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ABSTRACT

This dissertation addresses the challenges of modeling intermolecular interac-

tions in water. The primary motivation of the presented work was to �nd a protocol

that would be accurate enough to predict the most stable isomer among water hexam-

ers.

Traditionally, the calculation of energies for molecular clusters relies on the

supermolecular method, which involves calculating energies for the entire cluster. As

the system size expands, the computational cost of this approach increases rapidly.

In this work, we demonstrate that the many-body expansion can be employed as an

e�cient alternative for calculating interaction energies. We take advantage of the

rapid convergence of the many-body expansion to reproduce the results of canonical

calculations with greater accuracy and reduced computational e�ort. By breaking

down large clusters into smaller subclusters and using tailored computational methods

based on the fragments' importance, we developed a protocol called the �strati�ed

approximation� many-body approach (SAMBA). Using this approach, we achieved

highly accurate benchmarks for the isomers of water hexamers and larger clusters,

including 16-mers and 24-mers. Although we applied this approach only to water

clusters, it can also be extended to other systems.

To model properties beyond single-point energies, an accurate intermolecular

potential is required. Numerous potential energy surfaces (PESs) or force �elds have

been developed for water, but, as it turned out, their characterization of non-additive

interaction energies, including three-body interactions, proved insu�cient for accu-

rately modeling larger water clusters. To address this issue, we developed a new three-

body water potential that also incorporated improvements in the two-body part and

in contributions from higher-order interactions. We conducted extensive calculations

vii
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for water trimer, with more than 70 thousand trimer interaction energies computed us-

ing state-of-the-art level of theory. The resulting potential was su�ciently accurate to

model the stability of water hexamers, achieving the main objective of the dissertation,

and provided benchmark-quality results for larger systems.

Modeling of water is a very competitive �eld of research. Other groups have

also proposed alternative protocols and potentials to solve the same problem. Our

approaches remained competitive and gained a signi�cant number of citations.

viii

8:1009612444



Chapter 1

INTRODUCTION

1.1 Outline of the dissertation

The dissertation is structured as follows: The �rst chapter o�ers a general de-

scription of the problem, covering the background, key concepts, and a brief literature

overview. This is followed by a summary of the publications that form the core of

the dissertation. A concise overview of the developments that occurred after the main

papers were published is also included. Chapter 2 presents the text of the publication

entitled �Interaction energies of large clusters from many-body expansion� [1] with the

statement of authors' contributions, while Chapter 3 contains the text of the publica-

tion entitled �Predictions for water clusters from a �rst-principles two- and three-body

force �eld� [2] with the statements of authors' contributions. Finally, the Appendix

includes a scienti�c Curriculum Vitae.

1.2 Overview

Water has been central to scienti�c research for centuries due to its importance

and peculiar properties, such as its high boiling point and anomalous temperature-

density relationship. These unusual characteristics, which di�er signi�cantly from other

well-known substances, played a crucial role in the emergence and evolution of life on

Earth. Theoretical chemists, in addition to experimentalists, have extensively stud-

ied water. Due to its relatively small size, the water molecule allows for high-level

theoretical calculations, making it a benchmark system for various types of ab initio

calculations [3�9]. Despite modest size, the theoretical modeling of water is still a

challenging task requiring extremely high accuracy for correct description.

1
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This dissertation focuses on the theoretical description of the physical chem-

istry of water. In this case, the hydrogen-oxygen bonds are not broken, and most

of the physical phenomena occur due to intermolecular interactions between water

molecules. These interactions are much weaker than the chemical bonds but are still

responsible for the aggregation of water molecules in clusters, liquid and solid phases.

These interactions, also known as van der Waals interactions or forces, arise from

Coulomb attractions and repulsions between the electrons and nuclei of the interacting

water molecules and can be subdivided into several categories (electrostatic, exchange,

induction, and dispersion). Processes that occur within the individual molecules (in-

tramolecular e�ects), like changes in bond lengths and angles or quantum e�ects from

zero-point energies, are less signi�cant in water aggregates but need to be considered

for high accuracy.

To connect theoretical data with experiments and predict all observable phys-

ical properties of water, one needs the complete potential energy surface (PES) of

interacting water molecules. PESs, also referred to as force �elds, map the interaction

energies to the geometries of the interacting molecules. Such maps can then be used

in modeling the motions of the nuclei, either in classical molecular dynamics (MD) or

classical Monte-Carlo (MC), or in more demanding quantum-chemical simulations of

the nuclear motion. The motion of the nuclei, determined by the intermolecular po-

tential energy, is responsible for the liquid water phase diagram, its density, di�usion

coe�cients and other physical chemistry phenomena, as well as the spectra of water

clusters. An ideal water potential should be capable of modeling all these phenomena,

both in the condensed phase and in clusters. It turns out that such a goal is extremely

di�cult, and despite decades of e�ort, water potentials that can reasonably predict

all phenomena have been developed fairly recently [10] and are still not perfect. To

understand why this is the case, it would be instructive to explain how the PESs are

created.

There are two general paths one can take: using experimental data or theoreti-

cal calculations (or a combination of these two). The �rst approach results in a large

2
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class of empirical potentials, where the force �eld parameters are �tted to ensure that

MD simulations using these potentials reproduce some experimental properties, such

as density of water at various temperatures. These potentials have been developed a

long time ago, are widely used and include, for example, TIP4P [11] and SPCE [12]

potentials. They are very simple, containing a small number of parameters and us-

ing basic site-site functions to describe the intermolecular potential such as Coulomb

charge-charge interaction and the Lennard-Jones function:

A

r12
− B

r6
, (1.1)

where A and B are parameters describing the repulsive and attractive part of the inter-

action, respectively, and r is the distance between sites (usually nuclei but o�-atomic

sites are also used). The simplicity of these potentials stems from two factors: the

computational cost of the MD simulations depends on the complexity of the poten-

tials, so simpler potentials are faster, and from the di�culty in �tting a large number

of parameters into experimental properties. Although such potentials can predict the

properties that were �tted fairly accurately, they lack universality and do not work

well for small water clusters [13]. This problem fundamentally stems from their site-

site character and distance-based dependence. Such site-site functions can physically

describe only two-body e�ects. Since the bulk properties of water depend on more

than two-body e�ects and result from cooperative three- and higher-body interactions,

hence the site-site function are incapable to incorporate such e�ects.

This simple empirical-only approach can be augmented by incorporating ab

initio data in the �tting procedure [14, 15] and by including an explicit many-body

contribution via a polarization term. This is achieved by providing a polarizable site

that creates an induced dipole moment from interactions with other monomers. This

method mimics the physical induction e�ect, which is indeed the major component in

the many-body expansion of water clusters. Therefore, such empirical potentials work

better than the simple ones for small water clusters. However, a polarization term only

3
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partly accounts for pairwise nonadditive interactions [16] in liquid water and larger

water clusters and such potentials are still incapable of a universal representation of

all water properties. Another type of empirical potential has been derived from water

dimers [17�20], with parameters �tted to reproduce the spectroscopic data. While

these potentials describe water dimers accurately, they overlook the nonadditive part

of the interaction that is absolutely vital for liquid water or ice and is important for

water clusters [21].

An alternative approach to potentials �tted to experimental data is to focus

solely on the ab initio calculations of interaction energies. This approach, when com-

bined with a physically-relevant functional form and accurate ab initio interaction en-

ergies can, in principle, yield a potential that can model both small clusters and large

aggregates. This method was �rst developed by Clementi and coworkers [3, 22, 23].

However, these early attempts were very limited by computational resources. The

number of grid points and the level of theory were insu�cient to obtain meaningful

results. The approach was subsequently expanded, and the ab initio water poten-

tials were gradually improved [24�31]. Using symmetry-adapted perturbation theory

(SAPT) [32] and utilizing 2,510 points for the two-body part of the potential [28],

and later 7,533 grid points for the three-body part [31], the resulting SAPT-5s two-,

three-body, and polarization-based many-body potential yielded fairly accurate dimer

energies and various properties of liquid water. This potential was further re�ned in

the CCPOL family of potentials, which successfully predicted water properties from

the dimer to the liquid phase [10, 33, 34] for the �rst time. Ab initio potentials can

sometimes predict properties before they are accurately measured. A notable example

is the dissociation energy of the water dimer that was �rst predicted in 2000 [27], later

re�ned [34, 35] and eventually con�rmed by experimental measurements [36]. Despite

these successes in ab initio water potentials, there is still room and a need for improve-

ment. Certain water properties, such as anomalous density-temperature dependence

or high dielectric constant, remain di�cult to accurately model with the current po-

tentials. During the work on publication provided in Chapter 2, it also became evident

4
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that the existing potentials, (including the CCPOL family), were not accurate enough

to predict subtle di�erences between isomers of the water hexamer clusters. There are

two aspects where the CCPOL potentials fall short. One is monomer �exibility, as

the original potential assumed �xed monomer geometries. Another limitation is the

three-body part of the potentials, which was state-of-the art in 2003 [31], but the grid

density was insu�cient, and the level of theory was inadequate for modern applica-

tions. A two-body water potential with rigid monomers is six-dimensional, and after

considering the intramonomer degrees of freedom for triatomic monomers the potential

becomes 12-dimensional�challenging but feasible. The complexity increases rapidly

with three-body �exible-monomer potentials, which are 21-dimensional. To provide a

grid for �tting with just 3 points per dimension would require 10 billion data points,

an impossible task without some serious approximations. There is a trade o�: whether

to peruse �exible-monomer potential that would be signi�cantly less accurate due to

the limits in the number of grid points or the level of theory, or a more accurate but

limited in scope rigid-monomer potential. There are many problems where the latter

potentials work well. Also, the lack of �exibility can be mitigated by carefully choosing

the rigid-monomer geometry. It turns out that the geometry averaged over the lowest

rovibrational state provides a more accurate representation of the potential than the

equilibrium geometry of the monomers [6, 37]. Therefore, we decided to work on a

rigid three-body potential and create the new state of the art three-center polarization

model.

The polarization model used in the publication of Chapter 3 (similar models are

also used in the literature) is detailed in Section 3.5. To further explain the concept, a

simpli�ed physical illustration is provided in Figure 1.1. This model also explains the

nonadditivity of induction interactions. As shown in the �gure, the negative partial

charge of the oxygen atom of the molecule A induces a dipole moment on water molecule

C. Although the �gure illustrates the actual polarization of the electron cloud, the

model simpli�es this process by treating the induced dipole as a point dipole or several

dipoles (the model of Section 3.5 uses three polarization centers). This dipole then

5
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δ+

δ-

polarization

interaction

A

B

C

Figure 1.1: Polarization model. Charges from molecules A (one of the charges high-
lighted) polarizes molecule C. The induced dipole interacts with molecule
B.

interacts with the partial charges of the molecule B. Molecule A and B also engage

in direct interactions (not depicted), which are pure two-body in nature. Molecule C

similarly interacts with both A and B through pairwise interactions (not depicted).

The interaction shown in the �gure occurs only in the presence of all molecules A,

B, and C, and can be interpreted as an additional interaction between A and B due

to the presence of molecule C. This extra interaction is included in the non-additive

part and will be de�ned formally in Eq. (1.6). The polarization process is repeated

for all the partial charges across all the molecules. The model can also be extended

to include a larger number of molecules, representing the three-body contribution in

larger aggregates. Alternatively, it can involve the polarization of multiple molecules

and the simultaneous participation of more than three molecules. In this scenario,

the model incorporates four-body or higher terms. As interactions involving more

molecules become increasingly weaker, the model disregards those below a certain

6
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threshold, thus keeping the computational cost of the procedure down. One signi�cant

advantage of the model is that only polarizability, number, and location of the centers

need to be determined, making the model easily adaptable to any order of the many-

body expansion. Nevertheless, the iterative process of polarizing molecules makes

this model signi�cantly more computationally expensive than simple pair interactions,

and polarizable force �elds are considerably slower than the purely two-body non-

polarizable potentials. However, it remains less complicated than explicit many-body

potentials.

The orientation of the water molecules in Figure 1.1 results in an attractive

three-body contribution, making the interaction cooperative, i.e., the attraction be-

tween A and B is stronger in the presence of C. In water clusters with strongly at-

tractive arrangements and in liquid water, this is the most frequent situation, making

the three-body induction energy usually negative. However, unlike the two-body case,

non-additive energies can vary in sign, and a proper three-body potential must account

for all arrangements (cf. Figure 3.2).

Despite its success in capturing the major aspects of non-additive interactions in

water and other polar systems, the polarization model has several limitations. Firstly,

the physical process represented by this model is accurate only at large intermonomer

separations, as the multipole expansion diverges at short distances [32]. This issue

is mitigated by introducing damping [cf., Eq. (3.17)], which e�ectively suppresses the

interaction at short distances, avoiding divergence but, simultaneously, preventing ac-

curate representation of short-range e�ects. As a result, other parts of the potential

must be adjusted to compensate for this missing part, reducing the overall generality of

the potential. Secondly, these models are usually low order, involving isotropic centers

and dipole-dipole polarizability, whereas actual molecules are anisotropic and involve

higher-order polarizabilities. This issue can be address by including these higher-order

terms, although this comes at the cost of increased computational time and stronger

divergence at short ranges. Lastly, the polarization model only accounts for induc-

tion e�ects, completely omitting the exchange or dispersion components. These e�ects

7
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are less important in water that induction non-additivity, they are nonetheless non-

negligible [38]. Physically-correct potentials should incorporate explicit three-body

e�ects to capture all possible interactions. This requirement motivated the develop-

ment of three-body potential in Ref. 31 and its signi�cant enhancement in publication

of Chapter 3. Despite this, the polarization model remains useful. A potential function

that captures the di�erence between the three-body nonadditivity and that of the polar-

ization model is more accurate than one that attempts to model the total three-body

non-additive energy. Additionally, developing explicit potentials beyond three-body

interactions is extremely expensive both in development and usage, making the polar-

ization model valuable for modeling four-body and higher-order contributions. This

strategy was employed in the publication of Chapter 3.

Related only tangentially to the developments in the dissertation, it is also

worth brie�y discussing the physical picture of the interactions in the water dimer (and

larger water clusters) based on the SAPT decomposition of the interaction energy into

physically meaningful components. In the dissertation, the methods used involved a

supermolecular approach, where the interaction energy is calculated as the di�erence

between the energy of the cluster and that of the monomers:

Eint = Ecluster −
∑
i

Ei, (1.2)

where Ei is the energy of the i-th monomer. The simplest case of this approach is the

interaction energy of a dimer:

Eint = EAB − EA − EB, (1.3)

where EAB is the energy of the dimer and EA and EB are the energies of monomers

A and B, respectively. In the SAPT approach, the interaction energy is calculated

directly as a sum of physically-interpretable contributions [32]: electrostatic (result-

ing from interactions of permanent multipole moments of the interacting monomers),

8
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exchange (resulting from the Pauli exclusion principle), induction (resulting from inter-

action between the permanent multipole moments on one monomers with the induced

moments of the other), dispersion (resulting from interaction between multipole mo-

ments generated from instantaneous electron �uctuations), exchange-induction and

exchange-dispersion (corrections to induction and dispersion due to antisymmetry).

For the dimer, induction and dispersion contributions are always attractive, while ex-

change (including exchange-induction and exchange dispersion) is always repulsive,

and electrostatic energy may be either and is usually the dominant factor in deciding

whether a particular orientation is favorable or not. Dispersion energy originates from

electronic correlation and in the supermolecular approach it requires a post-Hartree

Fock treatment [39]. While the leading terms of electrostatic, exchange and induc-

tion energies are captured by the supermolecular Hartree-Fock calculations, accurate

descriptions necessitate post-Hartree Fock correlated methods. Dispersion energy in

water dimer is secondary to electrostatic and induction energies, but accurate treat-

ment of the interaction energy requires a correlated method, such as those used in the

publications provided in Chapters 2 and 3.

The supermolecular recipe given by Eq. (1.2) is very simple and straightforward

in calculating the interaction energy of a cluster, but an alternative approach using

the many-body expansion o�ers several bene�ts. As demonstrated in the publication

of Chapter 2, this approach is more e�ective than Eq. (1.2) for calculating interac-

tion energy. Moreover, the many body expansion provides a framework upon which

the intermolecular potentials can be constructed, such as the potential developed in

publication of Chapter 3. Describing interaction energy of Eq. (1.2) using an analytic

function of atomic coordinates is practically impossible, unless the cluster is very small

(in the case of water, up to three molecules). This di�culty arises from the number

of variables that are necessary to describe the whole large cluster, or what is often

referred to as the �dimensionality curse�. The complete description of the whole cluster

of N monomers requires 3NL−6 relative coordinates, where L is the number of atoms

in the monomer (L = 3 for water). This number quickly becomes overwhelming, and,

9
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therefore, the prudent approach is to divide the interaction into contributions coming

from pairs, triples, etc. For a cluster that has N monomers, the many-body expansion

is as follows [40]:

Eint = Eint[2, N ] + Eint[3, N ] + . . .+ Eint[N,N ], (1.4)

where Eint[2, N ] represents the sum of pair interactions, and Eint[K,N ] with K > 2

includes non-additive, K-body contributions. The pair (two-body) contribution is

typically the largest and includes all possible dimer contributions within the cluster:

Eint[2, N ] =
∑
i<j

Eint(i, j)[2, 2], (1.5)

where Eint(i, j)[2, 2] is the interaction energy of a dimer consisting of ith and jth

monomer in the cluster. Many intermolecular potentials ignore non-additive contribu-

tions, or approximate them with polarization models. This leads to signi�cant inaccu-

racies, as non-additive contributions are crucial for systems like liquid water or large

clusters, contributing up to 23% of the interaction energy for larger clusters, as shown

in the publication of Chapter 2.

The next term in Eq.(1.4), the three-body energy, represents the sum of the

three-body energies of all trimers within the cluster,

Eint[3, N ] =
∑
i<j<k

Eint(i, j, k)[3, 3], (1.6)

where Eint(i, j, k)[3, 3] is the three-body nonadditive interaction energy of a trimer

consisting of monomers i, j, and k. The non-additive energy contains the part of

the trimer energy that is not pairwise additive, i.e., it is the di�erence between the

interaction energy of the trimer with monomers i, j, and k, Eint(i, j, k), and all the

10
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pairwise interaction energies within a trimer:

Eint(i, j, k)[3, 3] = Eint(i, j, k)− Eint(i, j)[2, 2]− Eint(j, k)[2, 2]− Eint(i, k)[2, 2]. (1.7)

The methodology can be extended to four and higher-body terms [39, 40]. From

Eq. (1.6), it is evident that the number of the three-body terms is signi�cantly larger

than two-body terms, but, as presented in publication of Chapter 2, this issue is man-

ageable.

The strati�ed approximation strategy [�strati�ed approximation� many-body

approach (SAMBA)] employs a truncated many-body expansion with K-dependent

basis set and theory levels, as presented in publication of Chapter 2. This strategy

serves as an alternative to canonical supermolecular calculations of cluster interactions

energies as described in Eq. (1.2). While more calculations are required for each sub-

cluster compared to the canonical supermolecular approach, these calculations can be

performed at progressively lower levels of theory and with smaller basis sets, lead-

ing to signi�cant savings in computational resources without compromising accuracy.

The procedure can also yield benchmark-quality results that are not feasible with the

canonical approach at such precision.

The benchmarks o�er insight into the required level of accuracy for the calcu-

lations. With this understanding, along with a polarization model and a set of grid

points, one can �nally start developing an ab initio force �eld. Fitting of intermolecular

potentials might seem straightforward: parameters of the potential's functional form

are adjusted to minimize errors with respect to benchmark values on a grid. However,

such a simplistic application is unlikely to produce a good potential at �rst or even

after several attempts. There are several challenges: the functional form may lack

�exibility, the grid points may not represent the whole space adequately, and the po-

tential's accuracy can vary depending on the distance between the molecules. Finally,

the space between the grid points may be poorly captured by the potential. While these

issues arise in two-body potentials, they are even more pronounced in three-body ones,

11
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due to the signi�cantly larger dimensionality and hence much sparser representation

of its physical complexity. Consequently, �tting becomes a heuristic process of trial

and error, involving development of multiple potential versions and �ne-tuning them

based on performance. The experience with the development of the potential in the

publication of Chapter 3 (and also with other potentials) led later to the development

of AutoPES [41], where the process is more automated.

1.3 SAMBA approach

In �strati�ed approximation� many-body approach (SAMBA) presented in de-

tail in the publication of Chapter 2, we aimed to develop a more e�cient method to

compute the total interaction energy of a molecular cluster with reduced computational

resources, while maintaining or improving accuracy compared to the traditional meth-

ods. The main tool for achieving this goal is the many body expansion of Eq. (1.4),

which utilizes the fast convergence of this expansion, allowing the calculation of sub-

sequent terms with progressively lower levels of theory. While neither the use of the

many-body expansion nor the concept of �embedding��where less important energy

fragments are calculated with lower accuracy methods�is new, the combination of

these approaches at the level of simultaneous modi�cation of both the basis set and

the level of theory is novel. This combination enables benchmark-quality results. To

validate our approach, we conducted a series of extended computational tests across

various levels of theory, employing numerous methods and basis sets. Our focus was on

water clusters, particularly the water hexamer, where the two isomers, cage and prism,

are the lowest-energy structures with very slight energy di�erences. Determining the

relative stability of cage and prism is challenging and depends on the level of theory.

Additionally, due to water's polar nature, many-body e�ects contribute signi�cantly,

causing the many-body expansion to converge slowly, making this system close to the

worst-case scenario. Despite this speci�c focus, the presented scheme is universal and

applicable to other systems.
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In our calculations, we used the aug-cc-pVXZ basis sets of Dunning and cowork-

ers [42] with X ranging from 2 to 6, and applied complete basis set (CBS) extrapola-

tions. The methods employed included Hartree-Fock (HF), second order Møller-Plesset

perturbation theory (MP2), and coupled cluster method with singles, doubles, and

non-iterative triples [CCSD(T)]. The latter method is considered the �gold standard�

in benchmarking calculations, o�ering very high accuracy with signi�cant but manage-

able computational costs. To ensure that the calculations did not accumulate numerical

errors that could compromise their accuracy, the integral and convergence thresholds

typically used in the software packages were set to tighter values than the defaults.

We explored various levels of theory and basis sets to map the errors across

all stages of the many-body expansion. The key �nding, supported by data for the

water hexamer in Table 2.10, is that the SAMBA approach indeed o�ers advantages

over the canonical supermolecular calculation. For the water hexamer, the SAMBA

approach either achieved similar accuracy to the canonical representation with approx-

imately 24-fold reduction in compute time or delivered better accuracy by ensuring

more thorough convergence of the two-body energies with only about a 25% increase

in computational time (and a 15-fold reduction in computational cost compared to the

canonical calculations).

A general strategy for the water hexamer is summarized in Table 2.8. We

listed the levels of theory and basis sets for each step of the many-body expansion

to achieve di�erent levels of accuracy, ranging from a broad 10 kcal/mol criterion

to a very �ne 0.02 kcal/mol. While achieving the latter would likely require post-

CCSD(T) calculations, the 0.1 kcal/mol accuracy is more feasible with just up to

the CCSD(T) level of theory. The results indicate rapid convergence in the many-

body expansion, making problematic �ve- and higher-body calculations unnecessary

in most cases. Four-body terms can be handled at a lower level of theory and with

smaller basis sets, with MP2/aug-cc-pVDZ su�ciently representing these calculations.

However, for extremely high accuracy, CCSD(T)/aug-cc-pVDZ is recommended. In

contrast, it is more e�ective to focus on the two-body terms since they are both very
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large and relatively inexpensive to compute. The best results for these can be achieved

using CCSD(T), large basis sets, and CBS extrapolations. Three-body terms are also

signi�cant, and for higher accuracy goals, the CCSD(T) level of theory is needed, but

the basis set size can be reduced compared to the two-body calculations.

Table 2.9 illustrates the main source of the SAMBA e�ciency. In SAMBA, each

K-body term is computed with its respective basis set rather than the entire cluster's

basis set. This approach substantially reduces costs while introducing only minimal

residual basis set superposition error (BSSE). This hold true to a lesser extent for

calculations that are not counterpoise corrected, such as the literature benchmark of

the 24-mer [43]. In SAMBA, since higher-body terms can be ignored beyond a certain

point, there is no need for extremely expensive full-cluster calculations. Following the

SAMBA approach and with the recommended strategy of including up to four-body

terms, the larger system considered is the tetramer, regardless of the overall system size.

This approach is particularly advantageous for the studied 24-mer (and to the 16-mer),

where the literature benchmark [43] was computed using a modest basis set, lacking

di�use functions and with some polarization functions removed, without counter-poise

corrections. Those calculation were performed on a massive 223,200-core machine

and took 76 years of combined processor time. Our calculations required 200 times less

aggregate processor time, did not require such a large compute hardware, and provided

signi�cantly better-converged energies with respect to the basis set. Detailed results

are shown in Tables 2.11, 2.12, and Figure 2.6. Results for the 16-mer are included in

the Supporting Information of the paper.

It should be noted that the SAMBA approach does have some disadvantages.

The primary bene�t of the canonical supermolecular approach is the signi�cantly

smaller number of calculations required to obtain the interaction energy, making the

process less prone to human and computational errors. In contrast, SAMBA requires

a series of complex scripts to prepare inputs and gather results, which introduces

more opportunities for mistakes. Crashes or incorrect results are easier to detect and

avoid in canonical calculations than in the numerous calculations needed for SAMBA.
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Additionally, the large number of calculations involved in SAMBA imposes stricter re-

quirements to prevent error accumulation or computational artifacts. Lastly, geometry

optimizations are much more di�cult to perform with the SAMBA approach. While

it might be possible to combine the gradients from individual calculations, this is a

non-trivial task compared to canonical calculations, and such an extension to SAMBA

has not yet been implemented. As a result, the SAMBA approach is currently limited

to single-point calculations.

In summary, the SAMBA approach is recommended for high-accuracy bench-

mark calculations for smaller water clusters as well as larger systems like the 24-mer.

For even larger systems, the strategy may need to be combined with more simpli�ed

approaches to handle very high-body terms, such as our polarization model developed

in the publication of Chapter 3, where its application to large clusters is also discussed.

This scheme should be applicable to other structures as well. Water is a highly polar

system, and despite this, the many-body expansion converges relatively quickly. For

non-polar systems, the convergence is expected to be even faster, although non-additive

dispersion e�ects, which dominate in non-polar systems, require higher levels of theory,

making MP2 unsuitable for these cases.

1.4 CCpol23+ potential

During the work on the publication of Chapter 2, it turned out that the existing

three-body potential [31] is not accurate enough to properly model interactions in

water clusters. Therefore, the primary goal of the subsequent work was to develop a

new three-body potential from �rst principles. Three-body non-additive e�ects account

for approximately 20% of the interaction energy for water clusters larger than a dimer

[31]. The CCpol potential's two-body component was already quite accurate, and the

main source of the error in modeling water clusters stemmed from the three-body part

of the potential.

We began by selecting a large pool of grid points to cover a wide range of

relevant trimer geometries. The initial set of 7,533 grid points from Ref. 31 served
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as a starting point. Additional geometries were taken from trimers extracted from

clusters, ranging from tetramer to 21-mers, which included con�gurations with large

intermonomer separations. Another set of points was generated randomly, ensuring

that they were far from the existing points. Additional points included snapshots from

MD simulations and quantum Monte-Carlo simulations for water hexamers, which

aimed to sample the rovibrational motions of the cluster. Further points were added

to represent regions near the minima of water hexamers. Finally, more points were

included to properly model regions with short intermolecular separations. Overall, the

grid set included 71,456 con�gurations, providing comprehensive coverage for possible

applications of the potential in liquid simulations and cluster modeling..

