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Abstract

This dissertation presents functional inequalities connected to Sugeno inte-
gral and its applications. We focus on the Hermite-Hadmard inquality. So
we start with the computer approach to solve the general form of Hermite-
Hadamard inequality and to the best of our knowledge, this is the first work
where a computer program may be used to solve functional inequalities.
We then study the extension of Hermite-Hadamard inequality for the case of
quasi-arithmetically convex functions and it’s Sugeno intergal counter part
which provides a generalization and it acts as a generator for other means,
in particular linear, harmonic, geometric among others and this is followed
by the study of the Lagrangian mean ( non-arithmetic mean) which leads to
the characterization of the logarithmic mean.
Then, on upper Hermite–Hadamard inequalities for geometric-convex and
log-convex functions. This is a correction on a result by J. Sándor which is
contained in article [55] where author claims, among others, that theorem
6.1 holds (cf. Theorem 2.5 in [55]).
Finally, we present the applications of fuzzy measure theory where we first
propose an iterative approach to obtain the optimal value for λ without
having to solve complex polynomial functions. And then application of non-
additive fuzzy measures as an alternative to traditional risk metrics like stan-
dard deviation. So we consider a Markovitz-like portfolio selection problem,
where we use a fuzzy measure (a transfomation of Sugeno lambda-measure)
and a d-Choquet integral to form efficient frontier. Due to the limitations
of Modern Portfolio Theory (MPT) and its reliance on normal distribution
assumptions, we introduce non-additive fuzzy measure, which do not assume
specific probability distributions. This approach accommodates imprecision
and uncertainty in financial markets, providing a more comprehensive under-
standing of portfolio risk. By considering diversification and asset character-
istic dependencies, non-additive fuzzy measures offer a promising avenue for
more accurate risk analysis and informed investment decisions.

Keywords: Functional equations, Hermite–Hadamard inequalities, Fuzzy
measure, Sugeno integral, convex(concave) functions, Risk management,
Modern Portfolio Theory, stochastic orderings, Computer assisted methods,
Python.
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Streszczenie

Niniejsza rozprawa przedstawia nierówności funkcyjne związane z całką
Sugeno i jej zastosowaniami. Skupiamy się na nierówności Hermite’a-Hadmarda.
Wprowadzamy podejście komputerowe do rozwiązania ogólnej postaci nierówności
Hermite’a-Hadamarda; wedle naszej najlepszej wiedzy jest to pierwsza praca,
w której można zastosować program komputerowy do rozwiązania nierówności
funkcyjnych.
Następnie badamy rozszerzenie nierówności Hermite’a-Hadamarda w przy-
padku funkcji quasi-arytmetycznie wypukłych, w szczególności dla genera-
torów liniowych, harmonicznych, geometrycznych. Badamy też średnie la-
grange’owskie, co prowadzi do charakterystyki średniej logarytmicznej.
Następnie przedstawiono notatkę do wyniku J. Sándora, która stanowi ko-
rektę wyniku zawartego w artykule [40], gdzie autor twierdzi m.in., że twierdze-
nie 6.1 jest prawdziwe (por. Twierdzenie 2.5 w [55]).
Na koniec przedstawiamy zastosowania teorii miary rozmytej. Najpierw pro-
ponujemy podejście iteracyjne w celu uzyskania optymalnej wartości λ bez
konieczności rozwiązywania złożonych funkcji wielomianowych. Następne za-
stosowanie dotyczy miary rozmytej w zarządzaniu ryzykiem portfela, gdzie
proponujemy nową, nieaddytywną (rozmytą) funkcję agregującą, która nie
tylko nie zakłada żadnego rozkładu, ale oddaje dywersyfikację i zależność w
charakterystyce aktywów.

