensional Hilbert space H determines a pair (B, U), where B ⊆ L (H) is the
measure algebra and U ⊂ B is an ultrafilter.

Proof. Let a be any observable to be measured; since dim(H) = ∞, a is contained in a
maximal, atomless Boolean algebra B ⊆ L (H). By Lemma 6, B is the measure algebra.
Observe that any generic measurement, as defined above, provides a classical context that
decides truth of all propositions within B via Theorem 18, given by the valuation h : B →
{0, 1} that is completely additive. Therefore by Lemma 15 the set

h−1(1) = U ⊂ B

determines a generic ultrafilter.

Above result can now be relativised to any countable transitive ZFC model M via

Lemma 18. Let M be a countable transitive model of ZFC such that Lα is a submodel of
M. Then any generic measurement of a quantum system in a state that belongs to infinite-
dimensional Hilbert space H determines the pair (B, U) as in Lemma 17 (in M).

Theorem 34. Every generic measurement of a quantum system in a state that belongs to
infinite-dimensional Hilbert space H gives rise to the classical realm by adding a random
infinite sequence to the minimal countable transitive model of ZFC.

Proof. Once the measurement is done and the classical realm is attained, a specific val-
uation h : B → {0, 1} is defined, where B is a maximal Boolean context. Let ψpsc be a
pseudoclassical state (see Chapter 2), corresponding to a generic ultrafilter on the measure
algebra B [171]. Therefore after the measurement, a valuation hψpsc : B → {0, 1} given by
an ultrafilter ψpsc appears, such that

ψpsc = h−1
ψpsc

(1).

Now we relativise the above to a countable transitive ZFC model M. Then ψpsc /∈ M
and ψpsc /∈ M[ψpsc]. Recall that every generic ultrafilter corresponds to a random real
r ∈ M[r] = M[ψpsc] [91]. Such an r can be considered a random binary sequence with
M = Lα.
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6.3.3 Intermediate Boolean mixture of states

Recall that the orthodox formulation of measurement (2.3), (2.4) involves the interaction
of a quantum system and a measuring device, which results in a mixed state. In the fol-
lowing, we will argue that this scheme requires an additional stage of a Boolean mixture
of states by the following reasoning:

• Let M be a countable transitive ZFC model that formalizes quantum mechanics,
therefore containing the complete measure algebra B ⊆ L (H).

• For quantum mechanics formulated in M, Solovay forcing leads to random reals
r /∈ M where M[r] is a Solovay forcing extension.

• An extension M[r] can be obtained via Boolean-valued model MB as

M[r] = MB/Ur,

where Ur is the ultrafilter corresponding to r.

• If M = Lα, in order to attain random reals in 2-valued forcing extensions {Lα :
r — Solovay generic over Lα}, one has to go through the Boolean-valued model LB

α .

The last observation above indicates that all generic measurements of a quantum sys-
tem formalized in Lα factor through LB

α to reach a 2-valued, classical stage. We propose a
hypothesis that (2.3) should be replaced by a more general stage

∑ ci |φi〉 |ai〉 ∈ LB
α

forcing−−−→ Lα 3 |φn〉 |an〉 (6.7)

Let us show

Lemma 19. Suppose quantum mechanics is formalized in Lα. Then the Boolean stage LB
α

in a generic measurement is equivalent to the existence of random forcing extensions.

Proof. It is easy to see that LB
α determines all random extensions Lα simply by LB

α /Ur where
Ur is a generic ultrafilter corresponding to random r; conversely, every random forcing
extension Lα comes from LB

α via LB
α /Ur.

Since random forcing extensions correspond to generic measurements by Theorem 34,
we obtain

Corollary 14. A generic measurement of a quantum system involves the intermediate
Boolean stage described in (6.7).

Before we discuss experimental aspects of quantum randomness, let us briefly com-
ment the relationship with hidden variables (see Chapter 2). Recall that hidden variable
theories primarily introduce additional degrees of freedom to make a theory determinis-
tic. Thus, going back to mathematical approaches to randomness, we identify that hidden
variables align with predictability interpretation (see Section 6.2). Therefore one might ex-
pect that hidden variables and randomness are fundamentally opposed. As shown earlier,
quantum theory formulated in Lα provides that a classical two-valued realm in the con-
text of some maximal measure algebra B ⊆ L (H) is obtained via a completely additive
homomorphism h : B → {0, 1} and random generic extensions dictated by h−1(1), which
corresponds to the preimage of what is considered true in the extension. If a genuine hid-
den variable theory existed, it would have to admit generic extensions for all local contexts
B ⊆ L (H). In other words, for a hidden variable theory to be valid, there should exist a
countable transitive ZFC model containing this particular realization of hidden variables.
This is not the case as shown by
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Lemma 20. There is not any countable transitive ZFC model containing all random exten-
sions of Lα.

Proof. Let M be a countable transitive ZFC model. In particular, M contains only countably
many extensions of Lα. Since there is uncountably many extensions of Lα, there is also
uncountably many of them outside M.

Although the above is in agreement with the standard results such as Kochen–Specker
theorem, it appears to be extremely excessive. In fact, due to Kochen–Specker theorem,
it is sufficient to assume dim(H) ≥ 3 and at least two incompatible contexts in order
to prohibit global valuations. This raises questions about the interpretation of Lemma
6.3.3. Fortunately, it is possible to address finite number of contexts. Firstly, a weaker
version of can be stated as follows: there exist two different random forcing extensions
M1 = Lα[U1], M2 = Lα[U2] such that there is no M3 = Lα[U3] with M1, M2 both being
submodels of M3. This restated version still rules out hidden variables, and it is expressed
precisely by the following result [77].

Proposition 4. Let M be a countable transitive ZFC model and let M1 = M[U1] be its
random extension. Then there always exists M2 = M[U2] such that there does not exist
any random extension M[U] with the same ordinals and containing M1, M2 as submodels.

Corollary 15. Since every random extension Lα[U] preserves ordinals, hence Proposition
4 applies here and it follows that it is sufficient to have at least two incompatible Boolean
contexts to forbid hidden variables.

6.4 QRNGs and infinite-dimensional systems

We conclude this chapter with a discussion on the possibility of experimentally testing
the randomness of quantum mechanics. We have previously argued that determining
the randomness of a given binary sequence, generated by some (possibly hidden) algo-
rithm, is not a feasible task, as it is generically an incomputable procedure. The exam-
ple of π can be taken to the extreme by considering a random sequence restored from
some hardware memory, necessarily turning the sequence into a predictable one [25]. This
implies that common tests of randomness, like relative frequency or Borel normality, es-
tablish only a prerequisite for the sequence to be random. In other words, these tests
reveal the degree to which a sequence can be considered random and identify sequences
that are likely to be non-random. Moreover, according to Ramsey’s theory, even an in-
finitely random sequence could theoretically exhibit patterns or correlations, potentially
failing specific statistical tests in principle [42]. To address this point, it is reasonable to
shift the focus towards the generation process. As a result, ensuring the randomness of a
numeric sequences has led to an emphasis on physical processes that generate these and
"certify" a certain degree of randomness. For instance, expriments involving photons pass-
ing through a polarization beam splitter have produced sequences of seemingly unpre-
dictable, random outcomes [92]. Note that measuring the two-dimensional state (such as
a state of a photon with two polarizations) can be easily represented by binary sequences.
However, the only formal basis for such a sequence to claim its randomness is again Born’s
rule. To establish a more rigorous theoretical foundation, attention turns to principles that
certify unpredictability more firmly. In particular, we focus here on two aspects: Kochen–
Specker theorem and Bell inequalities (cf. Chapter 2). Recall that Kochen–Specker the-
orem asserts that, for dim(H) > 2, it is impossible to assign in advance the results of
measurement in a noncontextual way, i.e. the one that is independent of measurement.
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Consequently, a carefully designed setup of such a quantum system can theoretically pro-
vide a certified method for generating randomness. Due to dimensional constraints, the
experimental realization discussed in [113] relied on a qutrit (spin-1) system, which is a
three-dimensional analogof the more familiar spin- 1