Next, we conducted a series of tests to identify a combination of the level of

theory and basis sets that would o�er the best balance of accuracy and computational

e�ciency. Based on our previous work on the publication of Chapter 2, we knew that

CCSD(T) was necessary for su�cient accuracy, but its relatively high cost required us

to search for an optimal basis set. The main �ndings are summarized in Table 3.1.

The optimal approach turned out to be a hybrid scheme, where interaction energies are

calculating with MP2 in the aug-cc-pVTZ basis set and CCSD(T) in the aug-cc-pVDZ

set. This method resulted in negligible loss of accuracy compared to full CCSD(T)/aug-

cc-pVTZ, while achieving a fourfold reduction in compute time. Although a single

geometry calculation takes around an hour, the total number of grid points makes

these time savings signi�cant. All points used a rigid-monomer geometry averaged

over the ground rovibrational state of the water molecule.

The two-body CC-pol-8s [44] potential served as the two-body component of our

new complete potential, but it required slight modi�cations due to the introduction of

a new polarization model. Since this polarization model is applied across all levels of

the many-body expansion, adjustments were necessary for the two-body part. Despite

these modi�cations, both the functional form and performance of the two-body part

remained very similar to the CC-pol-8s potential, with only minor di�erences. The new
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polarization model, which utilized three polarizable sites instead of one, was speci�-

cally designed to accurately reproduce four-body and higher terms in water hexamer.

Interestingly, it also performed better in recovering three-body interaction energies in

a sample of trimers from an MD simulation (cf. Table 3.5). The average error in the

four-body interaction energies for a set of water hexamers was just 5.8%, with the

largest error being 12.2%. This is a noteworthy outcome of the paper since simple po-

larization models tend to have errors of about 50% for trimer energies [16], suggesting

that polarization models aimed at higher-order terms can also accurately model these

interactions.

The three-body functional form followed the general structure of the potential

described in Ref 45. However, instead of using a Legendre polynomial expansion,

we opted for exponential site-site terms. The 6 symmetry-unique sites used in the �t

resulted in 63 unique nonlinear parameters and 364 linear adjustable parameters. Given

the symmetry of the water molecule and the need to respect permutational symmetry,

the �tting process was carefully designed to ensure that the resulting �t was invariant

under all symmetry operations, including permutations of symmetry-equivalent atoms

and monomers.

The parameters were �tted through a multi-stage procedure, with the initial

values of the nonlinear parameters chosen randomly. For the �ts with the lowest root

mean square error (RMSE), an additional step was taken to reduce divergence at short

distances, and further points were added to address short-range issues. All grid points

were assigned equal weights, except for this additional short-range set. The RMSE

for the complete non-short range set of 70,268 points was 0.0184 kcal/mol, while for

trimers extracted from hexamers, it was 0.0145 kcal/mol. This represents a signi�cant

reduction in error compared to the potential in Ref. 31, where the RMSE was 0.07

kcal/mol.

Additional comparisons were made using 600 points extracted from MD simula-

tions, as shown in Table 3.5 (cf. also Table 1.1 with additional results from the MB-pol

potential [46]). The RMSE of 0.0184 kcal/mol indicates that the three-body �t has
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accuracy comparable to the two-body �t, which has an RMSE of about 0.01 kcal/mol.

With three dimers in a trimer, one would expect an error larger by
√

3 ≈ 1.73 if the

errors were random. A more elaborate �tting form could have reduced the three-body

�t error, but a highly complex form would have increased the computational time

required for simulations using the �t.

The result of the work is a family of potentials: CCpol2 represents the two-body

potential, CCpol3 is the three-body potential (the main focus of the work), CCpol23

combines the two- and three-body potentials, and CCpol23+ includes two-body, three-

body, and higher-body terms from the polarization model. These potentials have

been applied to water clusters. The �rst test involved trimers extracted from water

hexamers, with results shown in Table 3.2. Overall, CCpol3 performed very well, with

errors only 3 to 5 times larger than the underlying ab initio calculations used to train

the potential, and better than the potentials available in the literature at the time.

It correctly identi�ed the cage structure as having a lower three-body energy than

the prism. Another test focused on characteristic points of the water trimer. Good

performance in this case would indicate possible good results in modeling the trimer

spectra. The details are provided in Table 3.1 and Figure 3.1.

The results calculated with rigid-monomer geometries of the water trimer opti-

mized with CCpol23 are excellent, with an RMSE for the barriers between stationary

points of only 0.06 kcal/mol compared to the CBS CCSD(T) results, and the largest

error being 0.126 kcal/mol for the highest barriers. In the case of optimization with

�exible monomers, the barrier errors increase by about 2.5 times, mainly due to di�er-

ences in monomer geometries, as even the rigid CCSD(T) CBS results show signi�cant

errors. By applying a �monomer �exibility correction,� the barrier height errors are

reduced to the same level as in the rigid-monomer case. The accuracy is consistent

with the potential's uncertainties and demonstrates that the intermolecular geometries

optimized with the CCpol23 potential are very close to those optimized with �exible

monomers.

For larger systems, it is possible to test the full CCpol23+ potential that includes
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the description of the higher that three-body e�ect via the polarization model. A test

of the relative stability of various water hexamer isomers is presented in Figure 3.3.

Despite being compared to methods involving �exible monomers, CCpol23+ performs

best among all available potentials in recovering the relative stability of the isomers.

It turns out that the �exible-monomer e�ects are of similar magnitude across the

isomers, and the accuracy of the intermolecular potentials plays a more signi�cant role

than �exibility.

1.4.1 CCpol23+ Errata

The applications of CCpol23+, both by the original authors and other re-

searchers, revealed several issues. They are detailed in an erratum published alongside

the website where the potential can be downloaded [47]. The �rst two issues involve

the two-body part. The �rst one relates only to the description in the paper of how the

potential was damped in Eq. (3.10) since the computer code was una�ected and worked

as intended. Only a part of the uab(rab) was damped, instead of the whole contribution

as stated in the paper. Another issue is a programming error where certain terms

in the short-range part of the potential were damped multiple times instead of once.

This error a�ected the results, but only at very short distances, which are physically

irrelevant in most applications.

Ref. 48 pointed out another problem. When applying the CCpol3 potential to

calculate the third virial coe�cient, some exchange terms that should quickly decay at

long distances diverged, leading to incorrect behavior at very large separations. The

solution is to cut o� these terms at 10 Å in intermonomer separation. After applying

this �x, the three-body potential could then be used to properly calculate the third

virial coe�cient. Additional issues were identi�ed in the two-body part at very short

distances, where the potential exhibits unphysical behavior. The �x involved setting

the potential to a very high value below a certain cuto� distance. It is important to

note that these issues are not unique to CCpol; similar �xes were also required for the

MB-pol potential.
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Table 1.1: RMSEs (in kcal/mol) of nonadditive three-body energies on a sample of
600 con�gurations from an MD simulation. `MB-pol' is the potential of
46. Refer to the caption of Table 3.5 for further details.

polarization model (old CCPOL) 0.1070
polarization model (present work) 0.0734
SAPT-3B/old CCPOL 0.0418
WHBB6 0.0642
HBB2-pol 0.0374
MB-pol 0.0203
CCpol3 0.0154

1.5 Current status of the water potentials

At the time the manuscript of Chapter 3 was submitted, the MB-pol [46] three-

body potential had just been published, following an earlier two-body potential [49]

and improving the earlier the HBB2-pol [50] potential. We learned about the MB-pol

potential after our manuscript had been reviewed and no comparison of the MB-pol

to our potential could be made, only a short citation was given as a note added to the

proof.

The MB-pol potential used 12,000 grid points calculated at the CCSD(T)/aug-

cc-pVTZ level, applying permutationally invariant polynomials, monomer �exibility,

and a polarization model for four-body and higher-order terms. Compared to our

CCpol23+ potential of Chapter 3, the MB-pol potential employed a slightly higher-

level ab initio calculations [CCSD(T)/aTZ compared to MP2/aTZ/CCSD(T)/aDZ;

however, as shown in our publication this change in the level of theory has a negligible

impact compared to other possible inaccuracies in the �t], with about six times fewer

grid points. Additionally, the MB-pol had to also model monomer �exibility with this

reduced set of points, possibly impacting accuracy.

To evaluate the MB-pol potential, I have updated Figures 3.1, 3.2, and Ta-

ble 3.5 to include MB-pol results. The new data are presented in Figures 1.2, 1.3 and

Table 1.1. Overall, these results support the claim from Ref. 46 that MB-pol is a
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signi�cant improvement over earlier literature results. However, CCpol3 outperforms

MB-pol, both for the benchmark of sample points from an MD simulation and for the

water trimer characteristic points. It is worth noting that these benchmarks use rigid

monomer geometries, which favor CCpol3. As mentioned in publication of Chapter 3,

inaccuracies in the three-body potentials usually have a larger impact on results than

neglecting �exibility e�ects. Therefore, CCpol3 (and the full CCpol23+) should out-

perform MB-pol in these cases. This is further supported by an application of the

CCpol3 potential to the calculations of the third virial coe�cient for water [48], where

CCpol3 results showed better agreement with experimental benchmarks than MB-pol.

Given that MB-pol performed very well for liquid water and for other bench-

marks [51], it remained a strong competitor to CCpol23+. Flexible e�ects has been

included in the two-body part of the CCpol potential [52] but not in the three-body

one. Nevertheless, CCpol3 have been recommended for cases when the accuracy of the

three-body potential was critical and the �exible e�ects are less signi�cant.

CCpol23+ and other potentials that were developed by the time of publication of

Ref. 2 have remained among the leading ab initio water potentials for nearly a decade.

However, with recent advancements in computing power, a new generation of improved

potentials has emerged. Recently, several potentials from the family of permutationally

invariant polynomials [53] received updates, featuring more grid points, a higher level

of theory, and improvements in potential representation. The �rst of these was q-

AQUA [54], which utilized 71,892, 45,332, and 3,692 grid points for the two-, three-,

and four-body components, respectively. This potential incorporated the �rst explicit

four-body potential, developed earlier [55]. Initial tests of the latter potential showed

generally good accuracy, particularly in comparison to approximate polarization models

for four-body interactions. However, the relatively small number of grid points, which is

insu�cient for such a high-dimensional problem, raises concerns about its performance

on con�gurations that di�er signi�cantly from the training data. Despite this, the

full q-AQUA potential, with its relatively large set of the two- and three-body grid

points and improved theory (CCSD(T)-F12a/aVTZ for the three-body), enhances the

23

31:8095781975



modeling of clusters and liquid water. The potential was further expanded with a

polarization model for interactions beyond four body terms [56], making it a complete

potential. Another signi�cant development was the update to the MB-pol potential

[46], now called MB-pol(2023) [57], which was trained on the same dataset as q-AQUA

and also incorporates explicit four-body terms, though again on a relatively small

dataset. With over 2,000 parameters for the three-body component, this potential

o�ers improved accuracy over MB-pol and likely surpassed CCpol23+, even for rigid-

monomer systems. Unfortunately, the code implementing MB-pol(2023) has not yet

been released.

Recently, several potentials based on neural networks have also been developed.

A set of potentials released by Paesani and coworkers [58] aimed to address the pri-

mary disadvantage of sophisticated potentials like MB-pol: their high computational

cost. Once trained, neural network potentials are relatively fast to compute, especially

when using specialized hardware such as graphical processing units (GPU) or tensor

processing units (TPU). The potential from Ref. 58 was trained on MB-pol data, and

while it could not surpass MB-pol in accuracy, the authors aimed to achieve compa-

rable accuracy at a lower computational cost. This goal was only partially realized,

and for certain applications, such as phase transitions, the neural network potentials

performed signi�cantly worse. Another noteworthy development by Zhu et al. [59]

involved training a neural network potential on a vast dataset of 220,000 grid points

for two-body and an even more extensive 430,000 points for three-body interactions

at the CCSD(T) level. This potential showed excellent performance for water trimer

spectra, although its performance on larger water clusters remains to be tested. With

the recent development of such high-quality potentials, the goal of �nding a universal

potential that performs equally well for both small and large systems is much closer to

being achieved.
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Chapter 2

INTERACTION ENERGIES OF LARGE CLUSTERS FROM
MANY-BODY EXPANSION 1

Abstract

In the canonical supermolecular approach, calculations of interaction energies

for molecular clusters involve a calculation of the whole cluster, which becomes ex-

pensive as the cluster size increases. We propose a novel approach to this task by

demonstrating that interaction energies of such clusters can be constructed from those

of small subclusters with a much lower computational cost by applying progressively

lower-level methods for subsequent terms in the many-body expansion. The e�ciency

of such �strati�ed approximation� many-body approach (SAMBA) is due to the rapid

convergence of the many-body expansion for typical molecular clusters. The method

has been applied to water clusters (H2O)n, n = 6, 16, 24. For the hexamer, the best

results that can be obtained with current computational resources in the canonical

supermolecular method were reproduced to within about one tenth of the uncertainty

of the canonical approach while using 24 times less computer time in the many-body

expansion calculations. For (H2O)24, SAMBA is particularly bene�cial and we re-

port interaction energies with accuracy that is currently impossible to obtain with the

canonical supermolecular approach. Moreover, our results were computed using two

orders of magnitude smaller computer resources than used in the previous best calcu-

lations for this system. We also show that the basis-set superposition errors should be

removed in calculations for large clusters.

1 The text appeared in U. Góra, R. Podeszwa, W. Cencek, and K. Szalewicz, J. Chem. Phys. 135,
224102 (2011).
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2.1 Introduction

Calculations of cluster interaction energies are the subject of numerous papers,

for a few examples see Refs. 1�6. Such calculations are usually performed using the

canonical supermolecular approach, i.e., subtracting from the cluster total energy the

energies of monomers. As the cluster size increases, the calculations eventually become

prohibitively time consuming. For example, for water clusters the largest calculation

performed on (H2O)24 using the coupled-cluster method with single, double, and nonit-

erative triple excitations [CCSD(T)] and a modi�ed cc-pVTZ basis set containing 1224

orbitals required 76 years of central-processor unit (CPU) time [5, 7]. The calculations

performed for smaller clusters can also be very time consuming if a high accuracy is

required, like for example in the work of Bates and Tschumper (BT) [6], aimed at a

precise determination of the energy di�erence between the prism and cage structures

of the water hexamer. This di�erence is only about 0.25 kcal/mol or 0.5% of the total

hexamer interaction energy.

An alternative way of performing such calculations is to build the N -body inter-

action energy from the sum of 2-body, 3-body, etc. contributions to this energy. The

total interaction energy of an N -monomer cluster (an N -mer) can be described by the

following expression:

Eint = Eint[2, N ] + Eint[3, N ] + · · ·+ Eint[N,N ], (2.1)

where Eint[K,N ] is the K-body contribution to the interaction energy of the N -mer.

The leading two-body contribution, Eint[2, N ], consists of all the pair interaction ener-

gies within the N -mer

Eint[2, N ] =
N∑
i<j

Eint(i, j)[2, 2], (2.2)

where i, j denote the monomers in the cluster. Similarly, the three-body term is a sum

31

39:9894827976



of three-body nonadditive contributions from all non-equivalent trimers:

Eint[3, N ] =
∑
i<j<k

Eint(i, j, k)[3, 3], (2.3)

where the three-body nonadditive term for a given trimer, Eint(i, j, k)[3, 3], is de�ned

as the di�erence between the total interaction energy of this trimer, Eint(i, j, k), and

the sum of pair interaction energies:

Eint(i, j, k)[3, 3] = Eint(i, j, k)− Eint(i, j)[2, 2]− Eint(j, k)[2, 2]− Eint(i, k)[2, 2]. (2.4)

Analogous de�nitions hold for four- and higher-body nonadditive terms [8, 9]. The

nonadditive K-body contribution can also be directly expressed via the total energies

of all subclusters of a given cluster containing up to K monomers [9]

Eint[K,N ] =
K∑
i=1

(−1)K−i

 N − i

K − i

Stot[i, N ] (2.5)

where Stot[i, N ] is the sum of the total energies of all the i-monomer subclusters of the

N -mer cluster. For the three-body component (and similarly for other components),

Stot[3, N ] =
∑
i<j<k

Etot(i, j, k),

where Etot(i, j, k) is the total energy of a trimer consisting of monomers i, j, and k.

Equation (2.1) de�nes interaction energies relative to the sum of the energies

of isolated monomers, each monomer at an identical geometry as in the cluster. Such

de�nition is most often used in studies of cluster dynamics on potential energy surfaces

formed by rigid monomers. In studies of the energetics of clusters, one often de�nes

interaction energies relative to the sum of energies of isolated monomers at their re-

spective equilibrium geometries. We will call such quantities the relaxed interaction
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energies and the many-body expansion for such energies

Erel
int = Eint[1, N ] + Eint[2, N ] + Eint[3, N ] + · · ·+ Eint[N,N ], (2.6)

acquires an additional, one-body term, Eint[1, N ], accounting for the energetic di�er-

ence between the total energies of the monomers in the cluster geometries and their

equilibrium geometries. Note that one can also analyze the many-body expansion in

terms of the total cluster energies which removes the dependence on the reference point.

Truncated many-body expansions of Eq. (2.1) are widely used in physics since

the beginnings of quantum mechanics. The �rst explicit treatment of the nonaddi-

tive interaction energies is apparently the 1943 work of Axilrod-Teller [10] and Muto

[11]. Starting from 1970, the individual terms in many-body expansion have been

particularly often computed for small water clusters, see, e.g., Refs. 12�14.

As one can see from Eq. (2.5), calculations of nonadditive contributions require

a large number of calculations of the total energies for subclusters. Thus, a straight-

forward many-body approach�calculations of all the terms in Eq. (2.1) using a �xed

basis set and level of theory�would be much more time consuming than the corre-

sponding canonical supermolecular calculation. However, as we will show, the former

approach becomes much more e�ective than the latter one if a proper strategy is used.

It should be mentioned here that in the symmetry-adapted perturbation theory (SAPT)

approach [9, 15, 16] to intermolecular interactions, the nonadditive contributions are

calculated directly [9, 17], avoiding the problem discussed here. A general nonadditive

SAPT approach has been developed so far for three-body interactions [17�19].

The main reason that the many-body expansion can be useful is the fact that

it converges very fast and therefore can be truncated at a low K. The value of K

depends on the accuracy required. For example, as will be shown later, if for larger

water clusters one aims at an uncertainty of about one kcal/mol, one needs to include

only two- and three-body contributions. In fact, for such clusters one can always

restrict the expansion to up to four-body terms since the higher-body contributions
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are smaller than the uncertainties of the best possible calculations of the lower-body

terms. Although calculations of cluster interaction energies from a truncated many-

body expansion still require many more calculations than the canonical supermolecular

approach even if the maximum K is low, the calculations for K � N are orders of

magnitude less time consuming than the calculations for N . Furthermore, we will show

that as K increases, the calculations can be performed at decreasing levels of theory

and sizes of basis sets. In consequence, with such a strategy very signi�cant savings

of computer time can be achieved using truncated many-body expansions without

sacri�cing the accuracy of results.

The strategy of using a truncated many-body expansion with K-dependent ba-

sis set and theory levels�which can be called an �strati�ed approximation� many-body

approach (SAMBA)�as an alternative to the canonical supermolecular calculations of

cluster interactions energies is the main novel idea of the present work. This strategy

and the demonstration that it results in much more accurate interaction energies than

obtainable by the canonical supermolecular approach within given computational re-

sources has not to our knowledge been published before. There have been many papers

which presented calculations of many-body contributions, but in almost all cases the

goal was to get an insight into the physical decomposition and not to perform an actual

calculation of the total interaction energy. In some cases, e.g., in Ref. 20, the level of

the method and the size of the basis set was decreased with K, but this was done

only to make such calculations a�ordable. Also, the many-body expansion restricted

to two-body and three-body terms has been often applied to develop intermolecular

interaction potentials, see for example the work for water reviewed in Ref. 21. Another

application of the many-body expansion is the �electrostatically embedded" method of

Dahlke and Truhlar [22]. The closest precursor of our proposed approach is the work

of Christie and Jordan [23]. However, these authors restrict the theory level to second-

order many-body perturbation theory with Møller-Plesset partition of the Hamiltonian

(MP2) only, so that they do not include a hierarchy of theory levels. They do propose

to use smaller basis sets for higher K, but in a way more limited than in our approach.
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As an illustration of our method, we have applied SAMBA in calculations for

two water clusters: hexamer and icosikaitetramer, (H2O)24. Additionally, results for

the (H2O)16 cluster have been included in the Supplementary Information [24]. Let us

stress that the proposed approach is by no means restricted to water clusters, how-

ever, such clusters are particularly suitable for testing it. First, water clusters contain

large many-body e�ects since the polar character of the water molecule implies large

nonadditive induction interactions [25]. Therefore, the many-body expansion is more

slowly convergent than for non-polar molecules, where the presented approach should

work better. Second, due to the importance of water, there are highly-accurate bench-

marks available. Water hexamer is distinguished among water clusters since it is a

transitional structure [26, 27] between simple cyclic structures of (H2O)n, n = 3�5 and

larger clusters that have a clear three dimensional structure, resembling the hydrogen-

bond organization of condensed phases. Water hexamer is also of interest due to the

question concerning its minimum structure. As already mentioned, this cluster has in

particular two energetically very close minimum structures, called cage and prism, and

the di�erence

∆p−c = Eint(prism)− Eint(cage)

equals to only -0.25 kcal/mol (Ref. 6). Although the prism structure is the global mini-

mum on the potential energy surface, if the zero-point vibrational energy (ZPVE) is in-

cluded, the cage becomes the lowest-energy hexamer [28], in agreement with molecular-

beam observations of rotational spectra [28]. However, later work by Steinbach et al.

[29] assigned their observed infra-red intramonomer spectra to the book isomer. More

recently, the cage paradigm has been put into doubt by BT [6] who argued that the

di�erence of ZPVE between the two structures should be smaller than 0.25 kcal/mol,

so that the observed hexamer should be the prism. This work may also indicate that

the book isomer is not likely to be observed as its interaction energy is 0.72 kcal/mol

above the prism structure. Of course, higher-energy isomers can possibly be observed

at suitably high temperature ranges [30, 31]. Note that although we will discuss ∆p−c
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in several places, the main emphasis of this paper is on cluster interaction energies

Eint. As a byproduct of the (H2O)n, n = 6, 16, and 24 applications, we have provided

the values of both the total interaction energies and of the many-body contributions

for the investigated clusters that are more accurate than published values. As stated

recently by Wang et al. [32]: �de�nitive analysis of n-body contributions . . . remains to

be done". Thus, our calculations answer this request. Our many-body expansion for

(H2O)24 represents to our knowledge the largest cluster for which such an expansion has

been performed at a high level of theory. The published cases are mostly limited to N

of about eight and the MP2 method [33, 34], with the exception the MP2 calculations

of Cui et al. [35] for (H2O)21.

2.2 Details of calculations

In order to enable precise comparisons of the proposed approach with accurate

benchmark values, we have performed very large basis set calculations for the water

hexamer, computing both the total interaction energy and the many-body contribu-

tions. Then, to show the power of our approach, we have applied it to the water

icosikaitetramer. We have used hexamer's prism and cage structures since these are

the two lowest-energy minima on the potential energy surface of the system, but also

checked the proposed approach on several other hexamer structures. The geometries

were optimized using the CC-pol-8s+NB (coupled-cluster based, polarizable, 8-site

plus nonadditive e�ects) potential [36, 37]. The two-body part of this potential is an

improved re�t of the data used for the CC-pol-5s potential, the �rst ab initio potential

that correctly predicted both spectroscopic properties of water dimers and bulk prop-

erties of liquid water [38]. The nonadditive part is from Refs. 25, 39. The potential was

�tted to a set of interaction energies obtained from complete basis-set (CBS) extrap-

olations of CCSD(T) calculations. The monomers in the CC-pol-8s+NB (abbreviated

later on to CC-pol) potential are frozen in the r0 geometry, the average geometry of the

ground state vibration. The CC-pol hexamer geometries are given in the Supporting

Information [24]. One reason for choosing these geometries is that we plan to perform
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di�usion quantum Monte Carlo calculations (DQMC) for the hexamer using the CC-

pol-8s+NB potential. The other reason is that literature geometries of water cluster

usually include distorted monomers, which would be an unnecessary complication in

developing the computational strategy proposed by us. We emphasize that the choice

of the test systems is not relevant for the development of our method since the con-

vergence of many-body expansion is similar for all water clusters investigated to date.

For the water icosikaitetramer, we have used the structures from Refs. 5, 7, 40.

In most of our calculations, we have used the series of augmented correlation-

consistent aug-cc-pVXZ basis sets [41], X = 2�6. We will label the consecutive basis

sets aDZ, aTZ, aQZ, a5Z, and a6Z. We will also occasionally use non-augmented bases,

denoted as XZ. The MOLPRO suite of programs [42] was used for all the calculations

except for the CCSD(T)/aQZ calculations for the water hexamer where the PQS code

[43] was used. All MP2 and CCSD(T) calculations were performed using the frozen-

core approximation. In MOLPRO calculations, we used energy convergence thresholds

of 10−10 and 10−11 hartree for the CC and Hartree-Fock (HF) iterations, respectively.

Additionally, the density threshold for HF was 10−7 and the threshold for the sum of

squares of the changes in CC amplitudes was 10−14. For PQS, the energy threshold was

10−9 hartree. All integrals were calculated with 10−15 and 10−14 precision in MOLPRO

and PQS, respectively. These thresholds are a few orders of magnitude tighter than

MOLPRO defaults. Since the thresholds should produce interaction energies accurate

to at least 10−7 kcal/mol, such thresholds should make our results practically indepen-

dent of possible accumulations of numerical errors in additions involved in Eq. (2.5).

To perform CBS extrapolations, we used algorithms of Halkier et al. [44, 45]

For HF interaction energies we assumed:

EHF
int (X) = EHF

int (CBS) + Ae−αX , (2.7)
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whereas for MP2 or CCSD(T) interaction energies the following formula was used:

EMET
int (X) = EMET

int (CBS) +BX−3, (2.8)

where MET stands for the method used and EMET
int (X) are the interaction energies

obtained using the method MET and the aXZ basis set. We have taken α = 1.63 in

Eq. (2.7), as recommended in Ref. 45. The remaining parameters were found by solving

two linear equations with X and X − 1. We will also use symbols such as EMET
int (Q5),

which will denote EMET
int (CBS) extrapolated from basis sets with X = 4 and 5. We have

used the same extrapolations for basis sets with and without midbond functions. In

the former case we used the same midbond functions for calculations in X and X − 1

bases. Appropriateness of such extrapolations was shown in Refs. 46, 47.

Some of our interaction energies were computed using a hybrid approach com-

bining MP2 calculations in larger bases with CCSD(T) calculations in smaller ones.

To this end, let us de�ne the quantity:

δE
CCSD(T)
int = E

CCSD(T)
int − EMP2

int , (2.9)

where both the CCSD(T) and the MP2 energies have to be calculated in the same

basis set. The hybrid interaction energy is then de�ned as

E
CCSD(T)
int (X, Y ) = EMP2

int (X) + δE
CCSD(T)
int (Y ), (2.10)

with X > Y . In a variant of this approach, the EMP2
int component is CBS extrapolated,

and in another variant both components are extrapolated. This will be shown by an

appropriate notation, for example, ECCSD(T)
int ((Q5),T) will mean that the EMP2

int part

was extrapolated using the aQZ and a5Z results and the δECCSD(T)
int part was computed

in the aTZ basis set.