Słowa kluczowe: Równania funkcyjne, nierówności Hermite’a - Hadamarda,
miary rozmyte, całka Sugeno, funkcje wypukłe (wklęsłe), zarządzanie ryzykiem,
nowoczesna teoria portfelu, porządki stochastyczne, metody komputerowe
rozwiązywania równań i nierówności funkcyjnych, język programowania Python
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1 Introduction

Measure is one of the most important concepts in mathematics, for example
the concept of integration with respect to a given measure. In the classical
definition of measure we use additivity property. Additivity is very effective
in many applications, but in many real world problems we do not require
measure with respect to the additivity feature, for example in fuzzy logic,
artificial intelligence, data mining, decision making theory among others ad-
ditivity would be redundant. So the fuzzy measure doesn’t require additivity
in most cases, in fuzzy measure we require monotonicity related to inclusion
of sets.The development of fuzzy measure theory has been motivated by the
increasing apprehensiveness that the additivity property of classical measures
is in some applications context too restrictive and consequently unrealistic.
In mathematics, fuzzy measure theory considers generalized measures in
which the additive property is replaced by the weaker property of mono-
tonicity. The central concept of fuzzy measure theory is the fuzzy measure
which was introduced by Choquet in 1953 and independently defined by
Sugeno in 1974 in the context of fuzzy integrals. Sugeno integral is one of
the most important fuzzy integrals, which has many applications in various
fields.
The thesis presents the inequalities connected to Sugeno integral in particu-
lar the Hermite-Hadamard Inequality. The Hermite-Hadamard inequality is
the first fundamental result for convex functions defined on a interval of real
numbers with a natural geometrical interpretation and many applications. It
has attracted and continues to attract much interest in elementary mathe-
matics. Many mathematicians have devoted their efforts to generalise, refine,
counterpart and extend it for different classes of functions as seen in [18] [11],
[15],[19], [27], [29], [30], [31], [40] etc.

Definition 1.1. The classical convexity is defined as follows:
A function f : I Ñ R, where I Ă R is a real interval, is said to be convex if
the inequality

fpλx ` p1´ λqyq ď λfpxq ` p1´ λqfpyq

holds for all x, y P I and λ P r0, 1s. If the inequality is reversed f is said to
be concave.

The classical Hermite-Hadamard inequality provides estimates of the mean
value of a convex function f : ra, bs Ñ R

f

ˆ

a ` b

2

˙

ď
1

b ´ a

ż b

a

fpxqdx ď
fpaq ` fpbq

2
. (1)

1
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The thesis is composed of 6 chapters. Chapters 1 and 2 are devoted to the
general introduction and definitions of key terms.
In chapter 3, we present a computer program for solving inequalities of the
form

a1fpα1x ` p1´ α1qyq ` ¨ ¨ ¨ ` anfpαnx ` p1´ αnqyq ď
1

y ´ x

ż y

x

fptqdt (2)

where ai, αi are non-negative real numbers and
n
ř

i“1
ai “ 1 and f : R Ñ R is

assumed to be continuous.
Chapter 4 is devoted to the Sugeno Integral of Hermite-Hadamard Inequality
for case of quasi-arithmetically convex functions. Here we study the extension
of Hermite-Hadamard Inequality for the case of quasi-arithmetically convex
functions and it’s Sugeno intergal counter part which provides a generaliza-
tion and it acts as a generator for other means, in particular linear, harmonic,
geometric among others. This is followed by the study of the Lagrangian
mean (non-arithmetic mean) in Chapter 5 that’s the characterization of the
logarithmic mean. And then, on upper Hermite–Hadamard inequalities for
geometric-convex and log-convex functions. This is a correction on a result
by J. Sándor which is contained in article [55] where author claims, among
others, that theorem 6.1 holds (cf. Theorem 2.5 in [55]).
Finally, we present the applications of fuzzy measure theory where we first
propose an iterative approach to obtain the optimal value for λ without
having to solve complex polynomial functions.This iterative method proves
advantageous, particularly in real-world scenarios characterized by larger do-
mains, surpassing the limitations of conventional techniques and that’s the
gradient descent. Next is the application of non-additive fuzzy measures as
an alternative to traditional risk metrics like standard deviation. So we con-
sider a Markovitz-like portfolio selection problem, where we use a fuzzy mea-
sure (a transfomation of Sugeno lambda-measure) and a d-Choquet integral
to form efficient frontier. Due to the limitations of Modern Portfolio The-
ory (MPT) and its reliance on normal distribution assumptions, we intro-
duce non-additive fuzzy measure, which do not assume specific probability
distributions. This approach accommodates imprecision and uncertainty in
financial markets, providing a more comprehensive understanding of portfo-
lio risk. By considering diversification and asset characteristic dependencies,
non-additive fuzzy measures offer a promising avenue for more accurate risk
analysis and informed investment decisions.