2 qubit. Importantly, a constructive
version of the Kochen–Specker theorem has been demonstrated, implying that in order to
find specific observables with indefinite values, one must identify one-dimensional pro-
jections for which the system is not in an eigenstate [1]. Recently, it has been rigorously
demonstrated that, based on the above indefinitess criterion and the qutrit experimental
setup, measurements yield indefinite results, when performed on the system in a certain,
prepared eigenstate [3]. Moreover, these results can be shown to be unpredictable (i.e.
there is no computable function returning those outcomes). Recall that Bell’s inequalities
impose constraints on correlations between measurement outcomes in the context of a lo-
cal, hidden-variable theory. When a quantum system consists of two sufficiently separated
subsystems, the violation of Bell’s inequalities serves as another means of certifying ran-
domness. In particular, it has been proposed that ions trapped in vacuum chambers that
emit photons can give rise to such subsystems; entangling the photons in a beamsplitter
results then in the entanglement of the ions, and the detection of photons in appropriate
basis yields the measurement of two-state (qubit) ion systems [146]. The observed viola-
tion of Bell’s inequalities precisely reflects the fact, that there is no deterministic process
describing the series of measurements (in other words, the outcomes could not be prede-
termined in advance).

Let us now shift our focus to the so-called a posteriori tests, which represent a more
conventional approach to randomness testing. Again, the first remark is that an algorith-
mic randomness of a sequence, as understood in terms of incompressibility, is not effec-
tively decidable. One way out is to carefully design a test that explores an algorithmic ran-
domness as much as possible, and then compare the results with those obtained from cho-
sen PRNGs. In [2], the authors examined the qutrit measurement results described above,
in comparison with five deterministic, pseudo-random sequences. The first test for Borel
normality revealed a significant bias in the case of a quantum sequence; this, although
expected, can be postprocessed in principle e.g. by the so-called von Neumann’s trick
[113]. Following this, four tests aimed at investigating algorithmic randomness (so-called
Chaitin–Schwartz–Solovay–Strassen tests) were applied. While the initial hope was to
provide the clear distinction in computability between truly random and pseudo-random
sequences, the results were not conclusive: the tests either proved no significant differ-
ence, or, in case of differences, they were likely due to the mentioned earlier bias. Recently,
slightly more optimistic, but similar results have been demonstrated [96]. This also sug-
gests a potential room to investigate other tests for algorithmic randomness in the future.

To summarize, algorithmic randomness of QM is currently verified within two main
steps: first, we certify the randomness on theoretical, formal grounds (as the Kochen–
Specker theorem or Bell-type inequalities); second, we verify the sequence outcomes to
pass through the tests all patternless sequences should pass. While the former does not
raise serious doubts and gets different formulation under our work (namely the random-
ness is to be certified by passing through ZFC models, that occurs during the measurement
process), the latter gives usually ambiguous results, that should be also addressed thor-
oughly in the future from the point of view of algorithmic randomness described in the
present work.

In the end, let us comment on dimensional aspects of experimental randomness. Firstly,
we distinguished between quantum systems represented by finite- and infinite-dimensional
Hilbert spaces. Experimentally determining whether quantum randomness is enhanced
and originates from an infinite-dimensional system can be challenging. However, there is
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an alternative approach. Certain quantum constructions, such as those related to canon-
ical commutation relations (see comments to axioms in Chapter 2) require the Hilbert
space to be infinite-dimensional in order to be satisfied. Therefore, if a measurement on
a quantum system S, resulting in a sequence σ ∈ 2ω, decided whether HS is finite- or
infinite-dimensional, it would provide an information on the strength of randomness of
σ. Currently, main focus of such dimension witnesses lies on designing experiments that
quantify finite dimensions [40, 39]. However, to obtain a lower bound on the dimension
of a Hilbert space describing measured physical systems, a particular variant of Clauser–
Horne–Shimony–Holt (CHSH) game has been designed. It has been shown that for appro-
priate entanglement between subsystems, there exist correlations that cannot be realized
by any finite-dimensional system [48] (the results hold even for finite number of questions
and outcomes). Unfortunately, these results cannot decisively distinguish between finite-
and infinite-dimensional systems, as the calculated correlations can be approximated by
systems with sufficiently large dimensions to arbitrary precision. Put differently, given a
correlation value and the precision of experiment, there will be always a specific finite-
dimensional setting that would fit a theoretical value with some measurement error. Simi-
larly, tests of dimensionality based on the experimental verification of the uncertainty prin-
ciple for position and momentum face limitations. Namely, there exist finite-dimensional
canonical commutation relations (CCR) for sufficiently large dimensions that cannot be
distinguished from the exact CCR realized in the infinite-dimensional setup [162]. This
puts into question the possibility of actually detecting the infinite number of dimensions
of a Hilbert space (however, further work on random number generators based on op-
erators of continuous spectrum may shed some light on that issue, cf. [129]). Applying
several tests simultaneously would be another possibility, as finite-dimensional approxi-
mations to various effects may behave differently. Although we cannot provide here any
ready-to-go solution, we suggest that quantum correlations between regions in spacetime
could elude the finite-dimensional approximation, therefore gravitational effects might re-
veal some possibilities of realizing such tests.
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Chapter 7

Discussion and outlook

We have explored various applications of topos theory in quantum physics. Majority of
discussed topics originate from the lattice structure L (H) and the family BSub(L (H)) of
its Boolean subalgebras. We have shown that it is sufficiently rich and it generates natu-
rally a family of sheaf topoi VB = Sh(B), defined through Boolean-valued models, which
serve as an intermediate step to forcing extensions. The elements of BSub(L (H)), derived
from the components — projections in L (H) — determine extensions VB/U. Through
these extensions it has been established next how to reinterpret the contributions of zero-
point energy of quantum fields. In particular, the adopted model makes the contributions
vanishing, what provides a starting point for addressing the cosmological constant prob-
lem. At the same time, every topos VB carries the object of real numbers RB on its own.
In the case of B ∈ BSub(L (H)), real numbers RB are exactly self-adjoint operators con-
tained in B, what gives an interesting interpretational aspect of the approach. Trying to
model globally spacetime as a smooth manifold Rn built upon the patches parametrized
by such reals, one concludes that such a spacetime has to be an exotic smooth R4. This is
treated then as a guiding principle in searching for a derivation of a small, non-zero value
of cosmological constant that appears as a topological invariant and it is indeed possible
to calculate a value that agrees with current results of experiments. The parametrization
of the manifold’s atlas by Boolean subalgebras is then shown to possess a similar cate-
gorical structure — the colimit — inside appropriate categories. The discussion has been
completed with a recent result showing that the local modification of a smooth manifold
by a Basel topos sheds new light on distribution theory, in which we briefly refer to the
work [107] that offers another perspective on generating exotic smoothness by interpreting
some of transition maps inside the Basel topos. Finally, based on the structure of L (H)
once again, it was shown how quantum-mechanical randomness is affected by employ-
ing Boolean topoi to describe infinite-dimensional quantum systems; while it was known
that in the case of finite-dimensional systems, quantum mechanics enjoys the property of
1-randomness, we have proved that atomless subalgebras of L (H) lead to the stronger
notion of randomness, described generically in the language of Boolean-valued models
and forcing. In the following, we would like to indicate several points in the thesis that
appear promising for future exploration.