All our calculations use the counterpoise (CP) correction for the basis-set su-

perposition error (BSSE) [48, 49]. This correction has been applied in two versions.
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Unless stated otherwise, we will use the �orthodox" CP approach which consists in

performing calculations of all the energies entering Eq. (2.5) in the basis set of the

whole N -monomer cluster. This means that, for example in calculations for a hex-

amer, all dimer interaction energies are computed using the hexamer-centered basis

set (HCBS). In some calculations utilizing many-body expansions, we will use a �sim-

pli�ed� CP correction such that calculations of the K-body nonadditivity for a given

K-mer are performed in the K-mer-centered basis set (KCBS). The CP correction

requires additional computer resources compared to noCP calculations since in the

canonical supermolecular approach one has to perform N calculations for monomers in

the complete cluster basis set. The time of such calculations is non-negligible, for ex-

ample, for the water hexamer in the aTZ basis set the time required increases by about

40%. Thus, the CP correction is often neglected in calculations for larger clusters. Our

results will shed light on uncertainties resulting from this approximation.

Most of the hexamer calculations described here will use rigid monomer geome-

tries, but to compare with literature, we will present also calculations with distorted

monomers, which requires a speci�cation of how these calculations were performed.

Following the notation of Ref. 49, we can write the CP-corrected N -mer interaction

energy as:

Eint(Q1, ...,QN) = Etot(Q1, ...,QN)−
N∑
i=1

ENCBS
tot (Qi), (2.11)

whereQi = (Ri,ωi, ξi) stands for the set of all coordinates needed to specify the spatial

positionRi, orientation ωi, and the internal geometry ξi of the ith monomer. Note that

although the total energy of the ith monomer, ENCBS
tot (Qi), is shown to depend only

on Qi, it in fact depends on the complete geometry of the N -mer due to the location

of the �ghost" functions in the N -mer-centered basis set (NCBS) calculations. Thus,

even in the rigid-monomer approximation where all ξi are the same, all the monomer

energies are generally di�erent since each monomer has di�erently distributed ghost

functions. In calculations with �exible monomers, the interaction energies de�ned in

this way are sometimes called the �vertical� interaction energies.
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In calculations with �exible monomers, one usually compares the so-called �re-

laxed" interaction energies, i.e., energies relative to the equilibrium geometry re of

the isolated monomer. Such an energy di�ers from the vertical interaction energy

Eint(Q1, ...,QN) by the one-body terms de�ned earlier, also called �distortion" correc-

tions, describing the increase of monomer energies due to their departure from the re

geometry

Eint[1, N ] ≡ Edist =
N∑
i=1

Etot(ξi)−NEtot(ξre) (2.12)

where ξre is the monomer equilibrium geometry. There is no superscript NCBS since

Edist is an energetic e�ect of small monomer distortions and it can be computed in the

monomer-centered only basis set. The relaxed interaction energy can now be de�ned

as

Erel
int(Q1, ...,QN) = Eint(Q1, ...,QN) + Edist (2.13)

2.3 Complete basis set limits for water hexamer

In calculations of the interaction energy of a cluster, one can choose one of the

two approaches discussed above and there are several strategies possible within each

approach. We will illustrate these choices and their performance on the example of the

water hexamer. We will push each method to the limits of the current computational

resources. The simplest approach (Sec. 2.3.1) is to perform canonical supermolecular

calculations for the whole cluster using a single method, both in terms of the level of

theory and of the basis set. Since for the water hexamer one aims at an error of below

1 kcal/mol in the interaction energies, it has to be at least the CCSD(T) method.

The largest basis applied in the literature at this level was the aTZ basis [50, 51].

We were able to perform such calculations in the signi�cantly larger aQZ basis. A

possible improvement of this approach (Sec. 2.3.2) is to use a hybrid method, de�ned

by Eq. (2.10). Since one can perform the MP2 calculation for the hexamer in bases

up to a5Z, this may reduce the uncertainty of the �nal interaction energy despite the

fact that the δECCSD(T)
int component remains at the aQZ level. Finally, one can use
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the non-truncated many-body expansion and compute each K-body contribution as

accurately as possible (Sec. 2.3.3). For example, for the 2-body term one can use the

a6Z bases at the MP2 level and the a5Z bases at the CCSD(T) level.

2.3.1 CCSD(T) method only

The results of the CCSD(T) calculations for the water hexamer using the sim-

plest version of the canonical supermolecular approach are presented in Table 2.1. We

list in this and other tables results with four decimal digits. This is done to allow a

better analysis of the convergence patterns and to list some small contributions which

would amount to zero with less digits. The largest basis that we were able to use

was aQZ. The magnitude of the interaction energy computed in the aQZ basis set in-

creases by 1.68 (1.72) kcal/mol for the cage (prism) structure relative to the aTZ value.

CBS extrapolations further increase these values by 1.11 (1.14) kcal/mol for the cage

(prism) structure. These large changes indicate that even the aQZ results are not well

converged with respect to the basis set. The error of the extrapolated result should be

of the order of the di�erence between the CBS and largest basis set values. We have

arbitrarily assumed half of this value as our estimate of the uncertainty of the CBS

results, i.e., the uncertainty is 0.6 kcal/mol for both structures.

The di�erence between the prism and cage interaction energies is very small and

changes dramatically in relative terms. No reliable estimate of this di�erence can be

made from these calculations.

2.3.2 Hybrid MP2 plus CCSD(T) approach

Remaining within the canonical supermolecular approach, one can hopefully

obtain more accurate energies using the hybrid approach of Eq. (2.10). For the MP2

calculations, the largest basis set that we could apply was a5Z. For these calculations,

we have used the density-�tting (also known as resolution of identity) approach [52]

with the auxiliary basis set of Ref. 53. This approximation should lead to a negligible

loss of accuracy. We have tested it on the aQZ basis set and found that it amounted to
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less than 0.0001 kcal/mol. On the other hand, the use of the density �tting in Hartree-

Fock calculations resulted in an unacceptable error of more than 0.01 kcal/mol, and,

therefore, we have performed the Hartree-Fock calculations without the density �tting.

For the CCSD(T) calculations, the largest basis set was, of course, the same as used

in the previous subsection.

The results presented in Table 2.2 show that the MP2 (Q5)-extrapolated inter-

action energies di�er from the ones computed in the a5Z basis by 0.51 (0.52) kcal/mol

for the cage (prism) structure. The analogous value for the (TQ) extrapolation vs.

the aQZ basis set is 1.03 (1.06) kcal/mol, very similar to the increments seen in the

previous subsection. The values of δECCSD(T)
int are very small, only about 1% of the total

interaction energy. The di�erence between the (TQ) and aQZ values is 0.08 kcal/mol,

for both structures. We will estimate the accuracy of the best result in Table 2.2 as

half of the di�erence between ECCSD(T)
int (5,Q) and ECCSD(T)

int ((Q5),(TQ)), which amounts

to about 0.3 kcal/mol. The di�erence between the ((TQ),T) and ((Q5),(TQ)) hybrid

results is smaller than this value: 0.15 kcal/mol for both structures. Although the

current uncertainty is signi�cantly reduced from that of the pure CCSD(T) approach,

it is still large enough to try to improve it, as it will be described in the next section.

Whereas the convergence of the di�erences between the prism and cage interac-

tion energies is very poor, these energies are very close to each other in the ((TQ),T)

and ((Q5),(TQ)) hybrid approaches: only 0.0003 kcal/mol apart and furthermore the

latter one is only 0.0012 kcal/mol from the result of Sec. 2.3.1. This might suggest

that these values are close to the CBS limit. We will show later that this is actually

not the case. In fact, the (5,Q) result which stands apart here, is closest to our best

estimate established later.

One should mention here that whereas the hybrid method works very well for

water clusters, where δECCSD(T)
int is always small, it may perform poorly for systems

with larger δECCSD(T)
int , for example for the argon dimer [54].
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2.3.3 Non-truncated many-body expansion approach

We will now try to obtain as accurate as possible interaction energies of the

hexamer clusters from the many-body expansion. The two-body energies can be calcu-

lated in much larger basis sets than used in Secs. 2.3.1 and 2.3.2, up to a6Z/a5Z at the

MP2/CCSD(T) level and including midbond functions. This was possible since instead

of using HCBSs, we used dimer-centered �plus" basis sets (DC+BS), where the plus

indicates the presence of midbond functions. This approach removes the major part of

BSSE, as it will be shown in later sections. Furthermore, the true CBS limits are, of

course, the same in CP-corrected and non-corrected approaches, and our calculations

are fairly close to such limits. We have applied the hybrid MP2/CCSD(T) approach.

The results are shown in Table 2.3. The MP2 energies were computed in the a5Z and

a6Z bases with the 3s3p2d2f1g midbond basis set from Refs. 55, 56. One can see that

there is still a signi�cant change of 0.19 (0.20) kcal/mol for the cage (prism) structures

between the a5Z and a6Z MP2 interaction energies. The CBS extrapolation leads to a

further increment of 0.26 (0.27) kcal/mol relative to the a6Z results.

For the δECCSD(T)
int contribution, we performed calculations with the aQZ and

a5Z basis sets plus the midbond functions. The di�erence between the results in these

two basis sets is 0.06 (0.07) kcal/mol for the cage (prism) structure and the CBS

extrapolation decreases further the magnitude of this contribution by 0.07 kcal/mol

for both structures. Thus, the errors of δECCSD(T)
int are much smaller than those of

EMP2
int and therefore the hybrid method works very well for the two-body contributions.

To obtain the estimate of accuracy of our best value of the two-body contri-

bution, we took the di�erence between the ECCSD(T)
int (6,5) and ECCSD(T)

int ((56),(Q5)) re-

sults, equal to 0.197 kcal/mol for both structures, and assumed half of this di�erence,

or about 0.1 kcal/mol as the uncertainty of our results. The value of ∆p−c appears

to be converged much better, to within 0.001 kcal/mol. Table 2.3 shows also results

obtained in the DCBS and HCBS schemes, which will be discussed in more detail later

on. The issue of using K-mer centered basis sets is not relevant at this point since the

�nal results in Table 2.3 are very close to the CBS limits.
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The three-body contributions, Eint[3, 6], presented in Table 2.4, were computed

using trimer-centered basis sets (TCBS) up to X = 5. We have also included the

aTZ result obtained using the HCBS scheme. The comparison with the aTZ/TCBS

result shows that the two schemes give practically identical results (di�erences are 0.003

and 0.004 kcal/mol for the cage and prism hexamers, respectively). The convergence

with X is very fast. The CCSD(T)/(TQ) values and the hybrid ones obtained using

MP2/(Q5) and CCSD(T)/(TQ) di�er by only 0.003 (0.002) kcal/mol for the cage

(prism) structure. The di�erence between ECCSD(T)
int (5,Q) and ECCSD(T)

int ((Q5),(TQ)) is

0.012 kcal/mol for both structures and we will assume half of this di�erence, i.e., 0.006

kcal/mol, as our estimate of uncertainty of the three-body contribution. The accuracy

achieved for the three-body contributions is much higher than for the two-body ones.

Thus, we could have used smaller basis sets and skip the CBS extrapolations for the

former terms. For example, the aTZ results di�er from the best values by only 0.04

kcal/mol for both structures, much less than the uncertainty of the two-body term. In

contrast, it would not be possible to lower the level of theory, as the MP2 approach

results in errors of about 0.4 kcal/mol.

One may notice that the errors of EMP2
int and of δECCSD(T)

int are of opposite sign

and comparable magnitude, and therefore partly cancel, which makes the convergence

of ECCSD(T)
int faster than that of its components. In such situations, the hybrid approach

is less e�ective, as shown by the negligible di�erence between the ECCSD(T)
int (TQ) and

E
CCSD(T)
int ((Q5),(TQ)) values discussed above.

The higher-body terms are presented in Table 2.5. For K = 4, 5, and 6, we have

just used the results computed using aTZ/HCBS. In view of the basis set convergence

for the three-body terms discussed above (see also a further discussion of the basis set

convergence of nonadditive components in Sec. 2.5) and the smallness of the K > 3

contributions, the absolute errors of these terms are negligible. For the four-body

contribution, the di�erence between the aTZ and aDZ results (see Table 1 in the

Supporting Information [24]) is only 0.0035 (0.0075) kcal/mol for the cage (prism)

structure. Thus, we assume 0.006 kcal/mol as the uncertainty of this term. Similar
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estimates for the �ve- and six-body terms are 0.002 kcal/mol or less. Summing all the

uncertainties discussed above gives 0.12 kcal/mol as the uncertainty of our hexamer

interaction energy.

The 0.12 kcal/mol uncertainty estimated above is signi�cantly lower than that

of the results in Sec. 2.3.1 (0.6 kcal/mol) and 2.3.2 (0.3 kcal/mol). For convenience, the

latter results are quoted in the last two rows of Table 2.5. The actual di�erences be-

tween these results and the result of this section are 0.26 (0.28) and 0.23 (0.24) kcal/mol

for the cage (prism) con�guration, respectively. This indicates that our estimates of un-

certainties are reasonable despite being conservative and the close agreement between

the results of Secs. 2.3.1 and 2.3.2 is accidental. The same is even more true in the case

of ∆p−c which is about 1.7 times smaller in magnitude than the values from Secs. 2.3.1

and 2.3.2. The result ∆p−c = -0.024 kcal/mol obtained from the many-body expansion

may still have a fairly large relative error as its magnitude is �ve times smaller than the

uncertainty of this approach. On the other hand, the results in Table 2.3 indicate con-

vergence to within 0.001 kcal/mol. Thus, the convergence of ∆p−c may be even more

than an order of magnitude faster than that of total interaction energies. One would

expect this to be the case to some extent since the cage and prism structures are fairly

close to each other which should lead to some cancellation of errors. Indeed, even if we

assume that the uncertainty of our ∆p−c is of the same magnitude as the quantity itself,

thus would mean an order of magnitude reduction of error. Therefore, although for the

CC-pol-optimized rigid-monomer structures ∆p−c is so small that these two structures

have to be assumed to be isoenergetic, the �exible-monomer structures [57] di�er by

0.25 kcal/mol (Ref. 6) and therefore such di�erence can be meaningfully determined

from calculations as accurate as presented here.

The results from Table 2.5 are shown in Fig. 2.1 as percentage contributions

to the total hexamer interaction energy. Compared to similar graphs in literature,

the two-body contribution is much more signi�cant. This is due to the fact that,

apparently for the �rst time, the many-body expansion has been computed with fairly

saturated two-body contributions. This makes these contributions larger relatively to
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the higher-body terms.

The percentage contributions of nonadditive e�ects are nearly identical for the

cage and prism structures due to their geometrical similarity. For the other structures,

these e�ects will be di�erent, but not substantially di�erent, see Sec. 2.5.

In conclusion, we have shown in this section that the simplest strategy of com-

puting interaction energies of a cluster, i.e., the use of a single method and basis set,

can be improved by using the hybrid approach, and then further improved using the

many-body expansion. The main reason for the latter improvement is the fact that the

two-body component converges much slower in basis set than the higher-body ones.

The many-body approach allows one to compute the former component much more

accurately than it is possible in the canonical supermolecular approach.

2.4 Comparison with literature

Our calculations presented in the previous section used larger basis sets than

any published paper on water hexamers. Therefore, it would be in order to compare

to the previous largest calculations, performed by BT [6]. Since BT use di�erent

hexamer geometries (optimized in Ref. 57), we had to repeat our calculation for the BT

geometries. The two sets of geometries are di�erent due to (a) the use of rigid monomers

in our calculations and the optimization of monomers' internal coordinates in the BT

geometry and (b) the di�erent potential energy surfaces in the two optimizations.

Since BT used the hybrid method, we have performed calculations analogous to those

described Sec. 2.3.2. We �rst obtained CP-corrected vertical interaction energies of

Eq. (2.11). The results are presented in Table 2.6. Similarly to the calculations in

Sec. 2.3.2, we calculated the MP2 energies with the a5Z basis set and the CCSD(T)

ones with the aQZ basis. Note that the δECCSD(T)
int component is not large but its basis

set dependence is relatively signi�cant and the (TQ)-extrapolated values di�er from

the aTZ ones by about 0.2 kcal/mol. Performing a similar analysis as in Sec. 2.3.2, one

can obtain an uncertainty estimate of 0.30 kcal/mol for the vertical interaction energy.
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To compare to the relaxed interaction energies of BT [6], we now have to com-

pute the distortion energy of Eq. (2.12). We used just the CCSD(T) approach and

monomer-centered basis sets (MCBS). The resulting distortion energies as well as the

relaxed interaction energies are given in Table 2.7. The MP2 values are also given for

the distortion energies, but we have not used the hybrid approach here. One may note

that indeed the MCBS approach is entirely su�cient for calculations of the distortion

energies since the (Q5)-extrapolated quantities have uncertainties of only 0.02 (0.03)

kcal/mol for the cage (prism) structure.

Now we can compare with the results of BT [6] quoted in Table 2.7. These

authors computed the MP2 energies using the MP2-R12 approach [58, 59] without any

CP corrections. BT estimated the uncertainty of their MP2 energies to be 0.1 kcal/mol

from comparisons to Xantheas, Burnham, and Harrison (XBH) [60] MP2/CBS(Q5) re-

sults. The latter authors used slightly di�erent hexamer geometries. From comparisons

with our results at the a5Z level, this di�erence leads to about 0.04 kcal/mol increase of

interaction energies. Our extrapolated results for the cage are higher by 0.05 kcal/mol

than the CP-corrected XBH results (for the prism structure, only the uncorrected re-

sults were computed in Ref. 60). The overall 0.09 kcal/mol di�erence is probably due

to the di�erent extrapolation algorithm used by XBH. The BT MP2-R12 interaction

energy of the cage hexamer di�ers by 0.09 and 0.04 kcal/mol from XBH and our re-

sults, respectively (the latter di�erence is 0.03 kcal/mol for the prism hexamer). Thus,

the 0.1 kcal/mol estimate of the uncertainty of the BT MP2-R12 results is reason-

able, although our method of estimating uncertainties gives a somewhat larger value

of 0.26 kcal/mol. Furthermore, the 0.10 kcal/mol di�erence between CP and noCP

(Q5)-extrapolated results of XBH indicates that the discussed uncertainties may be

larger than 0.1 kcal/mol. One may notice that the CBS extrapolations from bases

with large X are quite competitive in accuracy with MP2-R12 calculations. Similar

observations were made recently [61] in the case of CCSD(R)-F12 approach compared

to orbital extrapolations for the argon dimer.
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Although BT have not explicitly estimated the accuracy of their δECCSD(T)
int com-

ponent, computed in the haTZ basis set [which uses the aTZ (TZ) basis for oxygens

(hydrogens)] without CP corrections, they did compute this value for the prism struc-

ture with the CP correction which changed this component from -0.06 to -0.07 kcal/mol

only. BSSE of only 0.01 kcal/mol [although our calculations in the same basis set gave

BSSE of 0.05 (0.03) kcal/mol for the cage (prism) structures] might have indicated that

the uncertainty of δECCSD(T)
int is negligible (although in general the size of BSSE cannot

be used to estimate accuracy of interaction energies [62]). Our calculations show that

this is not the case and in contrast to the excellent agreement at the MP2 level, our

E
CCSD(T),rel
int /CBS values di�er from the BT �nal results�de�ned as EMP2,rel

int (R12) +

δE
CCSD(T),rel
int (haTZ)�by 0.39 and 0.38 kcal/mol for the cage and prism structures, re-

spectively. Clearly, the reason for this discrepancy is the relatively small basis set and

the lack of the CP correction in BT's calculations of δECCSD(T)
int whereas this contri-

bution fairly signi�cantly depends on the quality of basis set, as shown above. Notice

also that for the cage structure, BT obtained a wrong sign for δECCSD(T)
int . The very

small di�erence of 0.01 kcal/mol between the CP and noCP values of this quantity

found by BT for the prism structure is accidental since for the signi�cantly larger aQZ

basis set the BSSE errors of δECCSD(T)
int are 0.32 and 0.35 kcal/mol for the cage and

prism structures, respectively. These comparisons show that the CP correction can

be critical even in calculations of small contributions to interaction energies of larger

clusters. Furthermore, it is advisable to test the convergence of results by performing

calculations in a series of basis sets.

Despite the fairly large errors in the δECCSD(T)
int contributions, the di�erence

∆p−c computed by us agrees to two signi�cant digits with the value computed by BT.

This is consistent with our �nding that ∆p−c converges an order of magnitude faster

than the interaction energies. One may also note that the monomer distortion energies

make a very small contribution to ∆p−c.

Another recent high-level calculations for the water hexamer were published

by Kumar et al. [51] These authors computed interaction energies using the hybrid

48

56:1129247851



approach at the level ECCSD(T)
int (5,T), i.e., without CBS extrapolations and also without

CP corrections. They used re rigid-monomer geometries optimized by them at the

MP2/aTZ level. Their interaction energy for the prism structure lies 1.11 kcal/mol

above our energy from Table 2.5, but after adding estimated corrections for BSSE and

CBS extrapolations, the discrepancy increases to 1.9 kcal/mol. The reason for such a

large discrepancy is the monomer geometry used by Kumar et al. which for the water

dimer gives interaction energy 0.12 kcal/mol smaller in magnitude than that obtained

with r0 geometry [63], translating to 1.8 kcal/mol for the 15 dimers in the hexamer.

The values of ∆p−c in the CC-pol, Kumar et al., and BT geometries: -0.02, -0.14,

and -0.25 kcal/mol, respectively, show that this quantity is relatively sensitive to the

monomer �exibility. A DQMC calculation for water hexamer, such as performed by Liu

et al. [28] and planned by us, could probably be done with �exible-monomer potentials,

but there are no such potentials currently available which would be accurate enough.

The existing �exible-monomer potentials for the water dimer [64, 65] are signi�cantly

less accurate in their intermolecular part than the CC-pol-8s potential [36]. There

exists also a �exible-monomer nonadditive water trimer potential developed by Wang

et al. [66]. These authors computed the interaction energy for the prism hexamer and

obtained the value of -45.8 kcal/mol, 0.5 kcal/mol above our energy from Table 2.7.

Such a di�erence is probably too large for reliable distinguishing between the interaction

energies of the prism and cage structures. Thus, work aimed at this goal will have to

use the signi�cantly more accurate rigid-monomer potentials, which brings the question

whether the e�ects due to monomer �exibility can be neglected. The di�erence between

the prism and cage ZPVEs was 0.79 kcal/mol in the calculations of Ref. 28. With a

di�erence of this order, the rigid-monomer predictions should be reliable. However,

if this di�erence is less than 0.2 kcal/mol, as argued by BT [6], the rigid-monomer

predictions may not provide clear-cut answers. It is possible that the rigid-monomer

value of ∆p−c would be closer to the �exible-monomer one if a monomer geometry

similar to some averaged monomer geometry from the cage and prism structures of

Ref. 57 were used instead of the vibrationally averaged geometry from CC-pol-8s+NB.
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However, the use of the former geometry in DQMC calculations would probably not

be a good idea since in the full-dimensional hexamer vibrational motion the faster

intramonomer motions are approximately averaged as in CC-pol-8s+NB.

2.5 Convergence of many-body expansion for water hexamers

In Sec. 2.3.3, we have shown that if various computational strategies are applied

to the water hexamer at the limits of computational resources, the many-body expan-

sion approach provides the hexamer interaction energy with smallest uncertainties. In

this section, we will show that several many-body contributions whose best available

values are presented in Table 2.5 can be either neglected or calculated less expensively

by using lower levels of theory than CCSD(T), smaller basis sets than used in Table

2.5, and neglecting a small part of the CP correction. The simplest approximation is

just to neglect higher-body terms. The fast convergence of the many-body expansion

is clearly seen in Fig. 2.1. Since the uncertainty of our best hexamer interaction energy

is 0.12 kcal/mol, results in Table 2.5 show that the �ve- and six-body contributions

can be safely neglected. In less accurate calculations, where uncertainties from other

sources are of the order of 1 kcal/mol, it is possible to neglect also the four-body e�ects,

contributing about 0.5 kcal/mol.

We will next consider the convergence with respect to the level of theory. The

results are shown in Figs. 2.2 and 2.3 for the cage and prism structures, respec-

tively. Plotted are the errors of the HF and MP2 K-body contributions relative to

the CCSD(T)/aTZ/HCBS results at a given K-body level. This reference level is the

highest we could a�ord when calculating the complete many-body expansion. We will

discuss here results obtained in the HCBS approach. The KCBS approach, consisting

in using the given K-mer basis set in calculating the K-body contribution, will be

discussed below. Numerical data are given in the Supporting Information [24].

The �gures show that the HF method, often used in calculations for larger

clusters, is not adequate at the two-body level (and therefore would not be adequate in

the canonical supermolecular approach) as it produces errors larger than 10 kcal/mol.
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This shows that the two-body correlation e�ects cannot be neglected for water clusters.

The HF method can be used for the three-body terms if the accuracy goal is 1 kcal/mol.

At this level of accuracy, the higher-body e�ects would be neglected. In fact, for the

three-body terms the HF method performs relatively best as it is almost as accurate

as the MP2 method. Furthermore, the dependence of this term on basis set size is

weak and the aDZ basis is completely adequate. If we tighten the accuracy threshold

to 0.1 kcal/mol and four-body e�ects have to be included, these e�ects can possibly

be computed at the HF level, although the errors are just barely below the threshold.

For the four-body e�ects, as well as for the �ve-body ones, the errors of the HF level

are about three times larger than those of the MP2 level. Since, however, the error

of HF/aDZ at the �ve-body level is only about 0.01 kcal/mol, this level is adequate

here for any conceivable current calculations. One may note that for the cage �ve-

body contribution the relative errors of both the HF and MP2 values are so large that

its inclusion actually increases the overall error. This fact is clearly related to the

accidental smallness of this term and the same problem does not appear for the prism

structure.

Somewhat surprisingly, except for the two-body term, the MP2 method does not

bring huge improvements in the many-body expansion over the HF approach despite

the fact that it reproduces the total hexamer interaction energy with errors below 1%,

cf. Table 2.6. This rather high accuracy is partly fortuitous and partly due to the

good accuracy of the MP2 two-body results. Water dimer MP2 interaction energies

have typically a couple percent error compared to the CCSD(T) results, therefore 0.5

(0.75) kcal/mol or 1.5% (2%) error for the cage (prism) hexamer two-body interaction

energy is not accidental. The still better total interaction energy is mainly due to the

fact that the error of the three-body term is of similar magnitude and of the opposite

sign relative to the two-body error. Note, however, that in relative terms the three-

body error is more substantial, as it constitutes about 5% of the three-body energy. In

general, the sign of the MP2 (as well as HF) error alternates with K, leading to the

total interaction energies more accurate than individual K-body terms. In any case,
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the MP2 level of theory would be adequate for all terms in the many-body expansion of

hexamer's interaction energy with the uncertainty goal of 1 kcal/mol. If the threshold

is lowered to 0.5 kcal/mol, MP2 cannot be used anymore at the two-body level. It is

also not very useful for higher K since at the three-body level it is not much better

than HF, at the four-body level it is better but HF is good enough, and higher-body

levels are negligible. With 0.1 kcal/mol threshold, MP2 would be a good choice at

the four-body level as it reduces the errors by about a factor of two compared to the

HF approach, to about 0.05 kcal/mol. For �ve-body contributions, the HF level is

adequate for all practical purposes, but the use of MP2 does give about a factor of

three reduction of this error. The MP2 results are much more dependent on basis set

size than the HF results and the use of non-augmented bases in MP2 calculations is

clearly inadequate. However, the relatively small aDZ basis set is su�cient for MP2

calculations except for the two-body contributions.