2
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2 Preliminaries

To begin with, is to have an overview of fuzzy measure theory which will give
us the insight of fuzzy measures and fuzzy integral.
Firstly, we introduce the following notation: letXi, i P t1, ¨ ¨ ¨ , nu, be pairwise
disjoint non-empty sets that is XiXXj “ H, i ‰ j.We denote by X the union
of all Xi sets, namely

X “

n
ď

i“1

Xi.

The set X consists of all ”classes” generated by X1, . . . , Xn, namely

X “ tH, X1, . . . , Xn, X1 Y X2, . . . , X1 Y Xn, . . . , X1 Y X2 Y ¨ ¨ ¨ Y Xn “ Xu.

It is a straightforward matter to check that X is a σ-algebra of subsets
of X. Within this context, we introduce the notation σpjq, where j be-
longs to the set t0, 1, ¨ ¨ ¨ , nu. It represents a collection of sets, where each
member contains precisely j disjoint sets. In simpler terms, σp0q “ H,
σp1q “ tX1, ¨ ¨ ¨ , Xnu, σp2q “ ttX1YX2u, . . . , tX1YXnu, tX2YX3u, . . . , tX2Y
Xnu, . . . , tXn´1 Y Xnuu, and so on, until σpnq “ ttX1 Y X2 Y ¨ ¨ ¨ Y Xnuu.
The sets X1, . . . , Xn are the atoms of a finite Boolean algebra which is iso-
morphic to the powerset of t1, . . . , nu. Indeed the family X is isomorphic to
all subsets of t1, . . . , nu.

2.1 Fuzzy measure theory

Definition 2.1. (Probability measure)
Adopting the above notation, we say that the function Pr : X Ñ r0, 1s is
a probability measure on the space pX,X q if and only if Pr satisfies the
following requirements:

(1) PrpHq “ 0, P rpXq “ 1,

(2) for any A,B P X with A X B “ H, the following equality holds

PrpA Y Bq “ PrpAq ` PrpBq.

When addressing uncertainty, the conventional approach has been to employ
additive measures such as the probability measure pPrq. However, the advent
of fuzzy sets has revealed that probabilities alone may not be comprehensive
enough to effectively capture expert knowledge. In many instances, it be-
comes essential to move beyond probabilities and consider the expert’s level
of confidence or assurance regarding the actual occurrence of an event. In
line with this notion, we introduce the concept of fuzzy measure.

4
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Definition 2.2. (Fuzzy measure) [33].
Let X be a σ-algebra on a non-empty finite set X. A function µ : X Ñ r0, 1s
is considered a fuzzy measure on the measurable space pX,X q if and only if
µ satisfies the following requirements:

(1) µpHq “ 0, µpXq “ 1,

(2) for any A,B P X with B Ď A, it holds that µpBq ď µpAq (monotonic-
ity).

The following is a generalization of both probability and fuzzy measures.