1. Chapter 3: As we started the discussion with the remarks concerning the structure of
L (H) and its Boolean subalgebras in particular, recall that we only touched upon the
groups of automorphisms defined over several (sub-)structures of L (H). Based on
the relation between the algebraic structure of L (H) and spacetime’s smooth struc-
ture M, it is reasonable to ask how the homorphisms of Boolean subalgebras relate
to diffeomorphisms of charts on M and, globally, what is a relation between auto-
morphisms of L (H) and global diffeomorphisms of M (this extends also to trans-
formations between sheaf toposes VB corresponding to "local" frames of reference
[50]). This way we arrive at interesting point for future research, possibly building
upon the work [110, 103]. Namely, recall that every Casson handle can be embedded
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in a linear one, further represented by a real number. Consequently, if formulated
in a countable ZFC model M, every non-trivial forcing extension M[G] adds reals to
the model, and these reals represent again some Casson handles that are missing in
M. This opens a door to explore diffeomorphism classes of exotic R4 through set-
theoretic tools. For example, it is not known when forcing extensions M[G1], M[G2]
lead to (non)diffeomorphic Casson handles given by the respective ultrafilters G1,
G2. Accordingly, it would be also interesting to provide interpretation for Proposi-
tion 4, as for every model M we find forcing extensions, hence some internal Casson
handles, that are not diffeomorphic in any further extension. Finally, this is related
also to automorphisms of P(N)/Fin (see Chapter 3), as one can lift the diffeomor-
phism between Casson handles (Cohen reals) to almost permutations of N. These
define in turn so-called trivial automorphisms of P(N)/Fin and it has been conjec-
tured that non-trivial automorphisms would correspond to exotic smooth R4 giving
rise to hypothetical exotic smooth S4 [109].

2. Chapter 4: The necessary condition of an atomless Boolean algebra of projections
to generate nontrivial forcing extension has the weakness as shown in Example 8.
Since atomicity of a block containing an operator a is not an invariant of a, one
would need some effective solution providing conditions for the block’s atomicity.
Also, suppressing zero-point modes of quantum fields requires a thorough analysis,
including extending the discussion to other forcing notions that could be applied
there. The value of cosmological constant obtained via topological transitions needs
to be analyzed with respect to its stability under boundary conditions such as the
size of an initial sphere, choice of homology spheres etc. Finally, as described in
[13], an embedding of small exotic R4 into standard one (instead of K3 ¯CP2) causes
topologically-induced cosmological constant to vanish. An interpretation of such an
effect certainly needs to be considered in terms of the modification of "local" real line
as described in the beginning of Chapter 4.

3. Chapter 5: As the categorical structures for Boolean subalgebras of L (H) and opens
in smooth atlas were identified and the global objects were shown to agree, it is a
natural next step to explore whether the structures are related in a more fundamen-
tal way. In particular, one should investigate this relation can be made functorial,
also in the context of the remark to Chapter 3 above. Considering a topos-theoretical
description of smoothness through the Basel topos B, it would be interesting to ex-
amine what particular exotic smooth R4 are produced via a local modification of
transition maps, what would possibly lead to the construction of smooth invariants.
Note that, although it was deliberate here to avoid description through Casson han-
dles, there seems to be also a deep connection between the local modification of
the manifold with B and infinite constructions in 4-dimensional differential topol-
ogy (see also the comment to Chapter 3 above). This relationship operates through
smooth objects of natural and real numbers inside B, which allow to pass from infi-
nite to s-(smoothly-)finite notions such as infinite signed trees that appear in exotic
constructions [11]. Additionally, Remark 29 only briefly mentioned potential appli-
cations of interpreting some divergent quantities that appear e.g. in general rela-
tivity or in quantum field theory in B (see also [30]). Still, such re-interpretation of
renormalization is not intended to be viewed as some "miraculous" tool to make di-
vergences vanish, as these usually indicate the break-down of an effective picture.
Indeed, we conjecture that making such quantities s-finite in B will produce proce-
dures equivalent to standard ones, such as attaching the counterterms to scattering
amplitudes. Most importantly, as described in Chapter 5, such a local modification
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does not come for free and the price to pay is the modification in the smooth struc-
ture. This offers a new, qualitative perspective on the way renormalization relates
to the background spacetime. A more quantitative examination could potentially re-
veal a direct relationship between concrete examples of renormalized quantum field
theories defined on R4 and particular (exotic) smooth structures on R4.

4. Chapter 6: Here, the experimental distinction of randomness in the case of finite- and
infinite-dimensional quantum systems is still unclear. As we argue, it is a common
theme in physics and constructions dubbed as "infinite", "infinitely small", "smooth"
etc. are never easy to grasp experimentally, mainly due to omnipresent measurement
precision constraints. It is also interesting to develop the alleged correspondence be-
tween forcing extensions and many-worlds interpretation of quantum mechanics.
Finally, from the perspective of decoherence caused by gravity bath, it is worth ex-
amining what possible impact spacetime (gravity) may have on randomness.
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Appendix A

Lattices and Boolean algebras

Definition 5. A partially ordered set (poset) is a pair (P,≤) (written simply P if it not leads
to confusion) such that P is a non-empty set and ≤ is a binary relation that is reflexive,
antisymmetric and transitive, i.e.

1. ∀p ∈ P (p ≤ p);

2. ∀p, q ∈ P
(
(p ≤ q and q ≤ p) =⇒ p = q

)
;

3. ∀p, q, r ∈ P
(
(p ≤ q and q ≤ r) =⇒ p ≤ r

)
.

We write written p < q for p ≤ g and p 6= q. Moreover, a partial order (P,≤) is called
linearly (totally) ordered if all elements are comparable, i.e. for all p, q either p ≤ q or
q ≤ p. Finally, we call (P,≤) well-ordered if it is totally ordered and every subset of P has
the least element.

Definition 6. A lattice is a poset (L,≤) such that for any p, q ∈ L there exist the least upper
bound (supremum or join) p ∨ q and the greatest lower bound (infimum or meet) p ∧ q in
L. A lattice L is called

• bounded, if there is a minimal (bottom) element 0 ∈ L such that ∀p ∈ L (0 ≤ p) and
a maximal (top) element 1 ∈ L such that ∀p ∈ L (p ≤ 1),

• distributive, if p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r) for any p, q, r ∈ L.

• complete, if every subset X of L has a supremum and an infimum,

• orthocomplemented (i.e. L is an ortholattice) if L is bounded and equipped with an
operation ⊥: L→ L that satisfies p⊥ ∧ p = 0, p⊥ ∨ p = 1 and if p ≤ q then q⊥ ≤ p⊥,

• orthomodular if p ≤ q→ p = q ∧ p ∨ q⊥ for any p, q ∈ L.

Remark 38. Equationally, a bounded lattice L can be defined by

a ∨ 0 = a a ∧ 1 = a
a ∨ a = a a ∧ a = a

a ∨ b = b ∨ a a ∧ b = b ∧ a
(a ∨ b) ∨ c = a ∨ (b ∨ c) (a ∧ b) ∧ c = a ∧ (b ∧ c)

(a ∨ b) ∧ b = b (a ∧ b) ∨ b = b

for any a, b, c ∈ L.