The basis set convergence of the individualK-body contributions at the CCSD(T)

level of theory is shown in Figs. 2.4 and 2.5 for the cage and prism structures, respec-

tively. Note that in contrast to Figs. 2.2 and 2.3, the reference energies are now the

benchmark results from Table 2.5. We have seen, cf. Tables 2.1 and 2.2, that the basis

set convergence for the total interaction energy is slow. We can now see that this

error is almost exclusively the result of the slow basis set convergence of the two-body

contributions. For example, the aDZ two-body contributions have about 7 kcal/mol,

nearly 20% error relative to the benchmark two-body CCSD(T) value. On the other

hand, the errors of the three- and higher-body contributions in the aDZ basis set are

below 0.02 kcal/mol, i.e., are completely negligible. For the two-body contributions,

we have also included the results in the aXZ/DC+BS basis sets, X = T, Q, 5, showing

the greatly reduced errors both due to the use of midbond functions and the increased

cardinal number X. In particular, the addition of bond functions to the aTZ basis

reduces the error by a factor of two upon only 24% increase of the basis set size. The

non-augmented bases, even TZ, are completely inadequate at the two-body level, but

give only about 1 kcal/mol error at the three-body level, so in particular the DZ basis
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would be a reasonable choice at this level in less accurate calculations. This basis is also

adequate in calculations of four- and �ve-body contributions, although the application

of the TZ basis reduces the errors several times.

Figures 2.2�2.5 show both the results computed using the full hexamer-centered

basis sets in each calculations of total energies, from monomer to hexamer, and using

the K-mer centered basis sets (KCBS) for a given K-mer (for this K-mer and all

its subclusters). To make sure that the latter approach is properly understood, let

us give an example. In calculating the three-body nonadditive energy for the trimer

consisting of monomers 2, 4, and 6, the calculations of monomer, dimer, and trimer

total energies are all performed in the same 2-4-6 trimer-centered basis set. However, in

the calculations for the tetramer 2-3-4-6, the energy of the trimer 2-4-6 is computed in

the tetramer-centered basis set. Thus, the CP method is rigorously applied at each K-

body level, but not for the whole hexamer. The part of the CP correction missed in this

way is negligibly small, as shown in Figs. 2.2�2.5. The additional error is a substantial

fraction of the HCBS error only for the two-body contribution computed in the smallest

non-augmented basis sets which are anyway inadequate for any purposes. With the

aDZ basis set, the additional error is about 1 kcal/mol compared to the HCBS error

of 7 kcal/mol. The corresponding errors in the aTZ basis set are 0.3 and 3 kcal/mol, a

still smaller relative di�erence. This decrease should be expected since as the basis set

approaches completeness, the di�erence between the HCBS and KCBS approaches has

to disappear. For the higher than two-body contributions and augmented basis sets,

di�erences between the HCBS and KCBS approaches are completely negligible and

relative changes are smaller than in the two-body case (for example, for the three-body

contribution to the prism interaction energy, the di�erence between the two approaches

is only 0.006 kcal/mol in the aTZ basis set). This is due to the fact that the di�erence

between the sizes of basis sets in the HCBS and KCBS approaches becomes smaller

with larger K. The neglected part of the CP correction is still smaller when the

CBS extrapolations are applied. The HCBS/KCBS di�erences are somewhat larger in

relative terms for the three- and four-body components computed in non-augmented
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basis sets, so some care should be taken if these bases are applied (which is generally

not recommended).

The optimal strategies for several assumed levels of accuracy are summarized in

Table 2.8. All the calculations should be performed in K-mer-centered basis sets and

midbond functions should be used for the two-body contributions. At any accuracy

level, CBS extrapolations are absolutely necessary for the two-body contributions and

will likely be bene�cial for the three-body ones. In general, we do not recommend

the (DT) extrapolations, but for all higher X such extrapolations signi�cantly improve

accuracy at low extra computational costs. For the four-body and higher contributions,

bases larger than aTZ are not needed, so extrapolations should not be performed.

In addition to the thresholds discussed above, we have included in Table 2.8 the

threshold of 0.6 kcal/mol, equal to the uncertainty of the best value of the interaction

energy computed using the approach of Sec. 2.3.1 at the CCSD(T)/(TQ) level and

we will now discuss this case. For the two-body contribution, one has to still use the

CCSD(T)/(TQ) approach but now with midbond functions. According to Table 2.3,

this procedure should be accurate to about 0.3 kcal/mol (the increase of accuracy is

due to the use of midbond functions). Since the MP2 method, which was adequate

with the 1 kcal/mol threshold, gives a nearly 0.4 kcal/mol error for the three-body

term, we have to move to the CCSD(T) approach for this term. However, the aDZ

basis will still be su�ciently accurate here. We now have to include the four-body

contribution, which could actually be computed even at the HF/TZ level. However, to

be on the safe side, we recommend MP2/aDZ.

The strategies discussed above were based only on the results for the cage and

prism structures. However, other hexamer structures may exhibit a slower convergence

of the many-body expansion. This may be indicated by the recent results of Kumar

et al. [51]. These authors performed calculations for four hexamer structures with-

out any CP corrections using the hybrid MP2/a5Z plus CCSD(T)/aTZ approach and

computed also the two- and three-body interaction energies at the same level (using
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KCBS strategy and still no CP corrections). For the ring hexamer, the di�erence be-

tween the total interaction energy and the sum of two- and three-body contributions

is -1.41 kcal/mol, somewhat larger than the similar quantity for the cage and prism

hexamers. To examine this issue, we have performed calculations for the bag, book,

boat, and ring structures at the geometries of Ref. 57. The resulting many-body ex-

pansions at the CCSD(T)/aDZ level are presented in the Supporting Information [24].

For the book and ring structures, the CCSD(T)/aTZ results are also given. Despite

somewhat larger many-body contributions for the bag and book structures, the accu-

racy of the methods based on the cage and prism ones is also su�cient for the former

cases. However, for the boat and ring structures, a non-negligible (at the 0.1 kcal/mol

accuracy level) �ve-body contribution should be included using MP2/aDZ. Moreover,

a slightly stronger three-body basis set dependence for the ring geometry suggests that

CCSD(T)/aTZ should be used instead of CCSD(T)/aDZ for the 0.1 kcal/mol accuracy

level. These modi�cations have been incorporated into Table 2.8.

We have also included in Table 2.8 a hypothetical 0.02 kcal/mol accuracy thresh-

old. Calculations of such accuracy would be very di�cult at the present time. At the

MP2 level for the two-body term, one would probably have to use basis sets with the

cardinal number X = 8 or more (which would have to be optimized) or the MP2-R12

approach in a very large basis set. Moreover, at this accuracy level, CCSD(T) would not

be adequate anymore and the higher excitations would have to be included, for example

using the CC method with complete triple and noniterative quadruple excitations [the

CCSDT(Q) approach], as well as contributions from core electrons and the relativistic

e�ects. On the other hand, our current calculations would be already su�cient for

higher than two-body contributions. One needs to use the CCSD(T)/aQZ level for the

three-body contributions, CCSD(T)/aDZ for the four-body ones, and MP2/aDZ for

the �ve-body ones. The six-body e�ects could still be neglected.

The proper choice of strategy has to take into account computational require-

ments of various terms of the many-body expansion. We will discuss these requirements

in Sec. 2.6 and then we will show in Sec. 2.7 how one can perform calculations at any
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required level of accuracy using signi�cantly less computational resources than in the

canonical supermolecular approach.

2.6 Computer timings

Table 2.9 shows timing comparisons for the many-body contributions to the

water hexamer interaction energy using the CCSD(T) method, the aDZ, aTZ, and aQZ

basis sets, and both the HCBS and KCBS approaches. Let us �rst discuss the HCBS

approach. Perhaps surprisingly, the time to calculate just the two-body contribution

in the aDZ basis is signi�cantly (2.7 times) longer than the time of the canonical

supermolecular calculations of the hexamer interaction energy (given in line �hexamer

+ monomers"). This factor is reduced to 1.3 for the aTZ basis, but in any case the

straightforward many-body approach looks like an impractical method. The timings

can be well rationalized based on the scaling of the CCSD(T) method with the number

of occupied and virtual orbitals (o and v, respectively). Since the hexamer-centered

basis set is used in the discussed calculations, the only savings in K-body calculations

vs. full hexamer calculations originate from the smaller number of occupied orbitals

in the former case. Since the CCSD(T) leading term scales as O(o3v4), this step is

approximately 27 times faster for a dimer than for the hexamer. However, since there

are 15 dimers, calculations for all dimers should be about two times shorter than for

the hexamer. This is not the case for the timings shown in Table 2.9 due to other

terms in the CCSD(T) calculations, scaling as lower powers of o. For example, the

time of the integral calculation is the same in all cases and the calculation is performed

repeatedly for all dimers. As K increases, the time of the calculation of a given K-body

contribution initially increases (for example, forK = 3 the time is 1148-327 = 821 hours

in the aTZ basis). This is due to the fact that a single calculation for a trimer is longer

than for a dimer and in addition the number of trimers is larger than the number of

dimers. The maximum is reached atK = 4 and then timings decrease due to the smaller

number of K-mers. Similar relations will take place for larger clusters. For example,

for (H2O)24, the number of occupied orbitals in a dimer is 12 times smaller than for

56

64:7174200318



the whole 24-mer, but there are 276 dimers. The expected savings for the leading

CCSD(T) term, the speedup of 123/276 = 6 times, will be partially canceled by terms

scaling as a lower power of o than o3. Thus, for (H2O)24 the many-body approach in

the full-cluster basis set might be economical at the two-body level. However, as shown

in Table 2.9 for the hexamer, the calculations of three-body contributions are a few

times longer than the two-body ones, so the extension to the three-body level would

not be practical.

Of course, the picture is gloomy only in the brute-force many-body approach

described in the previous paragraph. As we have shown earlier, the use of the CCSD(T)

level of theory and of a single basis set is a signi�cant overkill for higher-body terms.

Also, as we have shown, there is no need to use HCBS. The timings for the KCBS

approach shown in Table 2.9 are about two orders of magnitude shorter than the HCBS

times at the two-body level. In particular, the aQZ two-body calculations are nearly

two orders of magnitude faster than the canonical supermolecular calculation in this

basis set. Also the calculations of three-body contributions are less time consuming

than the canonical supermolecular calculations. The obvious reason for these savings

is that the dimer- and trimer-centered basis sets are three times and two times smaller,

respectively, than the full hexamer basis set. However, for largerK the savings diminish

and at K = 5 level the KCBS calculations in the aTZ basis set are actually more time

consuming than the HCBS calculations. Moreover, whereas the total time needed

to calculate all the many-body contributions up to a given K is equal to only the K-

contribution time in the HCBS case (since all the lower K contributions are byproducts

of the K-mer calculations), in the KCBS approach the total time is the sum of all

times from the calculations for clusters smaller and equal to K. As a consequence, a

calculation of the complete many-body expansion in the aTZ/KBCS approach would

be almost nine thousand hours, 35 times longer than the canonical supermolecular

calculation. The reason for the excessive high-K timings in the KCBS approach is the

fact that the number of calculations is much larger now than in the HCBS approach

57

65:4580928578



due to multiple versions of K-mer basis sets in the calculations for subclusters of a K-

mer. For instance, for the four-body contribution, there are 20 non-equivalent trimers

in the hexamer-centered basis sets but 15× 20 = 300 trimers in the tetramer-centered

basis set, because there are 15 non-equivalent tetramer-centered basis sets. This means

that the 2-4-6 trimer calculations have to be performed not just once for all values of

K as it is the case in the HCBS approach, but 15 times at the K = 4 level only.

Clearly, the KCBS approach cannot be used for larger K (although one can devise

strategies mitigating the discussed problem by restricting the number of basis sets).

However, it leads to signi�cant savings of computer time for smaller K and, in the

next section, we will propose strategies for using many-body expansions at signi�cant

saving of computer time compared to the canonical supermolecular approach.

2.7 Applications of e�ective many-body strategies

There are several ways of applying e�ective many-body expansions, in particu-

lar one may want (a) to obtain results of a given accuracy with a minimum utilization

of computational resources; (b) to recover results of the canonical supermolecular ap-

proach as closely as possible but with greatly reduced resources; (c) to obtain the best

possible result at the maximum of available resources. In the case (a), one should basi-

cally follow the recommendation of Table 2.8 and several examples of such calculations

have already been discussed. This strategy would not be working well in case (b),

mainly due to the use of midbond functions. We will demonstrate case (b) strategy in

recovering the results of the canonical supermolecular approach in its straightforward

version from Sec. 2.3.1. In this approach, the best values could be obtained at the

CCSD(T)/(TQ) level, cf. Table 2.1. We have estimated the accuracy of these results

to be 0.6 kcal/mol. To recover this result as closely as possible, we have made the

following changes relative to Table 2.8: we have not used the midbond functions in the

two-body calculations (since these improve this term too much), increased the basis

set for the three-body term to aTZ, increased the theory level for the four-body term

to CCSD(T), and computed the �ve-body term at the MP2/aDZ level. The results are
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shown in Table 2.10. The time of the calculations is still very short, 24 times shorter

than using the method of Sec. 2.3.1, whereas the results of the latter calculations are

reproduced to within 0.01 kcal/mol, well below the estimated uncertainty of either

result. Whereas the extreme smallness of this di�erence is due to fortuitous cancel-

lations of the di�erences in the many-body terms, if one estimates the di�erences of

all the individual K-body contributions and sums their absolute values, the resulting

discrepancy of about 0.1 kcal/mol is still very small. This is due to the fact that in

both calculations the K > 3 contributions are converged to below 0.01 kcal/mol. The

di�erence between the aTZ and (TQ) three-body contributions can be found in Ta-

ble 2.4 and amounts to 0.04 kcal/mol (recall that the TCBS results di�er negligibly

from HCBS ones for three-body terms). Finally, in the two-body term, the only dif-

ference comes from the use of DCBS vs. HCBS bases. We know this di�erence only

for the aTZ basis where it amounts to 0.26 kcal/mol. Since, as discussed earlier, such

di�erences diminish faster than the basis set incompleteness errors, one may expect

that at the (TQ) level the discrepancy will be below 0.05 kcal/mol, leading to the total

estimate given above. Note that this estimate is for the discrepancy between the values

obtained in the canonical supermolecular and many-body approaches. The uncertainty

of the latter result with respect to the exact interaction energy is still the same as of

the former, i.e., 0.6 kcal/mol.

The computer time savings given in Table 2.10 can be increased to a factor of

52 with essentially the same accuracy if one uses CCSD(T)/aDZ in the three-body

calculations instead of CCSD(T)/aTZ. Alternatively, one can signi�cantly improve the

total energy by calculating the two-body term at the ((Q5),(QT)) level with bond

functions. The results, shown in the last row of Table 2.10, are within 0.05 kcal/mol

of our best two-body energies and the time of calculation is still 15 times shorter.

As an illustration of option (c), one can compare the timings for the most

accurate calculations of the hexamer interaction energies that could currently be made,

i.e., those of Sec. 2.3.3 presented in Table 2.5, which took 14887 CPU-hours (with 70%

of the time spent on the three- and higher-body contributions calculated with basis
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sets much larger than needed at this level of accuracy). This time is close to the 10212

CPU hours of the canonical supermolecular CCSD(T)/(TQ) calculations of Sec. 2.3.1,

whereas the uncertainty of the former calculation is �ve times smaller. Clearly, reaching

the 0.1 kcal/mol accuracy in the latter approach, i.e., the extension of the calculations

to the a6Z basis set, would require vastly longer CPU time, especially since we observed

a worse than theoretical scaling of the two-body term when going from the a5Z to a6Z

basis set, most likely due to an increased di�useness of the basis set.

Bates et al. [67] have recently applied a variant of �hybrid fragmentation" ap-

proaches to water clusters by computing total cluster interaction energies at a low level

of theory and basis set and combining these results with high-level calculations of two-

and three-body e�ects

Ehybrid
int = Elow

int −
3∑

K=2

Eint[K,N ]low +
3∑

K=2

Eint[K,N ]high. (2.14)

This result can be viewed as a replacement of the less accurate two- and three-body

e�ects included in Elow
int by the more accurate ones computed at a higher level. The elim-

ination of two- and three-body e�ects between the �rst and second terms in Eq. (2.14)

is exact if CP method is not used, as in the work of Bates et al., or if NCBS is used

in calculations of these two terms. The �rst option is not adequate at accuracy levels

we aim for and the second one is too time consuming. On the other hand, if NCBS

approach is used for the �rst term and KCBS for the second term, the residual BSSE

errors in the two-body contributions computed in small basis sets are unacceptably

large, cf. Figs. 2.4 and 2.5.

One should also mention that apart from computer time savings, the many-body

approach brings also substantial savings in memory and disk space requirements. In

fact, due to the memory requirements, we were not able to use MOLPRO for the full

hexamer aQZ calculations. We used PQS instead which is somewhat slower but utilizes

a much more memory-e�cient parallelization strategy.
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2.8 Large water clusters

In Refs. 5, 7, Apra et al. obtained interaction energies for very large water

clusters, up to (H2O)24. The calculations were performed using the canonical super-

molecular approach at the CCSD(T) theory level with a modi�ed cc-pVTZ basis set

(cc-pVTZ with f -functions removed) which we will denote as modTZ. The CP correc-

tion was not applied. The ability to obtain such results shows enormous improvements

in both computer power and parallel algorithm e�ciency achieved in recent years since

the calculations were made on a peta-FLOP (�oating-point operations), 223200-core

machine and took 76 years of total CPU time per one (H2O)24 calculation. These

are probably the largest CCSD(T) calculations to date. Two structures with virtually

identical interaction energies (labeled 308 and 316) were identi�ed, with the structure

316 only 0.01 kcal/mol more stable than 308. Although the results have been the best

available so far and are a signi�cant step in our understanding of water clusters, the

relatively small modTZ basis set which does not include any di�use functions and the

neglect of the CP correction make the conclusions of Refs. 5, 7 uncertain.

Large clusters like (H2O)24 are the subject of recent interest (see, e.g., Ref. 68)

and are an ideal case for applications of the many-body expansion. The leading two-

body terms can be calculated very accurately with moderate CPU requirements using

the CCSD(T) method and the CBS extrapolations. It was shown in Sec. 2.5 that

the basis set incompleteness has the largest impact on the two-body energies and

saturating the results with respect to the basis set brings signi�cant improvements

in the accuracy of the interaction energy of the whole cluster. We have applied the

many-body expansion technique to (H2O)24 and the values of Eint[K, 24] contributions,

K = 2, 3, 4, are shown in Table 2.11. All calculations were performed using the

KCBS approach. We used clusters geometries from Ref. 7, 40 (listed in the Supporting

Information [24]).

Similarly to Sec. 2.4, we �rst calculated the vertical interaction energies. As

anticipated, there is indeed a signi�cant basis set dependence of the two-body terms.

The CCSD(T)/aQZ contributions are about 33 (37) kcal/mol larger in magnitude
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than the TZ (modTZ) ones. The di�erences increase to almost 40 (44) kcal/mol for

the CCSD(T)/(TQ) results (extrapolated using Eq. (2.8)). With the same estima-

tion method as used earlier, we �nd the uncertainty of the two-body result to be 3.1

kcal/mol. For the three-body contribution, the basis set dependence is weaker, as it was

the case for the water hexamer. In the latter case, the aDZ results were more accurate

than the TZ ones and the CCSD(T)/aDZ error was about 0.5% relative to our best

prediction. Therefore, the present CCSD(T)/aDZ result should have an uncertainty of

about 0.3 kcal/mol. The error of the MP2/aDZ four-body contribution for the water

hexamer was about 12%, which implies an uncertainty of 0.8 kcal/mol for (H2O)24.

The �ve- and six-body contributions constitute 0.1% of the total interaction energy

of the hexamer, which gives 0.3 kcal/mol as an estimate of these e�ects in (H2O)24.

However, as it will be discussed below, the convergence of the many-body expansion

is slower for the icosikaitetramer and the higher than four-body contributions may be

more important here. Therefore, we will use 0.6 kcal/mol as the estimate. This leads

to an estimate of the uncertainty of the total interaction energy of (H2O)24 equal to

4.8 kcal/mol or about 2%. The accuracy of our result could be further improved with

relatively minor extra costs by computing the two-body contributions at the MP2/a5Z

level and using the hybrid approach, as well as including the midbond functions in the

two-body calculations. CCSD(T)/aDZ four-body calculations instead of MP2 ones are

also possible and would reduce signi�cantly the four-body error.

The convergence of the many-body expansion is illustrated in Fig. 2.6. This

convergence is very similar to that seen for the water hexamer, where the two-body

terms constitute about 82%, three-body 17%, and four-body almost 1% of the total

interaction energy. The corresponding values for the water icosikaitetramer in Fig. 2.6

are about 74%, 23%, and 3%. Thus, we observe a somewhat slower convergence in the

latter case with higher than two-body terms constituting a larger fraction of the total

interaction energy, 26% compared to 18% in the former case. Since the uncertainties of

the many-body contributions estimated above are about 1%-2% of the total interaction

energy, this trend is well established by our calculations.
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To compare our results with those of Ref. 7, we have calculated the monomer

distortion energies at the CCSD(T)/(TQ)/MCBS level. The equilibrium geometry of

the water monomer was obtained by us from an optimization at the MP2/modTZ level

(the geometry is given in the Supporting Information [24]). The distortion energies

were added to the best vertical energies and the resulting relaxed energies are given

in Table 2.12. These results show that structure 316 has a larger magnitude of the

stabilization energy than structure 308, similarly to the �ndings of Ref. 7. In view of the

huge discrepancies in the values of the interaction energies between our and Apra et al.'s

calculations, our 0.08 kcal/mol di�erences between the energies of structures 308 and

316 is amazingly close to the value of 0.01 kcal/mol obtained in Ref. 7. Interestingly, the

vertical interaction energy of structure 308 is 0.15 kcal/mol larger in magnitude than

that of structure 316. The di�erences of this order are well below the absolute accuracy

of our results. Although the water hexamer results show that such di�erences converge

about an order of magnitude faster than the total interaction energies, this still gives an

estimated uncertainty of about 0.5 kcal/mol, much larger than the observed energetic

di�erences. Thus, the magnitude and the sign of the di�erence cannot be considered

to be reliably established and we consider the two structures to be isoenergetic.

Our recommended interaction energies are about 37 kcal/mol smaller in magni-

tude than the values obtained by Apra et al. in Ref. 7. This di�erence is well above the

estimated accuracy of our result of 4.8 kcal/mol. The major reason for the discrepancy

is the smallness of the basis set and the lack of the CP correction in Ref. 7. In fact, the

37 kcal/mol di�erence results from a cancellation between the basis set incompleteness

and superposition errors. To estimate BSSE of the results of Ref. 7, we calculated two-

body CCSD(T) energies in the modTZ basis set with and without the CP corrections.

These results, included in Table 2.11, show that BSSE is -84.494 and -85.192 kcal/mol

for structures 316 and 308, respectively. Since the respective basis set incompleteness

errors other than BSSE are 43.706 and 44.358 kcal/mol relative to our CCSD(T)/(TQ)

results, the two errors partly cancel giving the observed -40.788 and -42.834 di�erence
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between modTZ/noCP and (TQ) results. Incidentally, the CP-corrected and uncor-

rected modTZ results almost evenly bracket our best estimates of the two-body energy.

The latter values agree very well with the -37.31 and -37.38 kcal/mol di�erences be-

tween the results from Ref. 7 and our best relaxed total interaction energies. The

agreement is very good indeed taking into account that the estimated quantities are

two-body only and the actual di�erences are for the total relaxed energies. Thus, our

calculations provide about an order of magnitude more accurate interaction energies

than the calculations of Ref. 7. Despite this improvement in accuracy, the total CPU

time needed for our calculations was less than 5.5 months, or 200 times less than the

calculations of Refs. 5, 7.

As an additional test, we have applied the many-body expansion approach to

the (H2O)16 cluster. For this system, signi�cantly more accurate literature results

than for (H2O)24 are available [69]. These results were obtained using the canonical

supermolecular approach at the CCSD(T)/aTZ level, albeit without any CP-correction.

The energy ordering of several (H2O)16 structures changes between MP2 and CCSD(T)

methods, showing the importance of using the CCSD(T) level of theory for such clus-

ters. The (H2O)16 cluster has also been recently studied [67] with many-body ex-

pansions including two- and three-body energies calculated using the CCSD(T)/aTZ

method and subsequently used as a correction to the MP2/aTZ interaction energies of

the whole cluster. The results of our (H2O)16 calculations, performed analogously as for

the (H2O)24 cluster, are presented in the Supplementary Material [24]. Our interaction

energies should be signi�cantly more accurate than those of Refs. 67, 69 due to our

use at the two-body level of larger basis sets, CBS extrapolations, and CP corrections.

Our CCSD(T) interaction energies for the four isomers di�er from those of Ref. 69 by

between 7.9 and 8.2 kcal/mol, whereas the estimated uncertainty of our results is about

2.8 kcal/mol. As in the case of 24-mer, this about 8 kcal/mol discrepancy results from

cancellations of the larger in magnitude BSSE errors with the basis set incompleteness

errors. Despite the fairly signi�cant discrepancies in total interaction energies, we have

obtained a very similar energetic ordering of the isomers as given by the canonical
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supermolecular calculations of Ref. 69, later reproduced in Ref. 67. At the CCSD(T)

level, the lowest isomer is 4444-a in all calculations. The relative energetic positions

of the isomers boat-b and 4444-b above 4444-a computed by us agree to within 0.02

kcal/mol with the values from Ref. 69. The discrepancy is somewhat larger for the

antiboat isomer, amounting to 0.28 kcal/mol, and this isomer the second lowest in our

calculations rather than the third lowest in Ref. 69. Again, our more accurate results

were obtained in signi�cantly less CPU time, about 53 days, than the 47 years per

isomer spent in calculations of Ref. 69. Our timings are slightly better than those of

Ref. 67 (94 days per isomer). The calculation of the post-three-body e�ects took 6.3

CPU days in Ref. 67 whereas our calculation of four-body e�ects took 16 CPU days.

Since the number of subclusters in a 16-mer or 24-mer is very large, one may

ask if the numerical errors in calculations of the total energies of subclusters do not

signi�cantly accumulate in calculations of many-body contributions. As discussed ear-

lier, this should not be the case due to the very tight convergence thresholds used by

us. With these thresholds, the individual total energies of subclusters appearing in

Eq. (2.5) are accurate to at least 10−7 kcal/mol so that the possible accumulations

should not show up on digits presented in the tables. We have performed a numerical

experiment by increasing all the thresholds given in Sec. II by one order of magni-

tude. The quantity most likely to be a�ected by this change, the four-body HF/aDZ

contribution for structure 308 in Table 2.11, which is obtained by summing over 10626

tetramers, has not changed on the digits listed in the table.

2.9 Conclusions

We have shown that one can calculate interaction energies of molecular clusters

from the many-body expansion with signi�cant computational savings compared to the

canonical supermolecular approach while providing the same accuracy. Equivalently,

our strati�ed approximation many-body approach (SAMBA) can be used for obtaining

much more accurate results with similar computational costs to the canonical super-

molecular approach. The savings are achieved by neglecting higher-body terms in the
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many-body expansion and by calculating higher than two-body terms with a progres-

sively lower level of theory and smaller basis sets. Signi�cant savings also come from

calculating the total energies of each K-mer and its subclusters in the basis set of this

K-mer only. Although this approach substantially increases the number of calcula-

tions, a small size of each calculation leads to large computational savings, especially

for methods that scale as high powers of the system size, such as CCSD(T). Therefore,

such an approach is preferable over using the basis set of the whole cluster. This ap-

proach includes a small part of BSSE, but the errors committed in this way are always

much smaller than the other errors resulting from the basis set incompleteness.