Definition 2.3. (Sugeno λ-measure) [33].
Let Xi, i P t1, ¨ ¨ ¨ , nu, be pairwise disjoint sets and let X “

Ťn
i“1Xi. Suppose

further that λ P p´1,`8q. A Sugeno λ-measure is a function gλ : X Ñ r0, 1s
such that

1. gλpXq “ gλp

n
ď

i“1

Xiq “ 1,

2. For any A,B P X with A X B “ H the following equality holds

gλpA Y Bq “ gλpAq ` gλpBq ` λgλpAq ¨ gλpBq (3)

Remark 1. [39] Let us observe that the parameter λ satisfies the following
properties:

a)

λ ` 1 “
n

ś

i“1
r1` λgλpXiqs . (4)

b) If
n

ÿ

i“1

gλpXiq “ 1, then λ “ 0 indicating that gλ is an additive measure.

Example 2.1. Calculate the Sugeno λ-measure for the group of students
in the functional equation class. Given the set of sets X “ X1(the set of
students who scored 5 in functional equations) Y X2(the set of students who
scored 4 in functional equations) Y X3(the set of students who scored 3 in
functional equations) with fuzzy values as follows

gλpX1q “ 0.5,

gλpX2q “ 0.4,

gλpX3q “ 0.3.

5
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First we calculate the value of λ using the equation; λ`1 “
3

ś

i“1
p1`λgλpXiqq.

Simplifying the equation, we have, λ ` 1 “ p0.5λ ` 1qp0.4λ ` 1qp0.3λ ` 1q,
and so, 0.06λ3`0.47λ2`0.2λ “ 0, thus we obtain λ P t0,´7.3818,´0.4516u.
Since λ P p´1,8q, we conclude that λ = 0 or λ = -0.4516. Observing that
3

ř

i“1
gλpXiq ‰ 1, we conclude that λ ‰ 0. Therefore, we choose λ = -0.4516.

This choice of λ leads to the following measures;
gλpX1 Y X2q “ gλpX1q ` gλpX2q ` λ ¨ gλpX1q ¨ gλpX2q “ 0.8097,
gλpX1 Y X3q “ gλpX1q ` gλpX3q ` λ ¨ gλpX1q ¨ gλpX3q “ 0.7323,
gλpX2YX3q “ gλpX2q ` gλpX3q `λ ¨ gλpX2q ¨ gλpX3q “ 0.6458, and finally we
have
gλpX1 Y X2 Y X3q “ gλpXq “ 1.

Definition 2.4. (Sugeno Integral)[58].

Let µ be a fuzzy normalized measure defined on the set of sets X “

n
ď

i“1

Xi,

where Xi are pairwise disjoint sets. The Sugeno integral of a function f :
X Ñ r0, 1s with respect to the fuzzy measure µ is given by:

pSq

ż

fdµ “ rfpX1q ^ µpA1qs_rfpX2q ^ µpA2qs_¨ ¨ ¨_rfpXnq ^ µpAnqs (5)

Here, µpA1q “ µpX1 Y X2 Y . . . Y Xnq, µpA2q “ µpX2 Y X3 Y . . . Y Xnq,
. . . , µpAnq “ µpXnq. The ranges tfpX1q, fpX2q, . . . , fpXnqu are defined in
ascending order as fpX1q ď fpX2q ď . . . ď fpXnq.

Example 2.2. Consider the setsXi, i P t1, 2, 3u with ranges given as fpX1q “

0.1, fpX2q “ 0.4, fpX3q “ 0.7 such that the fuzzy measure is defined as

function values Normalized fuzzy measure
µpHq 0 0
µpX1q 0.1 0.08
µpX2q 0.3 0.23
µpX3q 0.5 0.38

µpX1 Y X2q 0.6 0.46
µpX2 Y X3q 0.7 0.54
µpX1 Y X3q 0.8 0.62

µpX1 Y X2 Y X3q 1.3 1

To normalize the fuzzy measures, we divide all of them by the largest value
in measure. The Sugeno integral is defined as

pSq

ż

fdµ “ r0.1^ 1s _ r0.4^ 0.54s _ r0.7^ 0.38s

6
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which finally gives us

pSq

ż

fdµ “ 0.4.