Example 11. Let L (H) be a set of projections on a Hilbert space H. Then (L (H) ,≤) is a
poset with

p ≤ q ⇐⇒ ran(p) ⊆ ran(q) ⇐⇒ pq = qp = p.
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Clearly, this order is reflexive, antisymmetric and transitive. Moreover, L (H) is bounded
with 1 and 0 defined as projections on whole H and an empty subspace, respectively,
since for any p ∈ L (H) it holds that ∅ ⊆ ran(p) ⊆ H. Define supremum and infimum as
follows: ∨

Pi = PM where M is the closed linear span of
⋃

ran(Pi),∧
Pi = PM where M =

⋂
ran(Pi).

Hence also p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r) for any p, q, r ∈ L (H). Note that one can not
take an ordinary union of closed subspaces to be the join, because the result is not a closed
subspace in general. If projections p, q ∈ L (H) commute, i.e. pq = qp, above formulae for
join and meet boil down to

p ∨ q = p + q− pq, p ∧ q = pq.

Notice that p⊥ := 1− p defines an orthocomplementation in L (H), making it an ortho-
lattice. However, it does not always hold that p ∧ (q ∨ r) 6= (p ∧ q) ∨ (p ∧ r), hence L (H)
is not distributive in general. Moreover, L (H) is orthomodular what makes it a complete
orthomodular ortholattice.

Remark 39. Every OML can be represented as the lattice of closed subspaces (equivalently,
by the lattice of projections on these subspaces) of some Hilbert space [86].

Definition 7. Let L be a lattice. An element p > 0 is called an atom if

∀q ∈ L
(
q ≤ p =⇒ (q = 0∨ q = p)

)
.

Definition 8. Let L be a distributive, bounded lattice. A filter on L is a set F ⊂ L that is
closed both upwards and with respect to meet, i.e.

1. if p ∈ F and q ≥ p, then q ∈ F,

2. if p, q ∈ F, then p ∧ q ∈ F.

Moreover, a filter F ⊂ L is called

• prime if ∀p, q ∈ L (p ∨ q ∈ F =⇒ (p ∈ F ∨ q ∈ F))

• an ultrafilter if ∀p ∈ L
(

p ∈ F ∨ ¬p ∈ F
)

Observe that for a filter F, it always holds that 1 ∈ F and 0 /∈ F (otherwise F would not
be a proper subset of L). Another simple consequence is the fact that p ∈ F entails ¬p /∈ F.

Example 12. Any non-zero element p ∈ L generates a particular filter {p}+ = {q | p ≤ q},
called a principal filter. It is easy to see that {p}+ is the smallest filter containing p.

An ultrafilter U is called principal if there exists an atom a ∈ L such that

U = {b ∈ L : a ≤ b}.

Ultrafilters that are not principal are also called free.

Remark 40. The notion dual to filter is that of an ideal (i.e. it is a subset closed both
downwards and with respect to join), hence all facts concerning filters can be dualized to
statements about ideals.



Appendix A. Lattices and Boolean algebras 79

Definition 9. A Heyting algebra is a bounded lattice H such that for any a, b ∈ H, a set

{c | c ∈ H and a ∧ c ≤ b}

has a largest element, denoted by a =⇒ b; an operator, that assigns a =⇒ b to elements
a, b ∈ H, is called an implication.

Remark 41. A well-known equivalence relation can be defined as an operation ⇐⇒ that
assigns to each pair a, b ∈ H an element

a ⇐⇒ b := (a =⇒ b) ∧ (b =⇒ a)

Remark 42. Again, one can characterize Heyting algebras equivalently by equations that
=⇒ operation should obey. Namely, each Heyting algebra H is a distributive, bounded
lattice with a binary operation =⇒ : H × H → H such that

a =⇒ a = 1
a ∧ (a =⇒ b) = a ∧ b

b ∧ (a =⇒ b) = b
a =⇒ (b ∧ c) = (a =⇒ b) ∧ (a =⇒ c)

for all a, b, c ∈ H.

Example 13. Let X be a topological space and let O(X) be a collection of open sets in X.
Then O(X) is a Heyting algebra with join A ∨ B, meet A ∧ B and A =⇒ B given by sum
A ∪ B, intersection A ∩ B and Int

(
AC ∪ B

)
operations, respectively, where AC = X \ A

is the set-theoretical completion. Moreover, it holds that O(X) is infinitely distributive in
the sense of

O ∩

⋃
i∈I

Oi

 =
⋃
i∈I

(O ∩Oi)

for any O ∈ O(X) and {Oi}i∈I ⊆ O(X).

The above example is in fact exhaustive due to the following [20]

Theorem 35. Any Heting algebra is isomorphic to an algebra of opens.

Remark 43. In Heyting algebras, the notion of a complement may be weakened to the
so-called pseudocomplement, i.e. an operation that sends each a ∈ H to the element
a∗ := a =⇒ 0. Note that pseudocomplement becomes a complement when it obeys the
law of excluded middle, i.e.

∀a ∈ H
(
(a∗)∗ = a

)
⇐⇒ ∀a ∈ H (a ∨ a∗ = 1) . (A.1)

The fact that Heyting algebras do not necessarily satisfy (A.1) is the reason these al-
gebras formalize intuitionistic propositional logic (cf. Appendix B for the internal logic
in topoi). Before one eventually narrows the discussion down to Boolean algebras and
classical logic, it is important to bring yet another structure, that will serve as a logical
underpinning for a generalization of topological space (see Appendix B).

Definition 10. A frame is a complete distributive lattice such that

x ∧
∨
λ

yλ =
∨
λ

x ∧ yλ,
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where {yλ} is not necessarily a finite set.

One can show that frames are actually complete Heyting algebras.

Example 14. Important and somewhat opposite examples of frames come from a topolog-
ical space X endowed with its topologyO(X) and a family of regular open setsOreg(X) =
{U ⊆ X : ¬¬U = U}, where ¬U = int(X \U).

Definition 11. A Boolean algebra is a Heyting algebra that satisfies one (hence both) of
equalities (A.1). Equivalently, a Boolean algebra is an orthocomplemented, distributive
lattice. An implication in any Boolean algebra can be defined by a =⇒ b = ¬a ∨ b.

Example 15. Let X be any set. Then P(X) is a Boolean algebra with meet, join and com-
plement defined by ∩, ∪, (−)C, respectively.

We call B atomic if for every q ∈ B there is an atom p such that p < q; we call B atomless
if it does not contain any atoms, and the same applies to lattices in general.

Example 16. 1. All finite Boolean algebras are atomic.

2. P(X) is always atomic and the atoms are singletons {x}, x ∈ X.

3. L (H) is always atomic and the atoms are one-dimensional subspaces {cψ | c ∈ C}, ψ ∈
H.

4. The set Bor(R)/N of Borel subsets of R modulo Lebesgue measure null sets is an
atomless Boolean algebra.

5. The set P(N)/Fin of all subsets of N modulo an ideal of finite sets is an atomless
Boolean algebra.

One of the most remarkable facts concerning Boolean algebras is the following ana-
logue of Theorem 35 [20]

Theorem 36 (The Stone Representation Theorem). Any Boolean algebra is isomorphic to
a certain field of sets.

Recall that a field of sets is just a subalgebra of a powerset of certain set. More specif-
ically, every Boolean algebra B is isomorphic to the algebra of closed-open subsets of its
Stone space S(B), where S(B) is the collection of ultrafilters on B, and the topology of S(B)
is generated by the clopen preimages of 1 in the trivial Boolean algebra {0, 1}). Conversely,
every Stone space X can be turned into Boolean algebra cl(X) by taking all the clopen sets
of X.
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Appendix B

Categories and models

B.1 Categories

We start with a very brief reminder on the basic category-theoretic notions; also, we pro-
vide some illustrations whenever we feel it helps in grasping the content. We refer the
reader to [21] for more detailed discussion.