We presented a detailed error analysis and timings for two water hexamer struc-

tures, cage and prism, and checked it on four other hexamer structures. From the size

and timings of the many-body contributions, one can derive a suitable strategy for a

target accuracy goal for Eint. The two-body contributions are the most important.

One has to calculate these terms with as good methods and basis sets as possible. It

is advisable (and possible) to use the CCSD(T) method and basis sets as large as aQZ

or larger including bond functions, perform CBS extrapolations, and use the hybrid

approach. Three-body terms are also fairly important and should be calculated prefer-

ably with the CCSD(T) method. However, the basis sets need not be as large as in the

two-body case, and the CBS extrapolations are also optional. In fact, the aDZ basis

set seems to be su�cient for the three-body calculations in most cases. Four-body

terms are an order of magnitude less important than the three-body ones and can be

neglected if the target uncertainty is about 2% or more. However, a reasonable repre-

sentation of these terms is a�ordable using small basis sets and the HF or MP2 levels

of theory. Five-body terms can be either neglected or calculated at the HF/MP2 level

only. Six-body terms can always be safely neglected. We have also analyzed the possi-

bility of computing high-K contributions applying a hybrid canonical and many-body

approach as recently implemented by Bates et al. [67], but it turns out that it cannot

be adopted at accuracy levels that we aim at.

The detailed strategy presented above should be valid without changes for any
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waters clusters as the three-body nonadditive e�ects contribute about 20% to the in-

teraction energy for clusters from the trimer [25] to liquid water [39] and the four-body

e�ects contribute only a couple percent. This strategy is robust enough to accommo-

date variations in the percentage contributions of three-body e�ects of at least a factor

of two, so that it should work also for most other polar systems since for all the systems

investigated to date the many-body expansion converges fast. For nonpolar systems,

the many-body e�ects are less important and the convergence of the many-body ex-

pansion should be even faster. On the other hand, correlation e�ects are much more

important in this case and a good description of the electron correlation by using the

CCSD(T) method whenever possible is important. In some cases, the application of the

MP2 method can lead to qualitative errors for the three-body terms [70]. Therefore,

one can probably neglect the four- and higher-order terms but the two- and three-body

ones must be calculated with the CCSD(T) approach for nonpolar systems.

We have also applied the many-body expansion strategy to (H2O)16 and (H2O)24.

We were able to reduce the uncertainties of the previous best calculations of the in-

teraction energies for the latter system by an order of magnitude using two orders of

magnitude smaller computational resources.

Literature calculations for the water hexamer and larger clusters rarely remove

BSSE. We have shown that the uncertainties of interaction energies computed without

any CP corrections are dominated by BSSE. In contrast, SAMBA interaction energies

are virtually free of BSSE as this error is always signi�cantly smaller than the basis set

incompleteness error provided that the two-body energies are CBS extrapolated.

Our method can be extended to still larger clusters by utilizing the asymp-

totic expansion of interaction energies. This expansion, with van der Waals constants

computed ab initio, gives very accurate values of interaction energies at large inter-

monomer separations, as demonstrated in numerous SAPT applications [16]. Thus,

two-body energies can be calculated at the CCSD(T) level only for monomers with

separation smaller than about 5 Å whereas the remaining ones can be obtained from

an asymptotic expansion with negligible computational resources. Similar procedures
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can be applied to three-body terms. Such an approach would be somewhat similar to

that proposed by Beran [71].
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Table 2.5: Water hexamer energies from complete many-body expansion. The K-
body contributions to interaction energies Eint[K, 6] (in kcal/mol) were
computed using HCBSs except as noted. The interaction energies from
the canonical supermolecular approaches (the best results from Tables 2.1
and 2.2) are given for comparison. The geometries were obtained from the
CC-pol-8s+NB potential.

K level of theory cage prism ∆p−c

2 E
CCSD(T)
int ((56),(Q5))/DC+BS −37.7934 −37.8556 −0.0622

3 E
CCSD(T)
int ((Q5),(TQ))/TCBS −8.1210 −7.9990 0.1220

4 E
CCSD(T)
int /aTZ −0.4342 −0.5737 −0.1395

5 E
CCSD(T)
int /aTZ 0.0027 0.0562 0.0535

6 E
CCSD(T)
int /aTZ −0.0014 0.0008 0.0022

total −46.3473 −46.3713 −0.0240
Eint from the canonical supermolecular approach

total/(TQ) −46.6085 −46.6478 −0.0393
total/((Q5),(TQ)) −46.5758 −46.6139 −0.0381
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Table 2.6: The total vertical interaction energies EMP2
int and the δECCSD(T)

int contribu-
tions (in kcal/mol), as well as the corresponding CBS extrapolated ener-
gies, for the cage and prism water hexamers. All calculations used the
KCBS scheme. Hexamer geometries were taken from Ref. 57.

basis set EMP2
int EMP2

int /CBS δE
CCSD(T)
int δE

CCSD(T)
int /CBS E

CCSD(T)
int (X, Y ) ∆p−c

cage
haTZ/noCP −46.6387 0.1347

haTZ −45.0559 0.1828
aDZ −41.5017 0.6861
aTZ −45.4982 −47.1122 0.0026 −0.2852 −46.9294a

aQZ −47.1121 −48.1720 −0.1064 −0.1859 −48.1694b

a5Z −47.6209 −48.1452 −47.7273c

−48.3310d

prism
haTZ/noCP −46.6504 −0.0594

haTZ −45.1067 −0.0294
aDZ −41.6620 0.4795
aTZ −45.5665 −47.1719 −0.2131 −0.5048 −47.2013a −0.2793
aQZ −47.1840 −48.2495 −0.3203 −0.3984 −48.4626b −0.2932
a5Z −47.6946 −48.2211 −48.0149c −0.2876

−48.6195d −0.2885

a E
CCSD(T)
int ((DT),D).

b E
CCSD(T)
int ((TQ),T).

c E
CCSD(T)
int (5,Q).

d E
CCSD(T)
int ((Q5),(TQ)).
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Table 2.7: MP2 and CCSD(T) distortion energies, Edist of Eq. (2.12), of the monomers
for the water hexamer cage and prism structures from Ref. 57 computed
using MCBS basis sets. The relaxed interaction energies, Erel

int of Eq. (2.13),
were calculated as the sum of the vertical ((Q5),(TQ))-extrapolated inter-
action energies of Table 2.6 and the (Q5)-extrapolated distortion energies.
All energies are in kcal/mol.

basis set cage prism ∆p−c
MP2 CCSD(T) MP2 CCSD(T)

aQZ 2.2087 2.1620 2.2148 2.1929 0.0309
a5Z 2.2673 2.2281 2.2810 2.2649 0.0368
(Q5) 2.3055 2.2743 2.3274 2.3173 0.0430
Erel

int −45.8396 −46.0568 −45.8937 −46.3022 −0.2454
Erel

int, Ref. 6 −45.80 −45.67 −45.86 −45.92 −0.25
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Table 2.9: Computer timings of CCSD(T) calculations for the water hexamer (in
hours of wall time, all data scaled to one core, MOLPRO package, 2.2
GHz AMD Opteron Processor). We were not able to perform calculations
on the 2-6 aQZ/HCBS and 4-6-body/KCBS level in the reasonable time,
thus the empty space in the table. The timings for a given K-body contri-
bution include the complete set of calculations needed for this particular
contribution. For example, the time given for K=3 is the time needed to
calculate 6 monomers, 15 dimers, and 20 trimers in the HCBS approach.
M denotes the number of K-mers one needs to calculate for a given K.

hexamer basis set K-body basis set
K aDZ aTZ aQZ M aDZ aTZ aQZ
2 44.89 327.52 15 0.24 5.13 128.13
3 149.69 1147.82 20 9.43 234.25 4018.99
4 281.89 2345.64 15 41.07 1051.94
5 360.79 3006.33 6 201.41 4371.80
6 375.62 3184.50 1 375.62 3184.50

hexamer + monomers 16.50 252.20 10212a

aComputed using the PQS package.

Table 2.10: Cost-e�ective calculations of water hexamer interaction energies from
many-body expansion. The K-body contributions to interaction energies
(in kcal/mol) were calculated using the minimum-cost method providing
the best possible agreement with the canonical supermolecular approach
at the CCSD(T)/(TQ) level. The timings of the calculations are given in
hours. All calculations used theKCBS approach (no midbond functions).
The six-body contribution was neglected. The geometries were obtained
from the CC-pol-8s+NB potential.

K level of theory cage prism ∆p−c time
2 CCSD(T)/(TQ) −38.0814 −38.1587 −0.0773 133.26
3 CCSD(T)/aTZ −8.0849 −7.9616 0.1233 234.25
4 CCSD(T)/aDZ −0.4317 −0.5626 −0.1309 41.07
5 MP2/aDZ 0.0002 0.0460 0.0458 16.63

total −46.5978 −46.6369 −0.0391 425.21
full hexamer CCSD(T)/(TQ) −46.6085 −46.6478 −0.0393 10212

two-body alternative approach (all data with midbond functions):
2 CCSD(T)/((Q5),(TQ))mb −37.8427 −37.9078 −0.0651 370.06
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Table 2.11: K-body contributions Eint[K, 24] (in kcal/mol) to the vertical interaction
energies of the structures 316 and 308 of (H2O)24. All calculations used
the KCBS approach. Geometries of the structures were obtained from
Ref. 40.

K basis HF MP2 CCSD(T)
structure 316

2 modTZ/noCP −153.029 −243.373 −232.320
modTZ −110.418 −155.355 −147.826

TZ −109.219 −159.918 −152.576
aTZ −111.772 −176.976 −175.851
aQZ −113.076 −185.708 −185.283
(TQ) −191.532

3 TZ −60.724 −60.229
aDZ −59.880 −59.508 −59.002

4 TZ −6.023
aDZ −6.033 −7.001
structure 308

2 modTZ/noCP −154.107 −245.078 −233.962
modTZ −111.101 −156.303 −148.770

TZ −109.870 −160.826 −153.483
aTZ −112.849 −178.693 −177.509
aQZ −114.149 −187.396 −186.904
(TQ) −193.128

3 TZ −59.833 −59.151
aDZ −58.862 −58.202 −57.791

4 TZ −5.964
aDZ −5.915 −6.765
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Table 2.12: Total interaction energies (in kcal/mol) for the structures 316 and 308 of
(H2O)24. The vertical interaction energies Eint are calculated as the sum
of the best vertical many-body contributions from Table 2.11 (Eint[2, 24]
- CCSD(T)/(TQ), Eint[3, 24] - CCSD(T)/aDZ, Eint[4, 24] - MP2/aDZ).
The relaxed interaction energies, Erel

int of Eq. (2.13), are the sum of the
vertical interaction energies and of the CCSD(T)/(TQ)/MCBS distortion
energies.

structure 316 structure 308

E
CCSD(T)
dist /aTZ 14.942 15.196

E
CCSD(T)
dist /aQZ 17.594 17.815

E
CCSD(T)
dist /(TQ) 18.815 19.046

Eint −257.534 −257.684
Erel

int −238.719 −238.638
Erel

int, Ref. 7 −276.03 −276.02
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Figure 2.3: Same as Fig. 2.2 but for the prism structure.
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Chapter 3

PREDICTIONS FOR WATER CLUSTERS FROM A
FIRST-PRINCIPLES TWO- AND THREE-BODY FORCE FIELD1

Abstract

A new rigid-monomer three-body potential has been developed for water by

�tting it to more than 70 thousand trimer interaction energies computed ab initio using

coupled-cluster methods and augmented triple-zeta-quality basis sets. This potential

was used together with a modi�ed form of a previously developed two-body potential

and with a polarization model of four- and higher-body interactions to predict the

energetics of the water trimer, hexamer, and 24-mer. Despite using the rigid-monomer

approximation, these predictions agree better with �exible-monomer benchmarks than

published results obtained with �exible-monomer force �elds. An unexpected �nding

of our work is that simple polarization models predict four-body interactions to within

a few percent, whereas for three-body interactions these models are known to have

errors on the order of 50%.

3.1 Introduction

Water has always been attracting signi�cant attention of theorists due to its

abundance and importance for life, but also since the water monomer is a relatively

small molecule so that reasonably accurate ab initio calculations of interaction energies

could be performed. The water dimer in particular was the benchmark system for

comparing the performance of various theoretical methods [1�7] at selected points

on the potential energy surface. To connect to experiments, one needs a complete

1 The text appeared in U. Góra, W. Cencek, R. Podeszwa, A. van der Avoird, and K. Szalewicz, J.
Chem. Phys. 140, 1941011 (2014).
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potential in order to perform nuclear dynamics calculations. Such calculations for

water clusters and for condensed phases of water predict observable properties such

as spectra, dissociation energies, radial distribution functions, etc. The Holy Grail of

theory is to develop a universal potential that can correctly predict the properties of

all forms of water: from dimer to condensed phases, i.e., the predictions should be

su�ciently accurate to be meaningfully confronted with experiment.

One way of obtaining such a potential for water is to �t it in molecular dynam-

ics simulations to reproduce as closely as possible experimental data. The potentials

of this type are called empirical potentials and some well-known examples are the

TIP4P [8] and SPCE [9] potentials. Since these potentials include three- and higher-

body interactions in an e�ective way via pairwise-only terms, such empirical potentials

do not work well for small clusters [10]. Modern empirical potentials are �tted simul-

taneously also to ab initio data on clusters [11, 12] and have a polarization term which

partly accounts for pairwise nonadditive interactions. Thus, such potentials may per-

form better on small clusters, but still will probably not be able to produce su�ciently

accurate results since simple polarization approximations can recover only about half

of the three-body interaction energy for liquid water [13]. Another type of empiri-

cal potential can be obtained by �ts to water dimer spectra [14�17]. Such potentials

represent the water dimer very well, but since the �tting is done purely to the dimer

properties, these potentials cannot provide any information about pairwise nonaddi-

tive interactions critical for water clusters and condensed phases [18]. Potentials of

this type have been used with the polarization model of nonadditive e�ects, but this

model had to be added post factum to the two-body potentials. One can also add an

ab initio three-body nonadditive potential, but to our knowledge this option has not

been tried yet.

The other way of developing a potential for water is to �t it to ab initio computed

interaction energies. Pioneering work of this type was performed by Clementi and

collaborators [1, 19, 20], but since only a few hundred grid points could be computed

for the water dimer and trimer at that time, the sampling of the surface was hardly
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adequate. The number of grid points was signi�cantly increased in the next generation

of �rst-principles potentials [21�28] to 2.5 thousand points for the dimer [25] and 7.5

thousand points for the trimer [28]. With further improvements of the dimer potential,

the goal of correctly predicting properties of all forms of water, from the water dimer

to liquid water, was achieved in Refs. 29�31. A good example of how theory can lead

experiment in this �eld is the dissociation energy, D0, of the water dimer. In 2000,

the �rst ab initio prediction [26] gave the value of 1067 cm−1, while later improved

calculations in 2008 [31] and 2009 [32] gave 1111 and 1104 cm−1, respectively. This

quantity was accurately measured only in 2011 [33] and the result of 1105 ± 10 cm−1

agreed very well with prior theoretical predictions. Despite this striking agreement on

D0, there is still need for improvements of water potentials, in particular in the pairwise

nonadditive part. An especially challenging subject are the anomalous properties of

liquid water such as the high boiling temperature, anomalous density-temperature

dependence, high dielectric constant, and many others. Another possible peculiarity

to investigate is the existence of a liquid-liquid critical point in supercooled water [34].

Molecular simulations aimed at predicting these properties are very sensitive to the

quality of the applied intermolecular potentials.

First-principles potentials are commonly based on the many-body expansion of

the N -body interaction energy

Eint = Eint[2, N ] + Eint[3, N ] + . . .+ Eint[N,N ], (3.1)

where Eint[2, N ] is the sum of pair interactions in the N -body cluster and Eint[K,N ]

withK > 2 are the pairwise-nonadditiveK-body contributions. This expansion utilizes

the so-called vertical interaction energies, i.e., the energies relative to the monomer

energies at the same geometries as in theN -body cluster. One can add to this expansion

the one-body term which is the di�erence between these monomer energies and the

sum of the energies of equilibrium-geometry (re) monomers. The extended expansion

de�nes then the so-called relaxed interaction energy [35]. One should note that the
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latter quantity is essentially the total electronic energy of the complex, only shifted by a

constant. All the interaction energies in the present paper will be vertical unless noted

otherwise. The expansion of Eq. (3.1) converges su�ciently fast to eliminate, except

in very rare cases, any need to deal with more than a few initial terms for any given

system size N . A fundamental advantage of ab initio potentials is the straightforward

separation of the interaction energies into theK-body contributions. Empirical models,

on the other hand, are �tted to bulk physical properties and if the higher-body terms

are somehow e�ectively approximated through a two-body potential, properties such

as second virial coe�cients that depend only on the physical pair interactions, are

described poorly. In water, three-body e�ects are absolutely essential and contribute

as much as 16% to the liquid energy [36]. In some clusters, this percentage is even larger,

for instance 23% in the 24-mer [37]. Also the four-body e�ects cannot be neglected in

high-accuracy calculations, as their contribution is about 1% in the hexamer and 3% in

the 24-mer [37]. Higher than four-body e�ects typically account for only a few tenths

of a percent, but still can become relevant in problems such as establishing the relative

energetic ordering of close-lying cluster structures. Most of the ab initio calculations

leading to water potentials have been devoted to the �rst term in the expansion (3.1),

recent work are Refs. 22�26, 29�32, 38�52. The number of papers devoted to the second

term is much smaller, only Refs. 20, 28, 36, 46, 47, 53. No four-body potentials exist

for any system, even an atomic one.

The reason that it is very di�cult to develop higher terms in the many-body

expansion from �rst principles is the so-called �dimensionality curse". The successive

terms Eint[K,N ] of the expansion of Eq. (3.1) are functions of 3KL − 6 relative co-

ordinates, where L is the number of atoms in the monomer. If these functions are

to be obtained by an analytic �t to calculated ab initio energies, the problem quickly

becomes intractable because the number of dimensions precludes any reasonable cov-

erage of the total space with calculated data points. A solution is to calculate the

interaction energies on-the-�y for any geometry generated in nuclear dynamics simu-

lations, instead of producing global analytic functions. Obviously, only low-level ab
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initio methods are su�ciently fast for this purpose which limits the predictive power

of this approach. Therefore, the current state-of-the-art in accurate predictions for

water is to employ two- and three-body potentials �tted to ab initio interaction en-

ergies and approximate the higher-body terms by polarization models which account

for the asymptotic induction component (by computing the Coulomb interactions be-

tween the permanent multipole moments and the induced multipole moments of the

monomers, see Sec. 3.5). To our knowledge, there were no published investigations of

how well this approximation works for four and higher-body e�ects (the present work

will provide such information). As already mentioned, simple polarization models re-

cover only about 50% of the total three-body contribution in liquid water [13]. This

shows that one cannot avoid construction of �rst-principles three-body potentials for

accurate water simulations.

A two-body potential with rigid monomers is 6-dimensional, whereas the in-

clusion of the intramonomer degrees of freedom results for triatomic monomers in a

12-dimensional potential. With current computational power, it is possible to represent

reasonably well the 12-dimensional surface by a set of grid points [41, 44, 48, 52], al-

though as many as 250 thousand such points may be required [41]. On the other hand,

three-body �exible-monomer potentials are 21-dimensional. Generation of such �ts

would require calculations of 2.1 million data points using a mere 2 points per dimen-

sion and as many as 10 billion data points with 3 points per dimension. The �exible-

monomer three-body potentials of Wang et al., �tted to 30 thousand points [46] or 40

thousand points [47], use only about 1.6 points per dimension. For the 6-dimensional

rigid-monomer water dimer, this number of points per dimension would result in a total

of only 20 grid points, clearly an inadequate number. Since it is unclear whether 30�40

thousand points are adequate for the water trimer with �exible monomers, we have

decided to use the rigid-monomer approximation, as assumed in Ref. 28. With the 12

resulting degrees of freedom, the about 70 thousand grid points that we have used in

our computations correspond to about 2.5 points per dimension. Whereas such sam-

pling still seems barely adequate, this number of points is one order of magnitude larger
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than used in the development of the rigid-monomer SAPT-3B nonadditive three-body

water potential in Ref. 28. We will analyze our results to shed light on the question

whether it is more bene�cial, with a given number of grid points, to obtain a more

accurate rigid-monomer potential or a possibly less accurate �exible-monomer one. It

should be noted that the choice of an optimal rigid-monomer geometry is crucial: it

has been established that the use of the average geometry in the lowest rovibrational

state leads to much more accurate results than the use of the equilibrium geometry

of the monomers [4, 54]. The rigid-monomer potentials have some obvious limita-

tions, for example one cannot use such potentials to predict the shifts of intramonomer

rovibrational frequencies upon complexation. However, the class of problems where

such potentials work well is broad and we will demonstrate this in particular for the

structure and energetics of water clusters.

The rigid-monomer SAPT-3B three-body potential of Mas et al. [28] was based

on 7533 data points computed using symmetry-adapted perturbation theory (SAPT)

[55�59] at the level equivalent to the Hartree-Fock (HF) method and a moderate-size

[5s3p2d1f/3s2p] basis set. The computed nonadditive interaction energies were �tted

to a physically motivated analytic formula containing representations of the short-range

exchange contributions and damped induction terms of the same form as in polarization

models. This three-body potential was initially combined with the two-body SAPT-5s

potential from Ref. 25 (this combination was denoted as SAPT-5s+3B) and then with

the CC-pol-5s potential of Refs. 29, 30 (CC-pol-5s+3B). The latter two-body potential

was �tted to dimer interaction energies computed using the coupled-cluster method

with single, double and non-iterative triple excitations [CCSD(T)] extrapolated to the

complete basis set (CBS) limit. The CC-pol-5s+3B potential was used to predict trimer

spectra in Ref. 60 and achieved very good agreement with experiment, much better than

in the case of other potentials. An early version of the three-body potential, restricted

to the trimer tunneling path, was used to predict trimer spectra in Ref. 26. These

strictly two- plus three-body potentials were extended by adding a polarization model

describing four- and higher-body nonadditive e�ects (such potentials were denoted by
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SAPT-5s+NB and CC-pol-5s+NB) and used in simulations of liquid water in Refs. 29,

31, 36. As already mentioned, the latter work provided a uniformly accurate description

of all forms of water.

The project described in the present paper started from an application of the

CC-pol-8s potential of Ref. 43 combined with the three-body potential of Ref. 28

and higher-body polarization e�ects (CC-pol-8s+NB) in water-cluster calculations of

Ref. 37. CC-pol-8s was �tted to the same set of interaction energies as CC-pol-5s,

but uses a more elaborate functional form with 8 rather than 5 symmetry-unique sites

per monomer. CC-pol-8s is still the most accurate rigid-monomer two-body water

potential available. The abbreviation �pol� re�ects the fact that a self-consistent two-

body polarization term is explicitly included in the potential. When predictions of the

CC-pol-8s+NB potential were compared to ab initio decompositions of cluster ener-

gies, it was found that the three-body contribution clearly dominates the overall error

(with respect to benchmark ab initio results). This was not surprising in view of the

fact that a rather limited number of data points and a moderate level of theory were

used in Ref. 28. Therefore, the primary aim of the present project was to develop

a signi�cantly more accurate rigid-monomer three-body potential by calculating an

order of magnitude more points at a much higher level of theory. This development

is described in Secs. 3.2, 3.3, and 3.6. The functional form of the �t has also been

signi�cantly changed compared to that of Ref. 28. In particular, a more sophisticated

polarization model was developed and optimized to partly reproduce four-body e�ects,

see Sec. 3.5. To use consistently the same polarization model for all K-body terms,

we have re�tted the CC-pol-8s [43] two-body potential. Furthermore, as reported in

Sec. 3.4, we used additional ab initio data points computed in Ref. 13 to improve the

accuracy in the repulsive wall region and introduced a very short-distance damping

of site-site functions. Section 3.7 describes applications of the complete new N -body

model to the water trimer, hexamer, and 24-mer. The new potential was also used to

calculate the trimer spectrum, this work will be described in a separate paper.

The combination of the two-body and three-body potentials described above
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could be performed in several ways. In fact, since the CC-pol-ls potentials are polariz-

able, one could iterate the polarization model over all monomers in an N -body cluster,

thus approximating the pairwise nonadditive interaction energies by polarization terms

only. Another option is to use a straight sum of the two-body and three-body poten-

tials, CC-pol-ls+3B, equivalent to a truncation of the expansion of Eq. (3.1) after the

second term. Finally, one can add to the CC-pol-ls+3B potential higher than three-

body e�ects by iterating the polarization model over all N monomers and subtracting

from the result the two- and three-body polarization components, which leads to the

CC-pol-ls+NB potentials. To avoid confusion with previous work and to simplify the

notation, we introduce here a new nomenclature for the potentials developed in this

work. The names are composed of the stem �CCpol� followed by the digits �2� and/or

�3� (depending on which K-body terms are present), optionally followed by a plus sign

if higher-body e�ects are treated by the polarization model. Thus, �CCpol2� stands

for the two-body potential only (including the two-body polarization) and is the only

possible choice in the case of the water dimer or it can be used to determine purely

two-body e�ects in larger clusters or in the bulk. Similarly, �CCpol3" stands for the

three-body pairwise nonadditive potential. �CCpol2+� adds higher-than-two-body po-

larization e�ects (but not the complete three-body potential). Similarly, �CCpol23"

will denote a pure two- plus three-body potential, whereas �CCpol23+� includes po-

larization e�ects beyond the three-body level and is our most complete force �eld for

systems larger than the trimer.

3.2 Choice of trimer con�gurations

The number and choice of the trimer con�gurations (grid points) that are used

in the �tting process signi�cantly impact the quality of the resulting �t. Since the

number of points is always limited by the costs of ab initio calculations, the optimal

selection of such points is critical. The con�gurations used in Ref. 28 served as an

initial guide, and in particular we calculated nonadditive interaction energies for all

7533 grid points from Ref. 28. We have used the same 〈r〉0 (averaged over the ground
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rovibrational state) rigid-monomer geometry as Ref. 28, which originates from Ref. 4.

Since the set of Ref. 28 contained mostly trimers with intermonomer separations

close to those in trimer's equilibrium structure, we �rst augmented it with 7315 geome-

tries with larger separations, selected from trimer con�gurations present in water clus-

ters from the tetramer to the 21-mer taken from the Cambridge Cluster Database [61].

These geometries were optimized using the TIP5P[62] potential. For each cluster of

size N , all possible
(
N
3

)
trimers were generated. The rigid-monomer geometry in TIP5P

is di�erent from ours, therefore we have placed our monomers in these trimers in such

a way that the centers of mass (COM), the bisectors of the HOH angle, and obviously

the molecular planes coincide with the TIP5P monomers.

To ensure that we do not completely miss some regions of con�guration space,

we generated another set of grid points randomly, with the sampling of COM-COM

separations R restricted to the range 2.6�7 Å. To avoid placing grid points close to

the existing ones, we created a sorted list of distances between all the atoms in the

trimers and compared them one by one. We de�ned a �distance� between trimers using

an extension of formulas (21) and (22) from Ref. 63. We selected 30,000 points that

were farthest from the previously chosen ones. Although the algorithm is not fully

permutationally invariant, so that the maximum distance criterion is not satis�ed, it

removes all duplicates and we checked by inspection that it removed most of the timers

similar to the existing ones.

To improve the description of the region relevant for liquid water, 8520 addi-

tional points were selected from snapshots of a converged molecular dynamics (MD)

simulation at ambient conditions performed in Ref. 13. This was done in the same way

as described in Sec. IV of that reference except that 71 snapshots spaced by 5 ps were

used.