Definition 12. A category C consists of a collection of objects Ob(C) and a collection of
arrows Arr(C) such that

• to every f ∈ Arr(C) there are domain dom( f ) and codomain cod( f ) objects as-
signed; we note that by f : dom( f )→ cod( f )

• for every f : A→ B and g : C → C there exists g ◦ f : A→ C

• for every object A there exists an identity arrow 1A : A→ A such that

f ◦ 1a = f , 1a ◦ g = g

for every f : A→ B and g : C → A

• for every triple f : A→ B, g : B→ C, h : C → D it holds

(h ◦ g) ◦ f = h ◦ (g ◦ f ).

We denote HomC(A, B) = { f ∈ Arr(C) : dom( f ) = A, cod( f ) = B}. Given the
category C, the opposite category Cop is a category that contains the same objects as C, but
all arrows of C have been reversed. Surprisingly, the above definition is general enough
to include a lot of known mathematical structures, like the category of sets and functions
Set, groups and homomorphisms Grp, topological spaces and homeomorphisms Top or
smooth manifolds and smooth maps Mfd, frames and frame homomorphisms Frm, to
name only a few. Moreover, one can make a category out of a single object; for example,
a poset P may be viewed as a posetal category P, where Ob(P) = P and there is an arrow
p→ q (i.e. HomP(p, q) is a one-element set) whenever p ≤ q.

Definition 13. An arrow f : A→ B is called

• an epimorphism (epic) if it is right-cancellable

• a monomorphism (monic) if it is left-cancellable

• an isomorphism (iso) if there is an inverse arrow in the category

Again, illustrative instances of above properties come with Set with surjections as
epics, injections as monics and bijections as isomorphisms.
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Definition 14. A diagram D is a set of objects and arrows between these objects, e.g.

A B

C

g

f

h

Now we are ready to introduce a (co)limit, one of the fundamental notions in category
theory. We start with the category of cones over a diagram.

Definition 15. Let D be a diagram with vertices {Di}. A cone (over D) is a collection
{ fi : A→ Di} of arrows such that for any d : Di → Dj the diagram

A

Di Dj

fi

f j

d

commutes.

An arrow from { fi : A → Di} to { f ′i : A′ → Di} is defined by an arrow g : A → A′

such that

A A′

Di

g

fi

f ′i

commutes; in such case we say { fi : A→ Di} factors through { f ′i : A′ → Di}.

Definition 16. We call a cone the limit lim(D) for a diagram D if every cone factors
uniquely through lim(D) in C. We define a colimit colim(D) dually, i.e. by reversing
all the arrows in C.

Example 17. The notion of (co)limit is general enough to encompass objects such as:

• initial and terminal object (take an empty diagram)

• product and coproduct (take a pair of objects without arrows)

• pushforward and pullback; these are (co)limits of

Y Y

X Z X Z

g

f

g

f

Remark 44. Observe that in Set, maps of the form {∗} → X may be identified with the
elements of X. Category theory generalizes this notion to any category C and defines

• global elements (global sections) of an object A to be maps 1→ A, where 1 is terminal
in C (if it exists); we use the notation ΓA = Hom(1, A),

• local elements (local sections) of an object A to be maps B → A for any object B not
isomorphic to 1.
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To see how category theory enables one to generalize over a well-known structure, first
consider the category Frm of frames and frame homomorphisms, with objects (frames) de-
fined as complete Heyting algebras (see Definition 9) and morphisms defined as functions
preserving finite meets and arbitrary joints. Then category Loc of locales is the category
opposite to Frm. Let X be a topological space with its topology O(X). It is easy to see
that O(X) is a complete Heyting algebra, and every continuous function f : X → Y be-
tween topological spaces induces a frame map f−1 : O(Y) → O(X). Thus, by defining
O( f ) = f−1 to be a morphismO(X)→ O(Y) of locales, we obtain in fact a covariant func-
tor O(−) : Top→ Loc (abusing the notation, a locale corresponding to the frame O(X) is
frequently denoted by X, while locale morphism is usually written as f : X → Y, although
not all locales X are of the form O(X), actually). Moreover, every frame becomes natu-
rally a Lindenbaum–Tarski algebra (i.e. a set of formulae modulo provable equivalence,
partially ordered by entailment) for the so-called geometric propositional logic, which is
essentially an intuitionistic logic with only finite conjunctions (what exactly agrees with
the operations frame homomorphisms preserve).

Definition 17. A topos is a category that contains

• a terminal object,

• all pullbacks,

• all exponentials, i.e.

• a subobject classifier, i.e. there exists an object Ω with an arrow 1→ Ω such that for
every monic A� B there is a unique χA : B→ Ω such that

A 1

B Ω
χA

is a pullback square. In particular, it means that for each subobject A of B there exists
a unique "characteristic arrow" χA : B→ Ω.

Example 18. The most natural example of a topos is the Set category of sets and functions.
Specifically:

• every singleton {∗} is terminal, since for all sets X there is a unique map X → {∗},

• for all sets X, Y, the exponential YX is the set of all maps X → Y,

• given maps f : X → Z and g : Y → Z, the pullback is given by

{(x, y) ∈ (X, Y) : f (x) = g(y)}.

• the subobject classifier is the set {0, 1}, which is nothing more than a codomain of a
characteristic function χX for every X ∈ Ob(Set).

Now, we claim that an internal logic of any topos is the intuitionistic one, due to

Proposition 5. Let T be a topos and Sub(A) be a collection of subobjects of A ∈ Ob(T) and
Ω be a subobject classifier of T. Then ΓΩ = Hom(1, Ω) as well as Sub(A) form Heyting
algebras (see A).
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The most important type of a topos that we consider in the thesis is that of a (pre)sheaf
topos, i.e. the topos of sets "varying" over some base category C.

Example 19. For any category C, the presheaf category SetCop
of contravariant functors

C→ Set is a topos. In particular, in Section ??, the category C becomes the category of C∗-
or von Neumann algebras. If C is a posetal category, we call SetCop

a Kripke topos.

Definition 18. A natural numbers object in a topos T with terminal object 1 is an object N

with two morphisms:

• s : N→N (successor),

• 0 : 1→N (zero)

such that for every diagram 1
f−→ X

g−→ X, there is a unique u : N → X such that the
following commutes:

1 N N

X X

f

0

u

s

u
g

B.2 Model theory

In the current section we give a very brief overview of model theory that appears through-
out the thesis. Although it is not meant to be exhaustive, it should give at least the rudi-
mentary view on the subject and give a sound basis for discussion in Chapters 2, 3 and 6.
We start with some basic definitions and observations.

Definition 19. A relational system is a set

A = (A,R,F , C)

where A is called a universe and families R = {rA
i }, F = { f A

i }, C = {cA
i } consist of

relations on A, functions on A and constants, respectively.

Example 20. Any Boolean algebra (see Appendix A) is a relational system with two binary
relations sup, inf, one unary relation (·)′ and two constants 0, 1.

Now, to express the relations between elements of a universe we introduce the notion
of a first-order language.

Definition 20. The language is a set

L = (R, F, C, X, S)

where the families R = {ri}, F = { fi}, C = {ci} consist of relational, function symbols
and constants respectively, X = {xn} is a set of variables and S = {=,¬, =⇒ , ∀} is a set
of logical symbols.

Remark 45. Observe that the structure of a language lets one to interpret the elements of
R, F, C as the elements of R,F , C in a particular system A, the variables {xn} as elements
of A and the elements of S as logical operators. Clearly, one obtains the other logical
operators by rules such as

(φ ∨ ψ) ≡ (¬φ =⇒ ψ)
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With the help of X, C and F one builds recursively more complicated expressions,
called terms, e.g. f j (xi, ck). In general

Tm0 = X ∪ C, Tml+1 = Tml ∪ { f j(t1, . . . tm) : t1, . . . , tm ∈ Tml}

Finally the set of all terms is equal to Tm =
⋃

Tml . We define free variables V(t) of any
term t may be defined by

V(xn) = {xn}, V(c) = 0 for xn ∈ X, c ∈ C,
V
(

f (t1, . . . , tm)
)
= V(t1) ∪ . . . ∪V(tm)

Eventually, we build longer expressions called formulae out of terms and logical symbols
as follows:

Fm0 = {t = s : t, s ∈ Tm} ∪ {ri(t1, . . . , tm) : t1, . . . , tm ∈ Tm},
Fml+1 = Fml+1 ∪ {¬φ : φ ∈ Fml} ∪ {φ =⇒ ψ : φ, ψ ∈ Fml}∪

∪{∀xn (φ) : φ ∈ Fml}

Thus the set of all formulae comes as Fm =
⋃

Fml and they extend the most fundamental
statements involving equality and relations with the help of logical symbols. Formulae’
free variables are defined recursively as

V(t = s) = V(t) ∪V(s), V
(
ri(t1, . . . , tm)

)
= V(t1) ∪ . . . (tm),

V(¬ψ) = V(φ), V(φ =⇒ ψ) = V(φ) ∪V(ψ),
V
(
∀xn (φ)

)
= V(φ) \ {xn}

We call φ a sentence if V(φ) = ∅. Since we would like to interpret the language in a given
system, we introduce an interpretation function i : Tm ⊇ Y → A by

i(ck) = cA
k , i

(
f j(t1, . . . , tm)

)
= f A

j
(
i(t1, . . . , i(tm)

)
The following simple example show how an interpretation gives a truth valuation of for-
mulae.

Example 21. Let φ(x) = ”x = 0”; we have V(φ) = {x}. Let i, j : x 7→ R be two inter-
pretations such that i(x) = 0 and j(x) = 1. Clearly i makes φ(x) true, while j makes φ(x)
false.

We now make the statement "φ is true in a relational systemA" (writtenA |= φ) precise;
we define inductively (

A |= (t = s)[i]
)
≡
(
i(t) = i(s)

)(
A |= ri(t1 . . . , tm)[i]

)
≡ ri

(
i(t1), . . . , i(tm)

)(
A |= ¬φ[i]

)
≡
(
not A |= i(φ)

)(
A |= (φ =⇒ ψ)[i]

)
≡
(
not A |= i(φ) or A |= i(ψ)

)(
A |= ∀xn

(
φ
)
[i]
)
≡
(
for every a ∈ A, A |= ia

x(φ)
)

where ia
x denotes xn is substituted with a under i.

We are ready now to introduce the notion of a model of a theory.

Definition 21. A system A is called a model of a set T of sentences (a theory T) in a
language L, if A |= φ for every φ ∈ T.
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Example 22. We refer to the following examples from everyday mathematics.

• To find an example of a group, such as (Z,+) (e.g. nonsingular matrices with
matrix multiplication), what one provides is essentially a model for a certain the-
ory (i.e. the set of axioms that we all get to know during undergraduate linear
algebra course). In other words, one verifies that (Z,+) contains the associative
binary operation together with the identity and inverse elements with the respec-
tive properties. Moreover, note that both abelian and nonabelian groups exist, thus
(non)commutativity property cannot be a logical consequence of group axioms (we
say such property is independent of the axioms). In other words, one may include
the (non)commutativity in the group axioms without a contradiction.

• Another example is the category Set of sets and functions (see Section B.1 is a model
of ZFC axioms.

By Mod(T) we denote the class of all models of the set of sentences T. Then, a class of
systems K is said to be axiomatizable, if K = Mod(T) for some T; in this case we call T an
axiomatics for K. A theory Th(K) of a class K is defined by

Th(K) = {φ : ∀A ∈ K
(
A |= φ

)
}

Clearly, if K is axiomatizable, then K = Mod
(
Th(K

)
.

Example 23. The category Grp of groups and group homomorphisms (see Section B.1) is
(first-order) axiomalizable, as Grp = Mod(T) for the set T of group axioms. However,
some of the well-known structures are not first-order axiomatizable; in particular, for the
category Top of topological spaces and continuous functions there is no first-order theory
T such that Top = Mod(T); similar case holds for well-ordered sets.

In order to make the results of Gödel comprehensible, let us consider another, funda-
mental example — the Peano arithmetic.

Example 24. Let N = (N,+, ·, 0, 1) where N is the set of natural numbers, the operations
+, · are addition and multiplication respectively, and 0, 1 are constants. The axioms of
Peano, called PA, consist of

a + b = b + a, a · b = b · a
(a + b) + c = a + (b + c), (a · b) · c = a · (b · c)

(a + b) · c = (a · c) + (b · c)
a + ∆0 = a, a · ∆1 = a

a + c = b + c =⇒ a = b
a 6= ∆0 iff ∃b (a = b + ∆1)

∀φ ∀a
(

φ(∆0/a) ∧ ∀a
(

φ =⇒ φ
(
(a + ∆1)/a

))
=⇒ ∀a (φ)

)
In general, one notices that axioms are not the only sentences that we find true in a

given model. Namely, there exist theorems proved by the axioms and some predefined in-
ference rules, which are satisfied under any interpretation in any relational system. These
inference rules are usually called the axioms of logic; let us denote them by LOG. Observe
that particular LOG gives rise to what is called deductive system.

Example 25. In this work we consider mostly two types of deductive systems: classical
and intuitionistic first-order logic. It is not really necessary to give a full treatment on the
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rules of classical deduction, as it is a part of usual reasoning in mathematics; however,
it is inevitable to note the property that distinguishes it from intuitionistic logic, namely
availability of the inference

¬¬φ
φ

Equivalently we might say that the truth of φ ∨ ¬φ, called the law of excluded middle, is
not derivable in intuitionistic logic.

Definition 22. We define theorems of a theory T inductively, starting with T itself, together
with the axioms of logic:

T0 = T ∪ LOG, (B.1)
Tn+1 = Tn ∪ {ψ : ∃φ

(
ψ ∈ Tn and φ =⇒ ψ ∈ Tn

)
}. (B.2)

The elements of a set
T∗ =

⋃
n∈N

Tn

are called theorems of a theory T. We write T ` φ iff A |= φ in every A ∈ Mod(T). If
T = ∅, we write ` φ for T ` φ, what makes φ a tautology, i.e. φ can be proved on the basis
of LOG.

Definition 23. A theory T is inconsistent if both T ` φ and T ` ¬φ for some φ; otherwise
we say T is consistent, written Con(T).

If a theory T is inconsistent, T is usually depicted as nonsensical, since one may prove
that T ` ψ and A |= ψ for any ψ and A ∈ Mod(T). On the other hand, appending
theorems to a consistent theory T leaves T consistent, i.e. {φ : T ` φ} is consistent.

The following notion of decidability will be the cornerstone of the Continuum Hypoth-
esis that we discuss in Chapter 2.