Since one of the intended applications of our potential are calculations for the

water hexamer, a subject of signi�cant recent interest [53, 64, 65], a number of trimer

con�gurations were taken from hexamer structures. First, a set of 14,500 trimer con-

�gurations was selected from snapshots of quantum di�usion Monte Carlo simulations
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performed by us for the hexamer with the CC-pol-8s two-body potential, an early

version of the three-body potential developed in the present work, and the CC-pol-8s

polarization model for higher-body e�ects. This set should improve the description of

regions relevant for the rovibrational motions in the hexamer and other water clusters.

To improve the description of the regions near the hexamer local minima, another set of

con�gurations was generated as follows. First we optimized the geometries of the cage,

prism, book, boat, bag, and ring isomers using the CC-pol-8s+NB potential, starting

from the con�gurations taken from Ref. 66. Since the latter con�gurations included

�exible monomers, we �projected" our monomers similarly as in the case of the TIP5P

potential, except that our rigid-monomer bisector now coincides with the line connect-

ing the position of the oxygen atom with the midpoint of the segment connecting the

two hydrogens. We will refer to cluster geometries produced in this way as geometries

with �rigidized" monomers. The geometries were optimized using a simple Powell [67]

algorithm, changing all six coordinates (three center-of-mass coordinates and three Eu-

ler angles) of a single water molecule at a time and going through all six molecules in

cycles until the energy was converged to at least 10−6 kcal/mol. The procedure usually

converges to the minimum structure closest to the starting point. All the 120 trimers

present in the hexamers thus obtained were extracted (these trimers were not included

in our data set used for �tting the potential). Then 2400 trimers were created from

this set by adding small random increments of either sign to the coordinates: between

0.03 and 1 bohr for the COM-COM distances and between 1 and 10 degrees for the

Euler angles.

During the initial �tting of the potential to the set of three-body nonadditive

interaction energies computed at the 70,268 grid points described above, we found that

the �t was not su�ciently accurate for very small intermonomer separations. Therefore,

1188 points were added in this region as described in Sec. 3.6.2.

Altogether, a total of 71,456 trimer interaction energies were used in the �tting

process, almost ten times the number of points used in Ref. 28. As already stated, this

corresponds to 2.54 points per dimension. The �t of Wang et al. [47] used a comparable
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number of grid points, about 40,000, but these points had to cover a 21-dimensional

space (which amounts to 1.66 points per dimension).

3.3 Ab initio calculations

For all calculations in the present paper, the MOLPRO suite of programs [68]

was used. We used the MOLPRO's 1 hartree = 627.5096 kcal/mol conversion factor.

For each grid point described in the previous section, we performed ab initio super-

molecular calculations of the vertical three-body nonadditive interaction energy. In the

counterpoise (CP) corrected approach which removes the basis set superposition error

[35, 69], this quantity is de�ned for a trimer consisting of monomers A, B, and C as

Eint[3, 3] = EABC − EAB − EAC − EBC + EA + EB + EC, (3.2)

where the energies on the right-hand-side are the total energies of the indicated systems,

all energies are computed in the full trimer basis set, and the positions of the monomers

and of the ghost sites are in all calculations the same as in the trimer. The frozen-

core approximation was used in all calculations of the correlation energies unless noted

otherwise.

Although the individual calculations of the energies in Eq. (3.2) are nowadays

not very demanding computationally even for fairly large basis sets and high levels of

theory, the large number of grid points puts severe restrictions on the basis set size and

computational methods. Therefore, we spent some time testing various combinations

of these two elements. We performed this testing on 40 water trimers extracted from

the cage and prism structures of the hexamer as described in Sec. 3.2. We have used

the standard augmented correlation-consistent basis sets [70], aug-cc-pVXZ (further

abbreviated as aXZ) with X = 2, . . . , 5, as well as the `half-augmented' triple-zeta

basis set (haTZ) that includes augmentation only on the oxygen atom. This basis

set was recommended for the water hexamer by Bates and Tschumper [71] as a good

compromise between size and performance.
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The authors of Ref. 28 compared the performance of the HF, MP2 (second-order

perturbation theory based on the Møller-Plesset partition of the Hamiltonian), and

CCSD(T) methods for the water trimer. Although at that time the conclusion was that

the HF level is su�ciently accurate, with the currently desired accuracy we have decided

to use the CCSD(T) level as this method is known to provide very reliable interaction

energies in virtually all applications. However, due to its n7 scaling, CCSD(T) is

computationally much more expensive than MP2 which scales as n5. Therefore, we

also investigated a hybrid approach de�ned as

E
CCSD(T)
int /(X-X ′) = EMP2

int (X) + δE
CCSD(T)
int (X ′), (3.3)

with X > X ′, where

δE
CCSD(T)
int = E

CCSD(T)
int − EMP2

int , (3.4)

with both quantities computed in the same basis set.

To construct benchmarks for comparisons, we calculated interaction energies

at the CBS level for all trimers. We used an extension of the hybrid method that

additionally separates the HF interaction energy resulting in the quantity

δEMP2
int = EMP2

int − EHF
int . (3.5)

We used the extrapolations to CBS limits tested extensively in Refs. 72, 73. For the

HF interaction energy, the extrapolation formula was:

EHF
int (X) = EHF

int (CBS) + Ae−αX , (3.6)

where α = 1.63, as recommended in Ref. 73, and A is an adjustable parameter. The

correlation energies were extrapolated as

Ecorr
int (X) = Ecorr

int (CBS) +BX−3, (3.7)
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where Ecorr
int (X) is given by Eq. (3.4) or Eq. (3.5) calculated with the aug-cc-pVXZ basis

set. The parameters in the extrapolation formulas can be obtained by solving sets of

linear equations resulting from writing these formulas for X and X−1. In cases where

it will be relevant to indicate the basis set used to obtain the CBS limit, we will replace

�(CBS)" by the cardinal numbers involved, for example, �(T4) ≡ (34)" will indicate

extrapolations with X − 1 = 3 and X = 4. Note that the symbols Method(X ′X) with

X ′ = X − 1 and Method/(X-X ′) denote two di�erent computational approaches. At

the HF and MP2 levels, we used X = 5, whereas X = 4 was used at CCSD(T) level.

The total benchmark energy was then calculated as the sum of the three CBS values

Eint(CBS) = EHF
int (CBS) + δEMP2

int (CBS) + δE
CCSD(T)
int (CBS). (3.8)

The results computed in smaller basis sets are compared to the benchmarks

in Table 3.1. The maximum absolute error (MAE) of the straightforward CCSD(T)

calculations in the aQZ basis relative to the CBS benchmarks is 0.003 kcal/mol. Thus,

our CBS results are probably at least that accurate relative to the exact values at

the CCSD(T) frozen-core level. Such level of accuracy is actually di�cult to reach at

the two-body level, see Table III in Ref. 37. The total errors in recovering the values

of Eint[3, 6] are below 0.2% in the aQZ basis. Somewhat surprisingly, the analogous

errors in the aDZ basis are below 0.5% only. However, MAE's are as much as 11

(16) times larger for the cage (prism) trimers in the aDZ compared aQZ bases. The

aTZ basis would be a good choice in terms of accuracy, but CCSD(T)/aTZ are too

expensive for the calculations on the complete set of grid points. Therefore, the choice

is really only between aDZ and haTZ at the CCSD(T) level. For the total three-body

contribution, the two bases produce errors very similar in magnitude, however, the

MAE's are a factor 3�4 smaller in the latter case. Thus, the choice between these two

basis sets would be di�cult when the costs of calculations are taken into account (haTZ

with 74 functions per monomer is still much larger than aDZ with 41 functions per

monomer). However, it turned out that the hybrid approach, listed in the last column
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for each hexamer, o�ers actually the best performance among these three cases, with the

smallest magnitude of the total error and with the MAE of 0.009 (0.013) kcal/mol for

the cage (prism) trimers. In fact, this approach performs comparably to CCSD(T) in

the aTZ basis set. Thus, we have chosen the hybrid approach in aTZ/aDZ bases, i.e., X

= T and X ′ = D in Eq. (3.3). Since MP2 calculations are much faster than CCSD(T)

ones, the hybrid approach saves signi�cant amounts of computer time. Overall, a

calculation of ECCSD(T)
int /(T-D) is 4 times faster than a calculation of ECCSD(T)

int /aTZ

and takes about 1 hour on a single core of the 2.4 GHz Opteron processor The root-

mean-square error (RMSE) of the ECCSD(T)
int /(T-D) values in Table 3.1 relative to the

CBS results is 0.004 and 0.006 kcal/mol for the cage and prism isomers, respectively.

Clearly, our hybrid approach is more than adequate at the current accuracy level of

water potentials. For comparison, the calculations of Wang et al. [46, 47] used the

aTZ basis set at the MP2 level. Results at this level of theory are also shown in

Table 3.1. As one can see, the RMSE's of the MP2/aTZ approach are 5-6 times larger

than in the ECCSD(T)
int /(T-D) approach, whereas the corresponding errors in the total

three-body contribution are 11-14 times larger in magnitude. Clearly, the addition of

the δECCSD(T)
int /aDZ contributions, despite the small size of the basis set, dramatically

improves the agreement with the benchmarks.

A further comparison of the performance of various methods is provided in Ta-

ble 3.2. The magnitudes of the errors in the total three-body nonadditive contribution

to the hexamer interaction energies at the HF and MP2 CBS levels are about 0.4-

0.5 kcal/mol, or only 1% of the hexamer interaction energy, but are clearly too large

for investigations of subtle e�ects as the cage-prism energy di�erence that amounts

to 0.25 kcal/mol [37, 71]. Interestingly enough, the use of MP2 gives only a negligi-

ble improvement over the HF level of theory. In contrast, going up to the CCSD(T)

level gives a substantial contribution to the hexamer energy. There are no estimates

of beyond CCSD(T) contributions to three-body nonadditive energies, but most likely

such contributions to the hexamer energies will be on the order of 0.01 kcal/mol. The

excellent agreement of the CCSD(T)(34) results with the CBS benchmarks shows that
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the hybrid approach used in the calculations of benchmarks, with HF and MP2 extrap-

olations at the (45) level, was not needed (i.e., the CCSD(T)(34) benchmarks would

have been su�ciently accurate). The remaining columns of Table 3.2 will be discussed

in Sec. 3.7.1.

To check the importance of correlating core electrons, we have computed the

three-body interaction energies for all trimers extracted from the hexamer with the

aug-cc-pCVTZ basis set [75]. The magnitude of the largest correction for a trimer

amounted to 0.002 (0.002) kcal/mol and the sum for all trimers was −0.011 (−0.013)

kcal/mol for the cage (prism) hexamer. These errors are a few times smaller than the

errors of the hybrid approach selected for our work, so the neglect of correlation e�ects

involving the core electrons is justi�ed. However, when a still more accurate future

potential will be developed, these e�ects will have to be included.

3.4 Two-body �t

The form of the two-body CCpol2 �t is similar to that of the CC-pol-8s �t of

Ref. 43, namely

V2 =
∑
a∈A

∑
b∈B

ũab(rab) + V ind
2 (AB), (3.9)

where ũab are site-site functions depending only on the distances rab between sites

associated with monomers A and B and V ind
2 (AB) represents the induction interaction.

The ũab(rab) functions can be written as

ũab(rab) = uab(rab)dab(rab), (3.10)

where uab(rab) has the form of Eq. (2) in Ref. 43 and dab(rab) are (very) short-range

damping functions equal to 1 if uab(rab) > 0, and otherwise

dab(rab) = {1 + exp [−γ(rab − r̃)]}−1 , (3.11)
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with γ and r̃ being adjustable parameters. Note that this damping is di�erent from

the damping already contained in the asymptotic terms of the functions uab and sets

in at much smaller R than the latter damping. The induction interaction V ind
2 (AB) is

calculated with a new polarization model, described in Sec. 3.5, which is more elaborate

than that used in CC-pol-8s. After adopting this polarization model, the adjustable

parameters of the site-site part in the �t of Eq. (3.9) were �tted in the same way as

described in Sect. II.E of Ref. 43, with the damping turned o� (i.e., all the functions

dab(rab) set to one). However, the original set of 2510 data points was enlarged by

adding 706 short-separation dimer geometries computed in Ref. 13 in order to improve

the description of the repulsive wall. The ab initio approach used in these calculations

was the same as in Refs. 29, 30. The RMSE of the new V2 �t relative to the training

set of interaction energies is 0.081 kcal/mol on the whole set of 3216 points and 0.011

kcal/mol for negative interaction energies, i.e., very similar to the error of the �t

developed in Ref. 43.

In the next step, we switched on the dab damping, keeping the other, previously

optimized parameters �xed. We selected this approach instead of performing a simul-

taneous optimization of all parameters since we did not want to change the known very

good behavior of the two-body �t in the physical region. The reason for introducing

the additional damping factor dab was only to improve the very small R behavior of the

total CCpol23 �t (i.e., with the inclusion of the V3[3, 3] part described in Sec. 3.6). The

total interaction energy should be repulsive at very small R, but the V3[3, 3] �ts have a

tendency to collapse there to unphysical, strongly negative values. We were unable to

fully control this behavior of V3[3, 3] alone (as described in Sec. 3.6), so we �xed this

problem by accelerating the increase of V2 for R going to zero. This acceleration takes

place only in the region not relevant for the intended physical applications. In this

way, the sum of these terms, i.e., the CCpol23 potential, behaves reasonably. It may

seem senseless to work on the behavior of the potential in an unphysical region, but

in molecular simulations this region is occasionally sampled. If the potential found in

such sampling is strongly repulsive, as it should be, this sampling has virtually no e�ect
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on the simulations. However, if the potential is strongly attractive due to artifacts of

the potential functions, the simulation may collapse. At such very small intermonomer

separations, the V ind
2 term is small compared to the sum of the functions uab (this means

that we do not observe the so-called polarization catastrophe). Therefore, we have not

introduced any additional damping in V ind
2 . The functions uab are both positive and

negative and despite strong cancellations between them (as it commonly happens for

�ts with many terms), their sum may become unphysical for very small R for some

intermonomer orientations. We found that damping of the negative contributions in

this region has the desired e�ect on the total CCpol23 �t. With the damping parame-

ters chosen as described below, the functions uab(rab) are non-negligibly a�ected only

for rab smaller than a fraction of 1 Å, i.e., their behavior is unchanged in the physical

region. The damping strength is controlled by the parameters γ and r̃ in Eq. (3.11):

r̃ = 0 and a very large γ implies no damping, increasing r̃ turns the damping on at the

pertinent site-site distances, while decreasing γ makes the e�ect more di�use so that

the damping e�ectively starts at larger distances. The values of these parameters were

selected in the following way. First, we set γ to 100 bohr−1 and increased r̃ until the

RMSE of the V2 �t for all the points with interaction energies between +10 and +30

kcal/mol started deteriorating. This occurred at r̃ = 1.4 bohr. Then, we gradually

lowered γ with the same RMSE criterion, arriving in this way at γ = 20 bohr−1. The

damped V2 �t has an RMSE equal to 0.25 kcal/mol between +10 and +30 kcal/mol,

compared to 0.16 kcal/mol without damping, while the accuracy below +10 kcal/mol

is not a�ected: both the damped and undamped �ts have an RMSE of 0.011 kcal/mol

for interaction energies below zero and an RMSE of 0.034 kcal/mol for those in the

range from 0 to +10 kcal/mol. The RMSE of the damped �t on all 3216 points is

very large, 222 kcal/mol, whereas for the undamped �t it is only 0.081 kcal/mol. Since

virtually the whole RMSE in the former case originates from errors coming from the

interaction energies above +30 kcal/mol (corresponding to kT at 15,000 K), which are

practically not sampled in simulations near (and below) room temperature, this error

is inconsequential for the intended applications of our potential.
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We have not tested CCpol2 on the dimer characteristic points and spectra since

it is numerically so close to CC-pol-8s in all physically relevant regions that the results

computed with CCpol2 should be nearly identical to those computed with CC-pol-8s

[43].

3.5 Many-body induction energy model

We will now de�ne the polarization model used in our potential. This model

was applied in the two-body component already described in Sec. 3.4, the three-body

component that will be described in Sec. 3.6, and alone to represent four- and higher-

body e�ects. The polarization model will be de�ned below in the general N -body

context, special cases of two and three bodies follow immediately.

The polarization model represents the asymptotic induction energy ofN molecules.

It is often called classical polarization model but in fact the formalism is the same in

quantum mechanics. This model can also be damped to account for the charge-overlap

e�ects in induction interactions. In polarization models, the electric �eld due to the

multipole moments of the charge distribution on isolated monomers (called permanent

multipole moments) induces multipole moments on each monomer (of course, the per-

manent moments of a given monomer do not contribute to the �eld that induces the

moments on this monomer). These induced moments, in turn, create an electric �eld

that is added to the original �eld and induces additional moments. This procedure is

iterated until convergence. The converged �elds and induced multipole moments (and

thus, the polarization energy) can also be found by solving a system of equations. In

the simplest case, where only the induced dipole moments are considered and the per-

manent multipole moments are approximated by a set of distributed (partial) charges,

the polarization energy of a system of N molecules can be written as

V ind
N = −1

2

N∑
i=1

N i
pol∑

k=1

E0
ik · µind

ik , (3.12)

where E0
ik is the electric �eld generated on the kth polarizable center of molecule i by
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permanent distributed charges on all the other molecules, and

µind
ik = αikEik (3.13)

is the dipole moment induced on this polarizable center by the total electric �eld Eik

generated by other molecules. The quantity αik is the polarizability (considered here

to be isotropic) of the kth center of molecule i such that

αi =

N i
pol∑

k=1

αik (3.14)

is the total molecular polarizability. The total electric �eld on each center is the sum

of permanent and induced components

Eik = E0
ik +

N∑
j 6=i

N i
pol∑
l=1

f3(δ3, rik,jl)T ik,jlµ
ind
jl , (3.15)

where

T ik,jl = − 1

r3ik,jl

(
1− 3

rik,jl ⊗ rik,jl
r2ik,jl

)
(3.16)

is the dipole-dipole interaction matrix, vector rik,jl points from the kth polarization

center of molecule i to the lth polarization center of molecule j, and ⊗ denotes the

vector direct product. The factor fn(δ, r) in Eq. (3.15) is the Tang-Toennies damping

function [76]

fn(δ, r) = 1− e−δr
n∑

m=0

(δr)m

m!
, (3.17)

which continuously decays to zero at small r. The �elds from the permanent charges

ql are also damped:

E0
ik = −

N∑
j 6=i

Nj
q∑

l=1

f2(δ2, rik,jl)ql
rik,jl
r3ik,jl

, (3.18)

where N j
q is the number of partial charges on molecule j.

111

119:5074776006



The polarization model de�ned above is a generalization of that used in the

nonadditive three-body [28, 36], CC-pol [29�31], and CC-pol-8s [43] water potentials,

where it was restricted to just N i
pol = 1. Note that these past polarization models

were damped at the three-body level but not at the two-body level. In the present

work, we used three polarization centers located on the atoms of each monomer, with

the polarizability values α1 = 6.5186 a.u. and α2 = α3 = 1.5507 a.u. The values

are chosen in such a way that the total polarizability α is equal to 9.62 a.u. (the

benchmark CCSD(T) result of Ref. 13), while the ratio of the oxygen to hydrogen

values is 4.2036 (the value calculated [77] using the CamCASP code [78], with an

asymptotically corrected PBE0 density functional [79, 80] and in the doubly augmented

daug-cc-pVTZ basis set [81]). The conversion factor of 1 hartree = 627.51 kcal/mol

was used in this case. The damping constants δ2 and δ3 were optimized on a training

set containing both three-body and four-body nonadditive energies. In the former

case, these were pure induction and exchange-induction energies including the overlap

e�ects. In the latter case, we used the complete four-body nonadditive contributions,

hoping that in this way our polarization model will e�ectively improve the description

of the four-body interactions. Speci�cally, let us denote by σi, i = 1,. . . ,6, the RMSE's

of the nonadditive four-body energies for all 15 tetramers contained in each of the

hexamer structures: prism, cage, book, bag, boat, and ring, respectively, calculated

with the polarization model and relative to the ECCSD(T)
int /(T-D) values. Additionally,

let σ7 stand for the RMSE of the total nonadditive four-body contributions, Eint[4, 6],

in the six structures. Finally, let σ8 be the RMSE of the polarization model with

respect to the following sum of three-body SAPT corrections

E
(20)
ind [3, 3] + E

(20)
exch−ind[3, 3] + δEHF[3, 3] = EHF

int [3, 3]− E(10)
exch[3, 3] (3.19)

for the 5704 water trimer geometries computed in Ref. 28. [After the �t was completed,

we found the we had erroneously included also the 1829 trimers for which E(10)
exch was

not computed and was set to zero in the data set. However, the 1829-point subset
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consists mostly of large trimers for which E(10)
exch is very small in magnitude, so we have

not corrected this error.] One may question the inclusion of the exchange-induction

energies in Eq. (3.19) since these energies decay exponentially. However, at the two-

body level it has been shown that the exchange-induction energy to a large extent

cancels the purely exponential overlap component of the induction energy (see Ref. 82)

which is also not a part of the polarization model. The values δ2 = 1.65 bohr−1 and

δ3 = 1.55 bohr−1 were found by minimizing the sum
∑8

i=1 σi. For the �nal model,

the resulting values of σi are 0.020, 0.034, 0.018, 0.023, 0.009, 0.045, 0.071, and 0.203

kcal/mol.

Table 3.3 compares the predictions of the �nal model with those of the model

from Ref. 28 and with CCSD(T) results for the four-, �ve-, and six-body interaction

energies in the six hexamers. The three-center polarization model leads to a modest

improvement over the one-center model in the four-body energies: the RMSE on all

hexamers relative to the CCSD(T) benchmarks is 0.059 vs. 0.076 kcal/mol. The rel-

ative errors for individual hexamers range between -0.6% and 12.2% with the average

magnitude of the relative errors amounting to 5.8% for the three-center model. This is

a surprisingly small relative error, much smaller than in the case of three-body energies

[13] where the accuracy of simple polarization models is only about 50%. To our knowl-

edge, this fact has not yet been noted in literature and is of signi�cant importance in

developing many-body force �elds.

For �ve- and six-body nonadditive interactions, the RMSE's of the three-center

(one-center) models are 0.025 (0.019) and 0.005 (0.004) kcal/mol, respectively. Thus,

the one-center model actually performs slightly better, but these di�erences are negli-

gible. The overall accuracy is not as good as in the four-body case, but it is reasonable

for the contributions that are of more signi�cant size: the magnitudes of relative errors

of the three-center model for the contributions larger in magnitude than 0.03 kcal/mol

are in the range of 23-37%.

Interestingly, the sum of the four- to six-body contributions is recovered signif-

icantly better than any individual component. The RMSE for the three-center model
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is only 0.046 kcal/mol and the average magnitude of the relative errors is 3.5%. The

many-body e�ects beyond the polarization interactions are not that small for individual

K-mers within each hexamer, but there are signi�cant cancellations.

We then tested the performance of the polarization model on the set of 600 non-

additive three-body interaction energies for trimer con�gurations extracted from the

ambient-conditions liquid water MD simulations of Ref. 13 (see Sec. 3.2). These ener-

gies, ranging from −0.9 to 1.0 kcal/mol, were computed at the hybrid CCSD(T)/(T-D)

level and are quite well reproduced by our new polarization model. The value of the

RMSE relative to ab initio benchmarks is 0.073 kcal/mol, much improved compared to

the single-center polarization models included in the CC-pol-8s' and CC-dpol-8s' po-

tentials of Ref. 13 which both give an RMSE of 0.107 kcal/mol [13]. This improvement

was achieved despite the fact that the new polarization model was partly optimized for

four-body e�ects. This performance indicates that the three-center model is a more

physically sound representation of the induction e�ects in water than the one-center

model.

3.6 Nonadditive three-body �t

3.6.1 Functional form of �t

In analogy with Eq. (18) of Ref. 28, our present three-body �t is the sum of

three components,

V3[3, 3] = FS3 + FS2 + V ind
3 [3, 3]. (3.20)

The term V ind
3 [3, 3] = V ind

3 − V ind
2 (AB) − V ind

2 (BC) − V ind
2 (AC) is the nonadditive

induction energy from the new polarization model described in Sec. 3.5. The FS2 term

is the interaction energy contribution of the same form as in Ref. 28 that is due to

single two-electron permutations between monomer pairs, while FS3 represents mostly

the interaction energy due to cyclic permutations involving three electrons from three

di�erent monomers, but also other residual e�ects not accounted for by the other

terms. Also, nonadditive dispersion energy which is nonnegligible for this system only
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for short and medium-range intermolecular distances (for the near-equilibrium trimers,

this contribution is on the order of only 0.01 kcal/mol [18]) is modeled by this term.

Instead of the Legendre polynomial expansion employed in Ref. 28, we used a trimer

generalization of the exponential site-site expansion of CC-pol-8s (see Eqs. (1) and (2)

of Ref. 43). Speci�cally,

FS3 =
∑
a∈A

∑
b∈B

∑
c∈C

fab(rab)fac(rac)fbc(rbc)
1∑

k=0

1∑
l=0

1∑
m=0

c
(abc)
klm rkabr

l
acr

m
bc (3.21)

where

fab(rab) = {1 + exp [−γab(rab − r̃ab)]}−1 exp(−βabrab) (3.22)

and similarly for fac(rac) and fbc(rbc). As before, rab denotes the distance between site

a in molecule A and site b in molecule B. The nonlinear adjustable parameters γab,

βab, and r̃ab, as well as the linear ones, c
(abc)
klm , can be obtained from the optimization of

an appropriate least-squares functional, with linear parameters obtained in each step

of the nonlinear optimization by solving the set of equations of the linear least-square

problem. The �rst factor in the function fab(rab) is a damping function of the same

form as dab(rab) in Eq. (3.11) but, in contrast to the two-body �t, we used parameters

γab and r̃ab that were independently optimized for each site-site pair. The accuracy of

the expansion (3.21) depends critically on the number and location of monomer sites.

In Ref. 43, the new sites in the dimer expansion were successively added and their

positions optimized until reaching 25 (8 symmetry-unique) sites per molecule. Since

a similar optimization procedure would be extremely expensive in the trimer case,

we used the �rst 17 (6 symmetry-unique, including the O and H atoms) site positions

obtained in Ref. 43. After grouping the symmetry-equivalent terms as described below,

Eq. (3.21) includes 364 independent linear parameters. For 6 unique sites per molecule,

the number of nonlinear �t parameters amounts to 63 (21 for βab, γab, and r̃ab each).

Since the symmetry operations of the water monomer transform a given site

into one of its equivalents, the nonadditive three-body potential for the water trimer
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with rigid monomers should be invariant to permutations of symmetry-equivalent sites

within each monomer. In addition, the potential should be invariant to the six (includ-

ing the identity) permutations of complete monomers A, B, and C. Thus, the terms

in Eq. (3.21) can be separated into groups such that each term in a given group has

the same linear coe�cient. Also, to realize the symmetry conditions, the functions

of Eq. (3.22) should be identical for all a's and all b's that are symmetry equivalent.