Definition 24. A formula φ is called decidable in T if either T ` φ or T ` ¬φ. Otherwise φ
is independent of T, equivalently T∪{φ} and T∪{¬φ} (written T +φ and T +¬φ, respec-
tively) are consistent. We call T a complete theory if there are no formulae independent of
T; otherwise T is called incomplete.

Example 26. Let us refer again to the first-order theory of groups; for a provable sentence,
consider the uniqueness of neutral element in any group. At the same time, one cannot
prove from group axioms that the group multiplication is commutative; this may be true
in some models (i.e. in groups that are abelian such as (Z,+)) and false in the other (e.g.
GLn(R)).

The following theorem formalizes the notion of a proof.

Theorem 37. Consider a theory T and suppose that T ` φ; then there exists a finite se-
quence of formulae (φ0, . . . , φn) such that φn = φ and for every i ≤ n either φi ∈ T or φi ∈
LOG or φi arises by modus ponens from φi−2 and φi−1 (i.e. from φi−2 and φi−2 =⇒ φi−1
one concludes φi−1). We call such sequences (φ0, . . . , φn) proofs.

Definition 25. Let M be a class and φ be a formula. We define the relativization φM of φ
with respect to M inductively by

(x = y)M is x = y
(x ∈ y)M is x ∈ y
(φ ∧ ψ)M is φM ∧ ψM

(¬φ)M is ¬φM(
∃x (φ)

)M is ∃x
(

x ∈ M ∧ φM
)



88 Appendix B. Categories and models

for x, y ∈ M. Furthermore, φ is true in M i.e. M |= φ, if φM holds. Consequently, φ is called
M-absolute if φM holds iff φ does, i.e. V |= φ, and a set is called M-absolute if it is defined
by an M-absolute formula. Finally, a formula (a set) is called absolute if it is M-absolute
for every standard transitive ZFC model M.

Example 27. Formulae such as "x is a real number", "x is an ordinal" (see B.4) or "x ∈ y"
are absolute, while "x is a cardinal" or "x is the set of real numbers" are not.

We state two fundamental results due to Gödel, namely his completeness and incom-
pleteness theorems.

Theorem 38. (Gödel’s completeness theorem) Every consistent set of sentences has a model.

Remark 46. Actually, there is another, equivalent version of completeness: if M |= φ for
every model M of T, then T ` φ (the converse also holds and is known as the soundness).

Theorem 39. (Gödel’s incompleteness theorem) Suppose a theory T includes PA, i.e. there
exists a formula M(x) defining a class M such that T ` ∃x (M(x)) and PAM = {φM : φ ∈
PA} ⊆ T, i.e. T contains all the axioms of PA, relativized to M(x). Then T cannot be both
consistent and complete. Moreover T 0 Con(T), i.e. T cannot prove its own consistency.

Remark 47. It holds that ZFC includes PA, therefore the sentence "ZFC is consistent" is not
provable in ZFC, provided ZFC is consistent (what we assume implicitly throughout the
thesis to ensure there exists a model of ZFC due to Theorem 38).

The following theorem proves that cardinality of a model is not an invariant.

Theorem 40. (Löwenheim–Skolem) If a set of sentences T written in the language L has
an infinite model, then it has a model of arbitrary cardinality ≥|L|.

Since PA (see Example 24) has an infinite, countable model — standard natural num-
bers N — it has also a model of any infinite cardinality by Theorem 40. Such uncountable
models of PA are called non-standard. Let us end this section with an important remark
considering models of second-order theories.

Remark 48. Mathematics outside set theory, such as calculus, linear algebra, geometry etc.,
usually considers the objects of N and R as unique entities. But we already observed that,
due to Theorem 40, models that are already infinite "generate" models of any cardinality
and it applies also to first-order PA. What lets to think about N and R as unique, is the
second-order theoretic characterization of these structures.

With all the tools introduced above, let us focus on set theory in what follows.

B.3 ZFC theory of sets

For the sake of completeness, let us recall the first-order theory of ZFC [91]:

1. (set existence) ∃x (x = x)

2. (extensionality) ∀x ∀y (∀(z ∈ x ⇐⇒ z ∈ y) =⇒ x = y)

3. (foundation) ∀x
[
∃y (y ∈ x) =⇒ ∃y (y ∈ x ∧ ¬∃z (z ∈ x ∧ z ∈ y))

]
4. (comprehension scheme) for each formula φ with free variables among x, z, w1, . . . , wn

∀z ∀w1 . . . ∀wn ∃y ∀x (x ∈ y ⇐⇒ x ∈ z ∧ φ)
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5. (pairing) ∀x ∀y ∃z(x ∈ z ∧ y ∈ z)

6. (union) ∀F ∃A ∀Y ∀x (x ∈ Y ∧Y ∈ F =⇒ x ∈ A)

7. (replacement scheme) for each formula φ with free variables among x, y, A, w1, . . . , wn

∀A ∀w1 . . . ∀wn
[
∀x ∈ A ∃!y φ =⇒ ∃Y ∀x ∈ A ∃y ∈ Y φ

]
8. (infinity) ∃x (∅ ∈ x ∧ ∀y ∈ x

(
y ∪ {y} ∈ x)

)
9. (power set) ∀x ∃y ∀z (z ⊂ x =⇒ z ∈ y)

10. (choice) ∀A ∃R (R well-orders A)

Notice that the language of set theory is countable and it has an infinite model. Conse-
quently, there exists a countable model for ZFC as indicated by Theorem 40. This phe-
nomenon might initially appear paradoxical (and is sometimes referred to as Skolem’s
paradox). This paradox arises because every ZFC model contains some uncountable ob-
jects, such as R. This is due to the fact that cardinality is not an absolute concept in general.
We will see that e.g. RM is uncountable "inside M" but merely countable when viewed
"from the outside".

B.4 Ordinals and cardinals

To understand forcing better, it is inevitable to be familiar with the concepts of ordinal
numbers a set cardinality. Recall that we call a set x transitive whenever z ∈ y and y ∈ x
implies z ∈ x, i.e. the membership is transitive on x.

Definition 26. An ordinal α is a transitive set that is well-ordered by ∈.

Example 28. Consider the set of natural numbers N = {0, 1, 2, . . .}; let 0 = ∅ and for each
n ∈N define the successor S(n) = n ∪ {n}, e.g.

1 = S(0) = {∅} = {0}, 2 = S(1) = 1∪ {1} = {∅} ∪ {{∅}} = {0, 1} etc. (B.3)

In fact, asserting that the natural numbers are the smallest set that satisfies the axiom
of infinity provides one way to define N. Thus we can see that every natural number
n = {0, 1, 2 . . . , n− 1} ∈N is an ordinal.

Let us denote the proper class of all ordinals by On. It is easy to show that On is well-
ordered by ∈, and therefore for α, β ∈ On we write α ≤ β if α ∈ β or α = β. Furthermore,
defining the sum α + β to be the unique ordinal that is isomorphic to the well-ordered
concatenation of α and β, we see that the operation (B.3) extends to infinite ordinals as
well. Again for each α ∈ On, applying the successor function S(α) splits On into two
disjoint collections: successors, i.e. ordinals α for each there exists β such that α = S(β),
and limits, i.e. non-zero ordinals that are not successors. Obviously, natural numbers (i.e.
finite ordinals) β satisfy ∀α ≤ β (α = 0 ∨ α is a successor). Following our intuition, we
characterize ω to be the least limit ordinal (or the first infinite ordinal), which shows that
ω ≡ N. Since nothing prevents us from performing ω + 1 = S(ω) or even replacing each
element of ω with a copy of ω, concatenate the result and obtain an ordinal called ω2,
continuing this procedure leads to ω3, ω4 up to ωω (the last results from concatenating
ω, ω2, ω3, . . .). Note that all of these are countable. On the other hand we have [172]

Remark 49. Every set is bijective to some ordinal, thus there exists an uncountable ordinal.
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Based on the above, we introduce the notion of a cardinal, which is an ordinal that is
not bijective with any preceding ordinal. Thus the finite cardinals correspond to elements
of ω and we adopt the notation ℵn for consecutive infinite cardinals, starting with ℵ0 = ω.
Accordingly, for any set X, the smallest ordinal bijective with X is a cardinal called the
cardinality of X and denoted by card(X).

B.5 Forcing and Boolean-valued models

To emphasize the historical importance of the forcing technique [47], let us remind that
the method was specifically created to address the long-standing continuum hypothesis
(CH), stated as the following conjecture: There is no S such that N ( S ( R and there are no
surjections N� S and S � R. Thus, informally speaking, CH states that there are no sets
of cardinality strictly between|N| and|R| or, in other words, all infinite subsets of R are of
the size either N or R. Again, refering to Section B.4, it means that continuum is the next
cardinal after ℵ0, i.e. ℵ1 = 2ℵ0 .

Remark 50. Prior to the invention of forcing, it had been already known that CH is consis-
tent with ZF due to Gödel [75]. It was achieved by constructing a particular model, called
(Gödel’s) constructible universe built as follows [90]. We call a set X to be definable over a
model M if there exists a ZF-formula φ and a1, . . . , an ∈ M such that

X = {x ∈ M : M |= φ(x, a1, . . . , an)}. (B.4)

A class of definable sets def(M) is therefore equal to

def(M) = {X ⊂ M : X is definable over M}.

Then we define recursively:

• L0 = ∅, Lα+1 = def(Lα)

• Lα =
⋃

β<α Lβ if α is a limit ordinal

• L =
⋃

α∈On Lα

Finally one shows that L is a model of ZFC + CH. The very first notion that forcing
relies on is a partial order P called a forcing notion, with the elements referred to as forcing
conditions. We call p, q ∈ P compatible if there is r ∈ P such that r ≤ p, r ≤ q (p, q have
common lower bound), and write p⊥q is p, q are not compatible. Thus, under the inter-
pretation of P as containing pieces of partial information, compatibility of p, q means these
are mutually consistent, i.e. they can be consistently refined. Moreover, we will always
demand P to be separative (also called refined), i.e. if p � q implies ∃r(r < q and r⊥p).
Again, this means that whenever p is not a refinement of q, there exists a condition r refin-
ing q that is incompatible with p.

Example 29. Consider a function F : N → {0, 1}. One can provide a partial information
about f by handing finite partial functions f : X ⊂ N → {0, 1} that agree with F on X.
Observe that g ≤ f if f ⊆ g (g extends f ) partially orders these functions, and f⊥g if f , g
do not agree on their common domain. Finally, if f does not extend g, there always exists
an extension of g that does not agree with f , thus above inclusion gives a separative poset.

One defines a P-name to be the set

M 3 n = {(m, p) : m is a P− name, p ∈ P}.
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Names are interpreted as

nG = {mG : (m, p) ∈ n, p ∈ G}

and finally M[G] = {nG : n ∈ M is a P-name}. Now we will show how the above
construction can be rewritten by replacing posets with Boolean algebras. It is good to start
with a construction of a two-valued universe of sets by a transfinite recursion; the same set
of procedures will serve to define a more general Boolean-valued model (recall that {0, 1}
is the simplest non-trivial Boolean algebra). First of all, the successor operation (B.3) can
be generalized; it is usually attributed to von Neumann that the standard universe of sets
can be built similarly to Remark 50:

V0 = ∅,
Vα+1 = P(Vα),

V =
⋃

α∈On

Vα

(B.5)

Since the subsets may be identified with characteristic functions, we may stress the two-
valuedness of standard sets by defining for each ordinal α

V(2)
0 = ∅,

V(2)
α = {x : x is a function ∧ ran(x) ⊆ 2∧ ∃ξ < α

(
dom(x) ⊆ V(2)

ξ

)
},

V(2) = {x : ∃α
(

x ∈ V(2)
α

)
}

(B.6)

One can show that V(2) is isomorphic to the standard universe of sets V [20].
Let B be a complete Boolean algebra (see Appendix A). We define the universe V(B) of

B-valued sets similarly to (B.6), by replacing the Boolean algebra 2 = {0, 1} by B. Hence,
B-valued sets can be thought of as characteristic functions with a more general codomain
B. Now, to every sentence φ we assign a truth value JφK ∈ B, just like all sentences are
either true or false in the standard universe V. In particular, we say that a sentence is true
(or holds with a probability 1), denoted by V(B) |= φ, if JφK = 1. Then we have [20]

Theorem 41. All the axioms and theorems of ZFC are true in V(B) (we say that V(B) is a
B-valued ZFC model).

Remark 51. In the same way one defines a Boolean-valued model MB where M is a count-
able transitive ZFC model; here we demand that B ∈ M is M-complete (i.e. it is complete
inside M), all the B-valued functions are elements of M and the recursion is performed
over ordinals in M. Finally, MB is a B-valued ZFC model as well.

Remark 52. Despite the fact that both VB and MB satisfy ZFC axioms, neither VB nor MB

are not ZFC models as long as B is nontrivial, since the truth values of formulae can be
neither true nor false in general. (Recall that if N is a ZFC model, then for every formula
either N |= φ or N |= ¬φ.)

Observe that the approaches are equivalent due to [20]

Proposition 6. The poset P is separative iff it is order isomorphic to a dense subset of a
complete Boolean algebra. We call such P a basis for B.

Theorem 42. Let B be a complete Boolean algebra and the poset P be a basis for B. For
every B-sentence φ and p ∈ P we have

p  φ iff p ≤ JφKB.
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Suppose that U is an ultrafilter in B (see Definition 8) and define an equivalence relation
on MB

x ∼U y ⇐⇒ Jx = yK ∈ U

with the equivalence classes denoted by xU = {y ∈ MB : x ∼U y}. Further we define the
relation ∈U

xU ∈U yU ⇐⇒ Jx ∈ yK ∈ U

and finally we quotient Boolean-valued model by the ultrafilter as

MB/U =
(
{xU : x ∈ MB},∈U

)
.

Above quotient is already a ZFC model due to

Theorem 43. For any formula φ and x1, . . . , xn ∈ MB it holds

MB/U |= φ(xU
1 , . . . , xU

n ) ⇐⇒ Jφ(x1, . . . , xn)K ∈ U. (B.7)

Since 1 ∈ U by definition of an ultrafilter, all sentences true in MB remain true in
MB/U. In particular, MB/U is a ZFC model by (B.7) and by Theorem 41. In order to
ensure MB/U to be standard (i.e. ∈U is well-founded) and, even more importantly, to
have U ∈ MB/U, one requires U to be M-generic: this means that U as a subset of a poset
P = B \ {0} intersects all dense subsets of P such that D ∈ M. Furthermore if U is M-
generic, then the Mostowski’s collapse M[U] of MB/U is the smallest standard transitive
ZFC model such that both M ⊆ MB/U and U ∈ MB/U.

The following lemma is a crucial condition emphasizing the importance of atomless
Boolean algebras in the forcing technique [90].

Lemma 21. Let B be a Boolean algebra in M and suppose there exists a generic ultrafilter
U on B. Then, B is atomless iff U /∈ M.
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