Thus, there are only 6×7/2 = 21 di�erent such functions. We used a simple algorithm

(executed only during initialization of the potential subroutine) to impose this symme-

try. Initially, an integer-valued array I(a, b, c, k, l,m) is �lled with zeros and a counter

Nlin is set to one. In a loop going through all possible 173 × 23 = 39, 304 terms of the

sum in Eq. (3.21), if I(a, b, c, k, l,m) is still equal to zero for a given combination of

a, b, c, k, l,m, it is set to Nlin. If I(a, b, c, k, l,m) is not equal to zero, this combination

is skipped because it has been handled before. Then each of the parameters a, b, c is

identi�ed as belonging to a group of symmetry equivalent sites and I(a′, b′, c′, k, l,m)

are set to Nlin for all a′, b′, c′ of the same type as a, b, c, respectively. At the same

time, the ABC permutational symmetry is realized by setting to Nlin all the six cases

resulting from the permutations of the three monomers. Finally, the value of Nlin is

increased by one. In actual calculations using Eq. (3.21), all terms with the same value

of I(a, b, c, k, l,m) = n are added together and associated with the linear parameter cn.

3.6.2 Fitting of three-body potential

The �rst stage of the �tting procedure used the initial set of 70,268 trimer

geometries obtained as described in Sec. 3.2. The data points were unweighted (all

weights set to one) and no damping was applied, i.e., the factors dab in Eq. (3.22)

were all equal to one. Several hundred di�erent �ts were generated by using di�erent

(randomly generated) starting values of the nonlinear parameters and then optimizing

them using Powell's algorithm [67]. The induction component was held �xed. Several

of the most accurate �ts, those with RMSE's (relative to all ab initio three-body
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nonadditive interaction energies) equal to about 0.02 kcal/mol, were tested at short-

distance con�gurations in the following way. For each point on a three-dimensional

grid of intermonomer distances from 1.8 to 3.0 Å with steps of 0.2 Å, we generated

one million di�erent trimer geometries by randomly choosing the orientations of the

monomers. At each geometry, the two- and three-body energies were evaluated from the

�ts V2 (also with dab = 1) and V3[3, 3]. The 5940 geometries corresponding to trimer

interaction energies that were deemed �most unphysical" were selected. These were

not just very negative energies, but we looked in particular at negative energies that

were strongly dominated by V3[3, 3]. In the next step, we checked if switching on the

damping in both �ts can eliminate the unphysical behavior at short distances. To this

end, a new series of V3[3, 3] �ts were generated with all parameters optimized (including

the damping parameters) and tested on the same 5940 points in the presence of the

damped two-body �t. The number and the magnitude of negative interaction energies

at short distances were signi�cantly reduced, but not su�ciently enough. Therefore, we

decided to enlarge the training data set to encompass a number of very small trimers.

To this end we calculated three-body energies at the 5940 problematic points using the

CCSD(T) method and the aDZ basis set. A subset of randomly chosen 1188 points

was added to the main data set, while the remaining 4752 points were used for testing

purposes. The �tting process was then repeated. However, to prevent deterioration of

the �t accuracy in the main, physically relevant region, the following weighting factors

were used:

w =


1, Emin < E < Emax

(Emin − E + 1)−3, E < Emin

(E − Emax + 1)−3, E > Emax,

(3.23)

where Emin = −1.51 kcal/mol and Emax = 0.69 kcal/mol are the values of the lowest

and highest three-body energies occurring in the 60 trimers present in the three lowest-

energy hexamer structures (cage, prism, and book). Such a choice assigns progressively

lower weights to trimers with energies far from the physically relevant region (which

were included in the training set only to enforce a qualitatively correct behavior in
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high-energy regions). The addition of these 1188 points to the training set made the

�t to behave well enough for all 5940 points. To select a small subset of ��nalists�

out of a large set of generated �ts (di�ering, again, by the starting values of the

nonlinear parameters), we used several criteria: the overall RMSE, the RMSE on the

set of 60 hexamer trimers mentioned above (not included in the training set), and

the magnitude of the di�erence between the total three-body energies in the cage and

prism structures. The �nal �t was selected based on the smallest errors on the testing

set of 4752 short-distance geometries. Its RMSE on the initial set of 70,268 geometries

amounts to 0.0184 kcal/mol and on the 60 trimers extracted from hexamers to 0.0145

kcal/mol. The former RMSE may be compared to the typical values of nonadditive

three-body energies in our 70,268 set which range from -3.52 to 1.94 kcal/mol and to

the 0.47 kcal/mol value of their root-mean square. An RMSE of about 0.02 kcal/mol

is consistent with that of the two-body potential which is 0.01 kcal/mol (for negative

interaction energies) for a single dimer, so it amounts to 0.02 kcal/mol per trimer

if the errors are added in squares. Such uncertainties are also consistent with the

uncertainties of the ab initio calculations estimated in Ref. 43 to be about 0.05 kcal/mol

for the water dimer near its van der Waals minimum. Of course, the accuracy of the �t

could have been increased easily by using a more elaborate �t function, but such a �t

would also take more time in MD simulations. The RMSE of CCpol3 can be compared

with that of the �t of Mas et al. [28] which was 0.07 kcal/mol and Wang et al. [47]

which was 0.15 kcal/mol for the 5th-order �t and 0.042 kcal/mol for the 6th-order �t,

in all cases relative to the training data set used in a given reference.

3.7 Application to clusters

3.7.1 Water trimer

The main result of this work is a new three-body pairwise nonadditive potential

(CCpol3). It was �rst tested on the 40 trimers selected from the cage and prism

hexamers (not included in the training data set) and the results are shown in Table 3.2.

As one can see, CCpol3 performs very well on these trimers, with the errors of the �t
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with respect to the CBS benchmarks about 3�5 times larger than the errors of the

ab initio results at the CCSD(T)/(T-D) level of theory used to produce the training

set. The performance of CCpol3 is still better on the total three-body contribution to

each hexamer energy, with the error even slightly smaller for the prism and two times

larger for the cage than the CCSD(T)/(T-D) errors. CCpol3 recovers the benchmark

energies in Table 3.2 much better than any other potential. The SAPT-3B potential

of Mas et al. [28] works reasonably well for the cage, but gives a large error for the

prism (the origin of this error will be discussed below). These errors are consistent

with the HF theory level and modest size basis sets used in Ref. 28. The WHBB5

potential [47] is of similarly accuracy as SAPT-3B, but the more �exible �t used in

WHBB6 signi�cantly improves the accuracy. This potential performs overall better

than the HBB2-pol potential [53]. WHBB6, the best performing potential from the

literature, gives an RMSE relative to the CBS energies for the cage (prism) isomers

of 0.036 (0.031), whereas CCpol3 gives 0.019 (0.019) kcal/mol. We can also compare

our results to the DPP2 water model of Kumar et al. [83] The nonadditive three-

body part of this model was �tted to CCSD(T)-level values for the trimers extracted

from the cage, prism, book, and ring hexamers. For the two former hexamers, the

DPP2 values from Table V of Ref. 83 have errors only of -0.22 and -0.19 kcal/mol,

respectively, relative to the sums of three-body nonadditive energies for each hexamer

from their training set (however, the latter values are di�erent by 1.5 kcal/mol from

our benchmarks). These deviations compare favorably to the performance of most

methods in Table 3.2.

Table 3.4 examines the performance of the CCpol23 potential at the stationary

points of the water trimer. The geometries of the stationary points were optimized using

CCpol23 and are listed in the Supplementary Information [74]. At each point, CBS

interaction energies were computed as a sum of two-body and three-body contributions.

The latter contributions were computed as for the trimers investigated in Table 3.1. The

former contributions were computed also in the hybrid approach de�ned by Eqs. (3.6),

(3.7), and (3.8), but with X = 6 at the HF and MP2 levels and X = 4 at the CCSD(T)
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frozen-core level. The midbond 3s3p2d2f1g basis set, the same as used in Ref. 37, was

applied in the dimer calculations. The use of such larger basis sets was necessary since

the two-body energies converge slower than the three-body energies. In contrast to all

other calculations presented here, only a dimer-centered basis set was applied in the

two-body calculations, which is justi�ed at the CBS level with such large values of X

[37]. Based on the results in Table III of Ref. 37, one can estimate that such a CBS

limit for the total two-body contribution to the trimer interaction energy should be

accurate to about 0.01 kcal/mol relative to the exact CCSD(T) frozen-core value. We

have then computed the all-electron interaction energies using Eq. (3.6) at the HF level

and Eq. (3.7) at the MP2 level with bases aug-cc-pCVTZ and aug-cc-pCVQZ [75]. The

δE
CCSD(T)
int term was calculated in the aug-cc-pCVTZ basis without any extrapolation.

The resulting correction to the frozen-core approximation ranged from -0.118 kcal/mol

for the global minimum to -0.092 kcal/mol for the bifurcated transition state. Thus,

the inclusion of this e�ect is absolutely necessary for predicting the total energies at

the 0.01 kcal/mol accuracy. Since the core correction is converged to better than 0.01

kcal/mol in the basis set used, the overall accuracy of our all-electron CCSD(T) results

is the same as that of the frozen-core values, i.e., 0.01 kcal/mol. Since the three-body

nonadditive energies at the CBS level were estimated in Sec. 3.3 to be accurate to at

least 0.003 kcal/mol, the overall error of the CBS value is determined by the two-body

component.

The ab initio interaction energies used as the data set to �t the CCpol2 potential

were computed using all electrons but in aug-cc-pVXZ bases which were optimized in

frozen core calculations. To check the e�ects of using such basis sets, we computed the

correction to the frozen-core results using the aug-cc-pVTZ and aug-cc-pVQZ bases

(i.e., the ones used in Ref. 30 instead of the aug-cc-pCVTZ and aug-cc-pCVQZ ones

and found that the results for the six characteristic points were di�erent only by from

0.004 to 0.005 kcal/mol, i.e., negligibly. Thus, the core correction is well reproduced

in valence-optimized bases provided that the CBS extrapolations are used.

Table 3.4 shows that the CCpol23 �t recovers the CBS trimer energies with an
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RMSE of 0.108 kcal/mol and a maximum absolute error of 0.134 kcal/mol. All the

CCpol23 interaction energies lie above the CBS ones. The smallest error is for the

highest stationary point, which must be fortuitous. One should recall here that the

two-body part of this potential was �tted to ab initio interaction energies computed

at the following levels: HF�aQZ, MP2�(TQ), CCSD(T)�aTZ, i.e., signi�cantly lower

than the level of our current benchmarks. For the global minimum, the total two-

body contribution at this level is -12.613 kcal/mol, whereas the CBS result with all

electrons correlated is -12.692 kcal/mol. The di�erence of 0.089 kcal/mol constitutes

66% of the di�erence between CCpol23 and CBS values. The remaining part of the

di�erence, 0.046 kcal/mol, is consistent with uncertainties resulting from the �tting

process: 3 × 0.011 kcal/mol from the two-body part and 0.018 kcal/mol from the

three-body part.

One can also evaluate the performance of CCpol23 by comparing the barriers

on the surface, i.e., the di�erences between the energies of stationary points and the

minimum energy. Such barriers are very important for the spectra of the trimer. As

Table 3.4 shows, the RMSE of CCpol23 relative to the CBS barriers is 21 cm−1 or 0.06

kcal/mol. The error is largest, 0.126 kcal/mol, for the barrier to the highest stationary

point which is related to the fact that the energy of this point is so well reproduced

that there is virtually no cancellations of errors.

Whereas the CCpol23 predictions agree very well with CBS benchmarks, one

may ask how close are the stationary-point CCpol23 geometries to those on �exible-

monomer potential energy surface. The 21-dimensional optimizations were performed

by Anderson et al. [84] at the MP2 level. The simplest test for assessing the closeness of

geometries was to compute the CCpol23 interaction energies at �rigidized" Anderson's

et al. geometries, i.e., for each of the six stationary-point trimers from Ref. 84, we

have constructed a trimer with monomers at the geometry used in CCpol23, in way

described in Sec. 3.2. The geometries optimized in Ref. 84 were provided to us by the

authors of that work (see Ref. 85: note that the original supplementary material of

Ref. 84 contains misprints). These rigidized trimer interaction energies turned out to
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be very close to the CCpol23 values in the �rst column of Table 3.4: the di�erences

range from 0.009 to 0.027 kcal/mol, and are below 0.2% of the interaction energies. For

the barriers, the di�erences are between 1.1 and 6.2 cm−1. These comparisons indicate

that the two sets of geometries are indeed very close.

Compared to the small di�erences in barrier heights at CCpol23-optimized and

rigidized Anderson et al. geometries, both the CCpol23 and CBS barrier heights in

Table 3.4 are relatively far from the results of Anderson et al., with RMSE's of 52

and 36 cm−1, respectively. Thus, most of these di�erences must be due to di�erent

monomer geometries in the rigid-monomer and �exible-monomer structures. To check

this hypothesis, we have computed a �monomer �exibility correction" ∆ER→F de�ned

in the same way as in Ref. 43, i.e., as di�erence between the total electronic energies

of the original trimer and the trimer with rigidized monomers. These corrections were

computed using Eqs. (3.6), (3.7), and (3.8) with (45) extrapolations at the HF and MP2

levels, and (34) extrapolations at the CCSD(T) level. The frozen-core approximation

was used at the correlated levels. Note that one may view the ∆ER→F correction as

describing the energetic e�ect of trimer geometry optimization starting from a rigid-

monomer stationary point and relaxing intramonomer coordinates under the conditions

of keeping constant the molecular plane, COM, and the position of the line through

oxygen and the midpoint of the segment connecting two hydrogen.

The comparisons utilizing the ∆ER→F corrections are presented in Table 3.4

for both the CBS and CCpol23 barriers. The barriers from Ref. 84 listed in the ta-

ble are not the �best estimates" from that work (which include some post-CCSD(T)

contributions), but their results at the extrapolated CCSD(T) level. These energies

were computed using bases up to a6Z at the MP2 level and up to aQZ at CCSD(T)

level and performing several di�erent types of extrapolations which led to estimated

uncertainties of the barriers between 6 and 16 cm−1. As the results in Table 3.4 show,

the CBS and CCpol23 barriers corrected for monomer-�exibility e�ects are in excel-

lent agreement with the results from Ref. 84, with RMSE's relative to the values from

Ref. 84 almost to within the uncertainties of the latter quantities. These RMSE's
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(0.02 and 0.05 kcal/mol, respectively) are also of the size expected from estimates of

the uncertainties of our calculations. This agreement is consistent with the �nding

discussed above that the rigid-monomer CCpol23 potential predicts the intermolecular

geometries of the trimer stationary points very well. The largest discrepancies with

the Anderson et al. results shed some light on accuracy of the CCpol23 potential.

For the bifurcated transitions state where the di�erence between CCpol23 and CBS

barriers is the largest in magnitude, the CBS barrier corrected for monomer-�exibility

e�ects agrees well with Anderson's et al. value, showing that despite the discrepancy,

the geometry of this transition point is accurate. On the other hand, the CBS barrier

corrected for monomer-�exibility e�ects shows the largest discrepancy with Anderson's

et al. result for the C3h structure which is a third-order stationary point. It is possible

that for this point our geometry optimization was not completely converged. The other

possibility is that this point is sensitive to the δECCSD(T) contribution which was not

included in the optimizations of Ref. 84.

One can also compare interaction energies in a similar way, although this com-

parison is less straightforward than for barriers which are just di�erences of total elec-

tronic energies. In the case of interaction energies, the reference points are di�erent:

equilibrium monomers in the case of the interaction energies of Anderson et al. [84]

and 〈r〉0 geometries in the case of CCpol23 and our CBS limit benchmarks. The total

trimer interaction energies at the global minima are −15.89 kcal/mol [84] (relaxed CP-

corrected energy at CCSD(T) level), −16.06 kcal/mol (CCpol23, vertical energy), and

−16.20 kcal/mol (CBS, vertical energy). The total deformation energy of Anderson's

et al. structure is 0.40 kcal/mol (computed by us at the CCSD(T)/a5Z level), so that

the corresponding vertical interaction energy is −16.29 kcal/mol. These di�erences

may seem small taking into account that the energy of three 〈r〉0 monomers lies 0.67

kcal/mol (Ref. 86) above the energy of three re monomers. One reason is a partial

cancellation of contributions. Let's measure the energies from the energy of the global

trimer minimum with �exible monomers. The energy of the corresponding trimer with
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monomers rigidized to the 〈r〉0 geometry is at 0.39 kcal/mol (i.e., equal to the magni-

tude of the monomer-�exibility correction ER→F). The CBS vertical interaction energy

for this geometry is −16.17 kcal/mol (estimated from the value in Table 3.4 and the

CCpol23 di�erence of energies between CCpol23-optimized and Anderson's et al. struc-

tures), so that three 〈r〉0 monomers are at 16.56 kcal/mol. Subtracting 0.67 kcal/mol

from this value gives 15.89 kcal/mol, the magnitude of the relaxed interaction energy of

Anderson et al. Thus, the partial cancellations in this energetic �cycle" explain to some

extent the good agreement of the rigid- and �exible-monomer approaches observed here

and later on. The other reason for the closeness of rigid- and �exible-monomer predic-

tions for the equilibrium trimer is that the hydrogen-bonded OH bond length in the

latter approach, close to 0.972 Å for all monomers, happens to be the same as the 〈r〉0
value. Thus, the �binding ring" is almost identical in the �exible-monomer and rigid

〈r〉0 trimer minima. The free OH bonds in �exible-monomer approach are virtually

unchanged from the equilibrium value of 0.959 Å and therefore are quite di�erent than

in the 〈r〉0 monomers, but obviously contribute much less to interaction energy. One

may �nally note that the increase of the length of the OH bond participating in the

hydrogen bond amounting to 0.013 Å is much larger than for the dimer where it is only

0.005 Å (Ref. 7).

A comparison of the performance of the CCpol23 potential with literature po-

tentials on the trimer stationary points optimized using the CCpol23 potential is shown

in Fig. 3.1. The quantities compared are the total trimer interaction energies and the

CBS benchmarks are those described above. As we already know from Table 3.4, the

CCpol23 predictions are remarkably close to the benchmarks. By contrast, the poten-

tials from the literature give predictions with RMSE's relative to the benchmarks (at

CCpol23-optimized geometries) between 0.31 and 0.53 kcal/mol, several times larger

than the 0.11 kcal/mol RMSE of CCpol23. Surprisingly, CC-pol-8s+NB performs bet-

ter than other published potentials, in fact as well as CCpol23 as its RMSE is also 0.11

kcal/mol, probably because trimer tunneling paths were well represented in its training

data base. Also surprisingly, WHBB5 predicts the trimer interaction energies slightly
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better than WHBB6 despite the simpler form of the �tting function and despite the

opposite performance on the trimers extracted from the hexamer. Note that the shape

of the diagram is very similar for each of the six stationary points, which stems from

the fact that all the structures have a similar, near-equilateral triangle oxygen skeleton

and di�er mainly (except for one case) by �ipping of the non-bonded hydrogen atoms.

We next tested the performance of CCpol3 on a set of 600 random geometries

from MD simulations of Ref. 13 which were used already in Sec. 3.5. These geometries

were part of our training set, but constituted only a small fraction of the total number

of points. The comparisons are made here again on the nonadditive energies only,

rather than on the trimer interaction energies. The results for CCpol3 and literature

�ts are summarized in Table 3.5. This table shows that CCpol3 performs very well in

this test, with an RMSE relative to ECCSD(T)
int /(T-D) values of 0.0154 kcal/mol, very

close to the RMSE on the training set and almost 3 times improved relative to the

SAPT-3B potential of Ref. 28. Surprisingly, the HHB2-pol potential [53] produces an

RMSE only slightly better than that of SAPT-3B, whereas the RMSE of the WHBB

potentials [47] is about 1.5 times larger than that of SAPT-3B and very close to that

of our pure polarization model described in Sec. 3.5.

To appreciate the signi�cance of these RMSE values, we should compare them

to the root mean square value of the three-body energy for the 600 trimers which

amounts to 0.187 kcal/mol [13]. Thus, the simple polarization models considered in

Ref. 13 result in roughly 50% errors. The use of the current three-center polarization

model reduces this error to 39% whereas the use of CCpol23 reduces it to 8%. Most

likely the 39% value is close to how well one can reproduce the three-body nonadditive

energies with a polarization model based only on asymptotic information. One should

mention here, however, that an e�ective polarization model can be constructed to better

reproduce the total three-body nonadditive energies if it is �tted to these values. Such

a model is a part of the DPP2 water potential of Kumar et al. [83]. Its functional

form is fairly close to that in our three-center model, but the parameters were �tted

simultaneously to the water monomer polarizability and to a set of ab initio computed

125

133:3762250633



total three-body nonadditive energies for trimers extracted from low-energy isomers of

the hexamer. As discussed before, this model reproduces very well the sums of the

three-body energies for the isomers from their training set. Obviously, this is achieved

in a partly unphysical manner as the nonadditive �rst-order exchange terms, which are

signi�cant for all nonasymptotic separations, have a di�erent functional dependence

than the polarization terms for which the form of the model is valid.

Scatter plots of WHBB6, HBB2-pol, and our new three-body �t energies as

functions of the 600 benchmark energies are presented in Fig. 3.2. The horizontal

band at the WHBB6 �t energies equal to zero results from the fact that the WHBB

potentials neglect the nonadditive three-body energy if any of the distances between

oxygen atoms in the trimer is larger than 6 Å (this occurs for 211 points out of the

600). It is worth noting that, among the 600 geometries, the largest absolute error

of the CCpol3 �t amounts to 0.099 kcal/mol and there are only 8 points with errors

larger that 0.05 kcal/mol. For WHBB and HBB2-pol, the largest absolute errors (the

number of points with errors larger than 0.05 kcal/mol) are 0.411 kcal/mol (125) and

0.218 kcal/mol (63), respectively.

3.7.2 Water hexamer

As mentioned before, the hexamer is the smallest water cluster with stable

�three-dimensional" forms (in the sense that the oxygen atoms are highly non-planar).

It exists in several low-energy local-minima structures, which has led to a long contro-

versy regarding the most stable isomer [37, 53, 64�66, 71, 87, 88]. Therefore, accurate

predictions of the relative energies of various hexamer structures have been recognized

as one of the most important tests of water potentials. We investigated six of the lowest

structures (prism, cage, book, bag, ring, boat) often considered in the literature, as

high-quality comparative benchmarks are available for these con�gurations. Dahlke et

al. [66] optimized the geometries at the MP2 level in the haTZ basis set and evaluated

the hexamer energies using CCSD(T) in the same basis. Bates and Tschumper [71]

used geometries from Ref. 66 and performed analogous calculations for the δECCSD(T)
int
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contributions, but their MP2 energies were calculated using the MP2-R12 method [89]

which should give results close to the MP2 CBS limit. Note that there are some

nomenclature di�erences in the literature regarding the water hexamer. We follow the

convention adopted in Ref. 66, while in Ref. 71 the names �book-1�, �cyclic-boat-1�, and

�cyclic-chair� are used for book, boat, and ring, respectively, and two more structures

are considered (�book-2� and �cyclic-boat-2�) di�ering just by the orientation of the

free hydrogen atoms at some monomers.

A comparison of the performance of various potentials on the hexamer isomers

is presented in Fig. 3.3. The total hexamer interaction energies are given relative to the

energy of the prism con�guration obtained with a given method. The results for the

WHBB5, WHBB6, and HBB2-pol potentials were taken from supplementary material

of Refs. 47 and 53. The energies of hexamer isomers were optimized in these references

varying all coordinates (i.e., with �exible monomers) using the appropriate potentials.

The interaction energies plotted for these potentials as well as the benchmark energies

taken from Ref. 66, 71 are the relaxed ones [35]. Geometry optimizations with the CC-

pol-8s+NB and CCpol23+ potentials were performed by us and the interaction energies

corresponding to these potentials are the vertical ones. Hence, each interaction energy

in Fig. 3.3 is self-contained, i.e., was obtained completely within the given approach

(except for the benchmark results which were computed at geometries optimized in

smaller bases and not including the δECCSD(T)
int contribution).

Figure 3.3 shows that the interaction energies from CCpol23+ and both bench-

marks are very close in all cases, although CCpol23+ is noticeably closer to the CBS-

level benchmarks of Bates and Tschumper [71] (0.01 to 0.03 kcal/mol) than to the haTZ

results of Dahlke et al. [66] (0.03 to 0.06 kcal/mol). This is not accidental, as both

the two-body and the three-body parts of CCpol23+ were �tted to energies obtained

with basis sets much larger than haTZ. This excellent performance partly re�ects the

fact that several trimers similar to those present in hexamer structures were used in

the development of CCpol23+, as described in Sec. 3.2 (the trimers from the actual

hexamer structures used in Fig. 3.3 were not part of our �t data set: it contained
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trimers from TIP4P hexamers and distorted trimers from CC-pol-8s+NB optimiza-

tions of the hexamers). This level of agreement is remarkable since we compare here

relaxed interaction energies of the benchmarks at �exible-monomer geometries with

vertical interaction energies of CCpol23+ at rigid-monomer geometries. As discussed

in detail for the trimer case, one reason is that the lowering of the total energy re-

sulting from accounting for the monomer-�exibility e�ects is partly canceled by the

subtracting the equilibrium isolated monomer energies.

The HBB2-pol potential [53] works best among the published potentials. It pre-

dicts consistently somewhat too large gaps between the prism and the other structures,

with errors (relative to the CBS benchmark) in the range of 0.14�0.35 kcal/mol, about

an order of magnitude larger than the errors of CCpol23+. The errors of the WHBB6

potential [47] are in the range of 0.25�1.40 kcal/mol, i.e., a few times larger than in the

case of HBB2-pol. The errors of the WHBB5 potential [47] are still larger, although

for the cage it performs slightly better than WHBB6.

The CC-pol-8s+NB potential gives predictions generally of similar quality to

WHBB5, except for the cage structure where it performs worse. Thus, the CC-pol-

8s+NB potential fares much worse here than in the trimer tests. Since the two-body

components of CC-pol-8s+NB and of CCpol23+ are almost identical and four- and

higher-body e�ects are too small to account for this e�ect, the bulk of the di�erence

must stem from the lower quality of the three-body �t of Ref. 28. We were able to

understand this behavior by analyzing the results for the trimers extracted from the

cage and prism hexamers (see the extended version of Table 3.2 in the Supplementary

Information [74]). CC-pol-8s+NB performs well on stationary states of the trimer since

all such states are similar to the minimum structure that was well represented in the

training set of Ref. 28 and most of them lie on the tunneling paths also extensively

explored in Refs. 24, 28. By contrast, some of the trimers present in hexamer structures

were virtually absent from the training set of Ref. 28. In particular, the two trimers

forming the top and the bottom of the prism hexamer contain one water molecule that
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is a double-donor of hydrogen bonds. These trimers are poorly predicted by SAPT-

3B, with errors with respect to the CBS benchmarks of -0.40 and -0.32 kcal/mol,

respectively. These two trimers alone make the prism energy computed from the CC-

pol-8s+NB potential signi�cantly too negative and�with the cage energy not su�ering

of this problem�lead to an excessive cage-prism gap.

In contrast to the comparisons for the trimers, the performance of CCpol23+

relative to �exible-monomer literature potentials, demonstrated in Fig. 3.3, could not

have been anticipated. For the trimers, such comparisons were made for rigid monomers

(except for some comparisons to the ab initio benchmarks at the trimer characteristic

points). Therefore the good performance of CCpol23 was expected since it is easier

to �t a 12-dimensional than a 21-dimensional potential. For the hexamer, the rigid-

monomer CCpol23+ potential achieves a better agreement with the �exible-monomer

benchmarks than any �exible-monomer potential. This fact leads to the following

answer to the question posed in the Introduction: monomer �exibility e�ects are less

important than an accurate description of each K-body contribution at the rigid-

monomer level with the current state-of-the-art of the ab initio methods, at least for

cluster equilibrium structures.

3.7.3 24-mer

The (H2O)24 cluster was the subject of an extensive CCSD(T) calculation within

the conventional supermolecular framework, i.e., it included the calculation of the

whole cluster energy, which took 76 years of CPU time [90, 91]. The authors of that

work identi�ed two energetically low structures, labeled 308 and 316, and found their

total energies di�ering by only 0.01 kcal/mol, with structure 316 being more stable. As

impressive as this calculation is from the computational point of view, due to the small

basis set used (cc-pVTZ with the f functions removed) and the lack of a CP correction,

its predictive value is rather limited. An alternative way of calculating the energies

of large clusters, the �strati�ed approximation� many-body approach (SAMBA), was

proposed and applied to several water clusters by Góra et al. [37] The idea of this
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method consists of calculating K-body contributions to the interaction energy (with

K ≥ 1) separately, in basis sets limited to K monomers in each case, thus avoiding the

use of the exceedingly large basis sets of the whole cluster. Only low-K contributions

need to be considered since the many-body expansion converges fast. In Ref. 37,

the consecutive K-body contributions to the energy di�erence E316 −E308 were found

from ab initio calculations to be −0.23, 1.60, −1.21, and −0.24 kcal/mol for K =

1, 2, 3, and 4, respectively, giving the sum equal to −0.08 kcal/mol. Although the

uncertainty of the total energy predictions for each structure was estimated in Ref. 37

to be 4.8 kcal/mol, the analysis of the respective di�erences shows that the value of

−0.08 kcal/mol is probably accurate to within 0.1�0.2 kcal/mol. The remaining (higher

than four-body) contributions to E316 − E308 were estimated to be probably around

0.3 kcal/mol and not higher than 0.6 kcal/mol. Thus, the SAMBA method provides a

rather accurate estimate of the value of E316 − E308 for such a large cluster although,

due to the almost equal energies, the question about the most stable structure remains

open. Although the total CPU time of the SAMBA calculations for (H2O)24 was 200

times shorter than the CPU time needed for the calculations in Ref. 91, it was still

a large computational e�ort. It is therefore an important question how accurate can

be the predictions of �rst-principles water potentials applied to such clusters, as such

results can be obtained in mere seconds.

Figure 3.4 shows the di�erences of the K-body contributions and total interac-

tion energies between the two 24-mers. All K-body contributions shown are vertical

whereas the total energy di�erences are relaxed for �exible-monomer approaches and

vertical for rigid-monomers approaches. The total values of E316−E308 are 13.95, 15.62,

1.20, 0.68, and 0.47 kcal/mol from the WHBB5, WHBB6, HBB2-pol, CC-pol-8s+NB,

and CCpol23+ potentials, respectively. When we take into account the maximum

uncertainty estimate of 0.8 kcal/mol for the benchmark value discussed above, it is

seen that both the CCpol-8s+NB and CCpol23+ potentials are within the benchmark

error bars, HBB2-pol is reasonably close, while the WHBB potentials are far from it

(again, as for the trimer stationary points, the 6th-degree �t performs worse than the
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simpler one). Since the (H2O)24 cluster contains a large number of trimers (2024), the

inadequacies of the three-body WHBB �ts add up to the values of +12.2 kcal/mol in

the case of WHBB5 and +13.8 kcal/mol in the case of WHBB6.

Table 3.6 analyzes the many-body expansion for the 24-mer in more detail, in

particular we give the four- and higher-body terms separately for each isomer. We have

not included the �exible-monomer potentials from the literature since their polarization

models are of similar complexity as the 1-center model included in CC-pol-8s. The

many-body expansion was truncated in Ref. 37 at K = 4 (the SAMBA contribution in

the set of columns denoted in Fig. 3.4 as �>3-body" is the pure four-body contribution),

so only terms up this K can be compared. As one can see in Table 3.6, the two-body

energies of both isomers are nearly identical for the two potentials and di�er from

SAMBA results by about 8 kcal/mol or 4%. The 8 kcal/mol di�erences cancel to a

fraction of kcal/mol in the 316-308 di�erence quantities. In the three-body case, the

predictions of the CCpol23+ agree with SAMBA signi�cantly better than those of CC-

pol-8s+NB, the discrepancies are about 7�8 and 13 kcal/mol, respectively, and again a

signi�cant cancellation of errors takes place in the calculations of di�erence quantities.

In these comparisons one should take into account that all the energies in Table 3.6

(except for the last column) are vertical, whereas the geometries are di�erent in the

SAMBA and potential calculations.

The last column of Table 3.6 lists the relaxed interaction energies. The average

deformation correction per monomer of 0.8 kcal/mol is about six times larger than

in the global minimum of the water trimer. One reason is that in the investigated

24-mers a large fraction of monomers have both hydrogens participating in hydrogen

bonds, which leads to elongation of both intramonomer OH bonds. In contrast, in

the trimer only one OH bond is elongated. Second, this elongation increases with

cluster size in compact clusters (the OH bond length in ice is 1.01 Å). Finally, the

optimizations of 24-mers were performed [92] at the MP/aDZ level and the length of

the isolated monomer OH bond is overestimated at this level by 0.006 Å.

We have already seen the very good performance of both polarization models on
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the tetramers extracted from hexamers, as discussed in Sec. 3.5. This performance is

equally good for the 24-mer, with errors of the three-center model amounting to 7% for

isomer 316 and 0.6% for 308. Although the 316-308 di�erence predicted by CCpol23+ is

of di�erent sign than predicted by SAMBA, the magnitude of the discrepancy amounts

only to 0.4 kcal/mol, i.e., is rather small.

If the terms with K = 2�4 are added together, the di�erences between the

CCpol23+ and SAMBA predictions, i.e., the sums of di�erences discussed above, are

about 16 kcal/mol. However, if the monomer distortion corrections from Ref. 37 are

added to the SAMBA results, the discrepancies decrease to only about 3 kcal/mol.

For the K > 4-body e�ect, we do not have ab initio results to compare with.

However, in view of the good performance at the four-body level and the previous

observations for the hexamer, the N -body polarization models included in the CC-pol-

8s and CCpol23+ potentials should provide reasonable estimates of these nonadditive

many-body e�ects. Table 3.6 shows that the �ve- and higher-body e�ects give a very

small contribution to the total interaction energies of both isomers, on the order of

0.1%. Thus, the magnitude of these estimates is in agreement with the estimates

made in Ref. 37. In contrast to the lower-K contributions, the high-K terms do not

cancel out between the 316 and 308 isomers and the di�erence is of the same order

of magnitude as the contributions for individual monomers. One may be tempted

to add these di�erences to the SAMBA prediction (which was truncated at four-body

interactions and with the one-body term included gives E316−E308 = −0.08 kcal/mol).

Such an addition gives the amended SAMBA value of E316 − E308 = +0.11 kcal/mol,

in even better agreement with the CCpol23+ value of E316 − E308 = +0.47 kcal/mol.

The results for the water 24-mer show that the performance of the CCpol23+

potential in predictions for clusters such as (H2O)24 is competitive with the most ad-

vanced applicable ab initio methods, while the latter require (in this case) an about

seven orders of magnitude larger computational e�ort. Analogously to the case of the

hexamer, it should be pointed out that the inclusion of the monomer-�exibility e�ects

makes little di�erence in the quality of predictions, despite the large deformations of
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monomers. The CC-pol-8s+NB and CCpol23+ potentials give such good predictions

despite being evaluated at the rigidized geometries of Ref. 91.

3.8 Summary and Conclusions

A new �rst-principles three-body pairwise-nonadditive interaction energy po-

tential has been developed for water using the rigid-monomer approximation with

monomers in their average rovibrational ground-state geometry. This 12-dimensional

surface was �tted to 71,456 ab initio three-body nonadditive interaction energies ob-

tained using a hybrid approach that combines results computed at the CCSD(T) level

using the aug-cc-pVDZ basis with those computed at the MP2 level using the aug-cc-

pVTZ basis. This level of ab initio theory gives more than su�cient accuracy as the

RMSE's relative to CBS benchmarks on trimers extracted from equilibrium hexamers

are only 0.004 and 0.006 kcal/mol for the cage and prism hexamers, respectively.

The functional form of the �t was motivated by the SAPT decomposition of

the nonadditive energy into physical components. It included a new, three-center

damped polarization model. This model alone recovered relatively well the three-body

nonadditive e�ects as its RMSE on 600 trimers selected randomly from snapshots of

MD simulations in ambient conditions was 0.073 kcal/mol. This accuracy is similar

to that of some recent potentials �tted to ab initio calculations such as WHBB5 [47]

and signi�cantly better than that of single-center polarization potentials such as those

used in Ref. 13 which gave an RMSE of 0.107 kcal/mol. This polarization model was

combined with terms describing exchanges of electrons between monomers. Signi�cant

care was taken to ensure that the �t behaves physically at very short separations

between nuclei, a feature important for molecular simulations. The �nal �t, denoted

as CCpol3, uses 63 nonlinear and 364 linear adjustable parameters and its RMSE on the

subset of 70,268 grid points that excludes geometries with very small intermonomer

separations is 0.0145 kcal/mol. To make our three-body potential consistent with

the two-body one, the CC-pol-8s potential from Ref. 43 was re�tted using the new

polarization model and additional damping functions for very short separations. The
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accuracy of the new two-body �t, denoted as CCpol2, is unchanged compared to CC-

pol-8s in the physical region.

As a byproduct of this work, we have found that the polarization model recovers

very well the four-body nonadditive interaction energies, with errors on the order of

10% rather than the 50% errors observed in Ref. 13 in the three-body case. Appar-

ently, this very positive fact has not been noted earlier: it is of signi�cant importance

in developing many-body force �elds. In the case of water hexamers, we have also

compared the performance of the polarization model for �ve- and six-body contribu-

tions. Whereas this performance was signi�cantly worse than for the four-body terms,

the worst performance was for contributions of negligible magnitude. The sum of the

four- through six-body e�ects was recovered by the polarization model of CCpol23+

with the average magnitude of the relative error over the six isomers amounting to only

3.5%.

CCpol3 was �rst tested on the nonadditive interaction energies of water trimers.

On the set of trimers contained in the cage and prism hexamers, the RMSE of the �t

is 0.019 kcal/mol for each isomer. On the set of 600 hexamers from MD simulations,

the RMSE is 0.0154 kcal/mol, 2.4 times smaller than given by the HBB2-pol potential

[53] which performed best of the published potentials.

We then tested the sum of CCpol3 and of CCpol2, denoted as CCpol23, on the

total trimer interaction energies at the six trimer stationary geometries. The geometries

optimized using CCpol23 were found to be close to those of the ab initio optimizations

of Ref. 84 with �exible monomers after the latter geometries were rigidized. The RMSE

of the CCpol23 predictions relative to the CBS benchmarks computed by us is only

0.11 kcal/mol and it is a few times smaller than given by the best potentials from the

literature.

The remaining tests were performed on the water hexamer and 24-mer using

the CCpol23+ potential, i.e., CCpol23 plus the four- and higher-body interactions rep-

resented by the polarization model. In contrast to the tests described so far in this

section, we compared to cluster energies computed using �exible-monomer approaches
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for those methods that do not use rigid-monomer approximation. Somewhat surpris-

ingly, despite the rigid-monomer approximation, the energetic predictions of CCpol23+

are closer to the best ab initio benchmarks (which include monomer-�exibility e�ects)

than the predictions of the best published �exible-monomer models. We believe that

the main reason for this behavior is the high accuracy of our three-body potential.

For hexamers, the energies of the �ve considered isomers relative to the energy of the

lowest-energy prism isomer are within 0.01�0.03 kcal/mol of the Bates-Tschumper [71]

benchmarks, i.e., are within the uncertainties of the ab initio calculations. The second-

best prediction is given by the HBB2-pol potential, but the errors of 0.14�0.35 kcal/mol

are larger by an order of magnitude. For the 24-mer, only CCpol23+ predicts the di�er-

ence between the two lowest-energy �308" and �316" isomers, estimated from ab initio

calculations to be −0.1 ± 0.8 kcal/mol, within the error bars. It gives the value of 0.47

kcal/mol for this di�erence, whereas the best performing �exible-monomer potential,

HBB2-pol, predicts 1.20 kcal/mol.

The comparison for hexamers and 24-mers suggests that at the currently pos-

sible level of accuracy, the residual errors in intermolecular part of �exible-monomer

potentials are larger than the monomer-�exibility e�ects on cluster energetics. Hence,

at this point it is more advantageous from a physical point of view to improve the

accuracy of trimer rigid-monomer potentials rather than to develop �exible-monomer

potentials which cannot be su�ciently accurate in their dependence on the intermolec-

ular coordinates due to a too low density of grid points. This is in contrast to the

two-body case where one can now develop very accurate 12-dimensional potentials

[41, 44, 48, 52, 86]

Our work also indicates an issue concerning the accuracy of the potentials used

in recent investigations of hexamer structures aimed at determining the energetic order

of isomers [53, 64, 65]. Since the di�erence in the interaction energies of the prism and

cage isomers is as small as 0.25 kcal/mol [37, 71], only CCpol23+ is su�ciently accurate

among existing potentials to correctly recover this quantity.
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Since the CCpol23+ accuracy for the hexamer is close to that of the state-of-

the-art ab initio benchmarks, whereas for the 24-mer it is likely higher, this potential

can be used to generate high-accuracy benchmarks for large water clusters with costs

completely negligible compared to any ab initio calculations. We also expect this

potential to �nd broad applications in predicting the properties of the condensed phases

of water, including the anomalous properties. The results for the clusters suggest

that the rigid-monomer character of the potential does not impair the accuracy of the

CCpol23+ predictions signi�cantly, although for systems with large distortion of the

monomer geometries the potential may not work that well.
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Table 3.1: Comparisons of errors of three-body nonadditive interaction energies (in
kcal/mol) computed relative to the CBS extrapolated values. The latter
energies were obtained in a hybrid way as de�ned by Eqs. (3.6), (3.7),
and (3.8) with X = 5 at the HF and MP2 levels and X = 4 at the
CCSD(T) level. All the calculations were performed in trimer-centered
basis sets. The trimer geometries were extracted from cage and prism
hexamers optimized using the CC-pol-8s+NB potential. There are 20
trimers in each hexamer. The geometries of all trimers are given in the
Supplementary Information [74]. `Sum' corresponds to the sum of the
signed errors for individual trimers and is equal to the error in Eint[3, 6]
for the corresponding hexamers. The root mean square errors (RMSE),
mean absolute errors (MAE), and maximum absolute errors (MAXE) are
also given. The Eint[3, 6](CBS) values are equal to −8.121 and −7.999
kcal/mol for cage and prism hexamers, respectively. An extended version
of this table containing the contributions for individual trimers is included
in the Supplementary Information [74].

MP2 CCSD(T) hybrid
aTZ aDZ haTZ aTZ aQZ aT-aD

cage
Sum -0.341 0.039 -0.036 0.036 0.013 0.031
RMSE 0.024 0.012 0.004 0.003 0.001 0.004
MAE 0.018 0.010 0.003 0.003 0.001 0.004
MAXE 0.057 0.033 0.009 0.007 0.003 0.009

prism
Sum -0.405 0.032 -0.040 0.037 0.014 0.028
RMSE 0.028 0.019 0.007 0.004 0.002 0.006
MAE 0.020 0.014 0.005 0.003 0.001 0.004
MAXE 0.073 0.048 0.019 0.008 0.003 0.013

144

152:1945952090



T
a
b
le

3
.2
:
P
er
fo
rm

an
ce

of
va
ri
ou
s
m
et
ho
ds

fo
r
co
m
pu

ti
ng

th
re
e-
bo

dy
pa
ir
w
is
e
no
na
dd

it
iv
e
in
te
ra
ct
io
n
en
er
gi
es

of
th
e

tr
im

er
s
ex
tr
ac
te
d
fr
om

th
e
ca
ge

an
d
pr
is
m

he
xa
m
er
s.

T
he

er
ro
rs

ar
e
de
�n

ed
as

in
T
ab
le
3.
1.

C
C
st
an
ds

fo
r

C
C
SD

(T
).
T
he

so
ur
ce
s
of

th
e
po
te
nt
ia
ls
ar
e:

C
C
po
l3
�
pr
es
en
t
w
or
k;

SA
P
T
-3
B
�
R
ef
.
28
;
W
H
B
B
n
�
R
ef
.
47
;

H
B
B
2-
po
l�

R
ef
.
53
.
A
n
ex
te
nd

ed
ve
rs
io
n
of

th
is
ta
bl
e
co
nt
ai
ni
ng

th
e
co
nt
ri
bu

ti
on
s
fo
r
in
di
vi
du

al
tr
im

er
s
is

in
cl
ud

ed
in

th
e
Su

pp
le
m
en
ta
ry

In
fo
rm

at
io
n
[7
4]
.

C
C
/(
T
-D
)

H
F
(4
5)

M
P
2(
45
)

C
C
(3
4)

C
C
po
l3

SA
P
T
-3
B

W
H
B
B
5

W
H
B
B
6

H
B
B
2-
po
l

ca
ge

Su
m

0.
03
1

-0
.4
27

-0
.3
52

-0
.0
02

0.
06
4

-0
.1
72

-0
.3
43

0.
00
4

-0
.1
87

R
M
SE

0.
00
4

0.
03
9

0.
02
4

0.
00
0

0.
01
9

0.
08
0

0.
04
5

0.
03
6

0.
04
2

M
A
E

0.
00
4

0.
02
8

0.
01
8

0.
00
0

0.
01
4

0.
06
2

0.
03
4

0.
02
7

0.
03
5

M
A
X
E

0.
00
9

0.
10
4

0.
05
5

0.
00
1

0.
04
0

0.
15
7

0.
10
1

0.
09
9

0.
09
6

pr
is
m

Su
m

0.
02
8

-0
.4
65

-0
.4
17

-0
.0
02

0.
01
9

-0
.8
13

-0
.4
25

-0
.2
39

-0
.2
91

R
M
SE

0.
00
6

0.
04
5

0.
02
7

0.
00
0

0.
01
9

0.
15
1

0.
06
5

0.
03
1

0.
06
5

M
A
E

0.
00
4

0.
02
7

0.
02
1

0.
00
0

0.
01
6

0.
11
2

0.
04
3

0.
02
4

0.
05
2

M
A
X
E

0.
01
3

0.
13
2

0.
06
5

0.
00
1

0.
03
3

0.
40
0

0.
18
8

0.
07
3

0.
13
4

145

153:4805714457



T
a
b
le
3
.3
:
C
om

parison
of

the
four-,

�ve-,
and

six-body
nonadditive

energies
(in

kcal/m
ol)

of
various

structures
of

the
w
ater

hexam
er

(optim
ized

using
the

C
C
-pol-8s+

N
B
potentialofR

ef.43),calculated
w
ith

C
C
SD

(T
),w

ith
one-

center
polarization

m
odel

from
R
ef.

28,
and

w
ith

the
current

three-center
polarization

m
odel.

T
he

C
C
SD

(T
)

calculations
w
ere

perform
ed

in
the

aT
Z
basis

set
using

fullhexam
er-centered

bases
for

each
cluster.

T
he

values
in

parentheses
correspond

to
E

C
C
S
D
(T

)
in
t

/(T
-D

)
calculations

in
tetram

er-centered
basis

sets
(these

values
w
ere

the
data

used
in

the
optim

izations
of

the
polarization

potential).
prism

cage
book

4-B
5-B

6-B
4-B

5-B
6-B

4-B
5-B

6-B
C
C
SD

(T
)

−
0.5737

0.0562
0.00076

−
0.4342

0.0027
−
0.0014

−
0.8692

−
0.0311

−
0.0028

(−
0.5708)

(−
0.4332)

(−
0.8667)

1-center
−
0.7037

0.0397
0.00193

−
0.4402

0.0081
−
0.0018

−
0.8167

−
0.0349

−
0.0037

3-center
−
0.6435

0.0354
0.00096

−
0.4516

0.0129
−
0.0025

−
0.8638

−
0.0423

−
0.0049

bag
ring

boat
4-B

5-B
6-B

4-B
5-B

6-B
4-B

5-B
6-B

C
C
SD

(T
)

−
0.9204

−
0.0141

0.00567
−
1.4529

−
0.1494

−
0.0079

−
1.3392

−
0.1287

−
0.0078

(−
0.9172)

(−
1.4487

a)
(−

1.3347)
1-center

−
0.8427

−
0.0314

0.00395
−
1.4357

−
0.1848

−
0.0164

−
1.2486

−
0.1468

−
0.0132

3-center
−
0.8386

−
0.0402

0.00485
−
1.3969

−
0.1887

−
0.0176

−
1.2648

−
0.1584

−
0.0143

a
A
n
incorrect

value
of

this
energy

equal
to
−
1.2811

kcal/m
ol

w
as

used
during

optim
ization.

146

154:6829514462



T
a
b
le
3
.4
:
T
ri
m
er

st
at
io
na
ry
-p
oi
nt

in
te
ra
ct
io
n
en
er
gi
es

(i
n
kc
al
/m

ol
)
an
d
ba
rr
ie
rs
re
la
ti
ve

to
th
e
en
er
gy

at
th
e
m
in
im
um

(i
n
cm
−
1
)
at

ge
om

et
ri
es

op
ti
m
iz
ed

w
it
h
th
e
C
C
po
l2
3
po
te
nt
ia
l.
T
he

le
ve
ls
of
C
B
S
ca
lc
ul
at
io
ns

ar
e
de
sc
ri
be
d
in

th
e
te
xt

an
d
in
cl
ud

e
al
l-
el
ec
tr
on

co
rr
el
at
io
n
in

th
e
tw
o-
bo

dy
pa
rt
.
T
he

m
on
om

er
-�
ex
ib
ili
ty

co
rr
ec
ti
on

∆
E

R
→

F

[in
cm
−
1
]
re
la
ti
ve

to
it
s
va
lu
e
at

th
e
m
in
im
um

is
de
�n

ed
as

in
R
ef
.
43
.
T
he

no
ta
ti
on

fo
r
m
in
im

a,
st
at
io
na
ry

po
in
ts

(S
P
),
an
d
tr
an
si
ti
on

st
at
es

(T
S)

fo
llo
w
s
R
ef
.
84
.
T
he

co
nv
er
si
on

fa
ct
or

fr
om

kc
al
/m

ol
to

cm
−
1
w
as

34
9.
75
50
.

st
at
io
na
ry

po
in
t

E
in
t

∆
E

in
t

E
in
t

∆
E

in
t

∆
E

R
→

F
∆
E

in
t
+

∆
E

R
→

F
∆
E

in
t
+

∆
E

R
→

F
∆
E

in
t

C
C
po
l2
3

C
C
po
l2
3

C
B
S

C
B
S

C
B
S

C
B
S

C
C
po
l2
3

R
ef
.
84

m
in
im
um

[u
ud

]
-1
6.
06
1

-1
6.
19
6

C
1
→
C

1
T
S
[u
dp

]
-1
5.
76
3

10
4.
4

-1
5.
88
7

10
8.
1

-2
1.
0

87
.1

83
.4

82
C

3
m
in
im
um

[u
uu

]
-1
5.
26
8

27
7.
3

-1
5.
38
9

28
2.
0

-1
4.
3

26
7.
8

26
3.
0

26
9

C
1
→
C

3
T
S
[u
up

]
-1
5.
21
6

29
5.
6

-1
5.
33
6

30
0.
7

-2
3.
5

27
7.
2

27
2.
1

27
5

C
3
h
SP

[p
pp

]
-1
4.
59
8

51
1.
8

-1
4.
68
7

52
7.
8

-7
0.
0

45
7.
8

44
1.
8

44
0

B
ifu

rc
at
ed

T
S
[u
pb

i]
-1
3.
82
9

78
0.
8

-1
3.
83
8

82
4.
6

-6
1.
2

76
3.
4

71
9.
7

76
0

R
M
SE

0.
10
8a

21
a

8b
18

b

a
W
it
h
re
sp
ec
t
to

C
B
S
re
su
lt
s.

b
W
it
h
re
sp
ec
t
to

th
e
ba
rr
ie
rs

of
R
ef
.
84
.

147

155:7637961312



Table 3.5: Comparison of RMSE's (in kcal/mol) of nonadditive three-body energies
on 600 trimers selected from snapshots of MD simulations in Ref. 13.

polarization model (Ref. 13) 0.107
polarization model (present work) 0.0734
SAPT-3B (Ref. 28) 0.0418
WHBB5 (Ref. 47) 0.0735
WHBB6 (Ref. 47) 0.0642
HBB2-pol (Ref. 53) 0.0374
CCpol3 0.0154
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Table 3.6: Many-body contributions (in kcal/mol) to the interaction energies of the
316 and 308 water 24-mers. SAMBA results are from Ref. 37.

isomer 316
2-B 3-B 4-B 5-B >5-B >4-B

∑4
2

∑4
1

CC-pol-8s+NB -183.856 -45.675 -6.664 -0.349 0.086 -0.263 -236.195
CCpol23+ -183.888 -51.251 -6.498 -0.320 0.075 -0.245 -241.637
SAMBA -191.532 -59.002 -7.001 -257.534 -238.719

isomer 308
CC-pol-8s+NB -184.800 -44.365 -7.381 -0.611 0.019 -0.592 -236.546
CCpol23+ -184.889 -50.310 -6.722 -0.461 0.030 -0.431 -241.921
SAMBA -193.128 -57.791 -6.765 -257.864 -238.638

316−308
CC-pol-8s+NB 0.945 -1.310 0.716 0.262 0.067 0.329 0.351
CCpol23+ 1.001 -0.942 0.224 0.141 0.045 0.186 0.284
SAMBA 1.596 -1.211 -0.236 0.150 -0.081
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Figure 3.1: Comparison of the total interaction energies of the water trimer computed
using CCpol23 and potentials from the literature. The geometries are
those of stationary points optimized using CCpol23 and are the same for
all methods. The CBS results were obtained as described in the text.
The WHBB5 and WHBB6 potentials are from Ref. 47, whereas HBB2-
pol is from Ref. 53. The vertical interaction energies produced by these
potentials were computed by us.
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Figure 3.2: Nonadditive three-body energies of 600 trimer con�gurations selected
from snapshots of MD simulations in Ref. 13 calculated from WHBB6
[47], HBB2-pol [53], and CCpol3 �ts and compared with CCSD(T)/(T-D)
values. The straight lines represent the ideal case (i.e., �t energies equal
to CCSD(T) energies). Note that the CCSD(T) energies are augmented
by 1 and 2 kcal/mol in the HBB2-pol and CCpol3 plots, respectively.
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Figure 3.3: Energies of various structures of the water hexamer relative to the lowest
structure (prism). In each case, the geometry optimization was per-
formed with the same method as the subsequent energy calculation, ex-
cept for the CCSD(T) energies which were obtained at MP2-optimized
geometries. The WHBB and HBB2-pol results are taken from sup-
plementary material of Refs. 47 and 53, respectively. The CCSD(T)
results in the haTZ basis are from Ref. 66. The results denoted as
CCSD(T)/CBS are from Ref. 71 and were computed using the MP2-
R12 method plus δECCSD(T)

int /haTZ. The �exible-monomer results include
monomer-relaxation corrections.
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Figure 3.4: Di�erences of the K-body and total interaction energies between the
�316� and �308� structures of the water 24-mer. The benchmark ab initio
results are taken from Ref. 37. The K-body contributions shown are in
all cases the vertical interaction energies. The K > 3-body contribution
is the pure four-body e�ect in the case of the benchmark. The total
interaction energy di�erences from the �exible-monomer potentials as
well as the ab initio benchmarks for this quantity include the one-body
term. The WHBB and HBB2-pol values were obtained by us at the
geometries of Ref. 91. The CC-pol-8s+NB and CCpol23+ results were
obtained for the �rigidized� structures, i.e., with all monomers within
the clusters transformed to their 〈r〉0-monomer geometries and the total
interaction energy di�erences for these potentials do not include any one-
body terms.
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