Example 2.3. Consider the sets Xi, i P t1, 2, 3u with ranges defined as
fpX1q “ 0.4, fpX2q “ 0.6, fpX3q “ 0.8 and fuzzy values given as

gλpX1q=0.6,
gλpX2q=0.4,
gλpX3q=0.3.

We begin by calculating λ using the equation; λ ` 1 “
3

ś

i“1
p1 ` λgλpXiqq.

Simplifying the equation, we have, λ`1 “ p0.6λ`1qp0.4λ`1qp0.3λ`1q, and
so, 0.072λ3` 0.54λ2` 0.3λ “ 0, thus we get λ P t0,´0.6042,´6.8958u. Since

λ P p´1,8q we have that λ “ 0 or λ “ -0.6042. Observing that
3

ř

i“1
gλpXiq ‰ 1,

we conclude that λ ‰ 0. Hence, we choose λ “ ´0.6042 and we calculate the
following measures
gλpX1 Y X2q “ gλpX1q ` gλpX2q ` λgλpX1q ¨ gλpX2q “ 0.855,
gλpX1 Y X3q “ gλpX1q ` gλpX3q ` λgλpX1q ¨ gλpX3q “ 0.7912,
gλpX2 Y X3q “ gλpX2q ` gλpX3q ` λgλpX2q ¨ gλpX3q “ 0.6275, and finally
gλpX1 Y X2 Y X3q “ gλpXq “ 1. Therefore, the Sugeno integral is

pSq
ş

fdgλ “ r0.4^ 1s _ r0.60^ 0.6275s _ r0.8^ 0.3s “ 0.6.

Definition 2.5. (Choquet Integral)[14].

Let µ be a fuzzy normalized measure defined on the set of sets X “

n
ď

i“1

Xi,

where Xi are pairwise disjoint sets. The Choquet integral of a function f :
X Ñ r0,8s with respect to the fuzzy measure µ is given by:

pCq

ż

A

fdµ “

n
ÿ

i“1

rfpXiq ´ fpXi´1qsµpAiq, (6)

Here, µpA1q “ µpX1 Y X2 Y . . . Y Xnq, µpA2q “ µpX2 Y X3 Y . . . Y Xnq,
. . . , µpAnq “ µpXnq. The ranges tfpX1q, fpX2q, . . . , fpXnqu are defined in
ascending order as fpX1q ď fpX2q ď . . . ď fpXnq fpX0q “ 0.

7
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Example 2.4. From example 2.6, we can equally compute Choquet integral
as shown below,

pCq

ż

A

fdgλ “

3
ÿ

i“1

rfpXiq ´ fpXi´1qsgλpAiq

“ rfpX1q ´ fpX0qs ¨ gλpA1q ` rfpX2q ´ fpX1qs ¨ gλpA2q ` rfpX3q ´ fpX2qs ¨ gλpA3q.

“ 1p0.4q ` p0.6´ 0.4q0.6275` p0.8´ 0.6q0.3 “ 0.5855.

We observe that Sugeno integral value for example 2.6 is higher than the
Choquet integral. So, this suggests that the minimum value in the set of val-
ues is not too low. This is because the Sugeno integral is more sensitive to
the minimum values in a set, while the Choquet integral is more sensitive to
the relative importance of the different values in a set.

Taking into account Definition 2.3 and Remark 1, we introduce a modified
version of the Sugeno λ-measure, which we refer to as the mλ-measure which
is helpful in computing fuzzy lambda measure for large domains.

Definition 2.6. ( mλ-measure )
Let Xi, i P t1, . . . , nu be pairwise disjoint sets and let X represent the
union of all these Xi sets. Suppose further that λ P p´1,`8q, the function
mλ : X Ñ r0, 1s, is referred to as an mλ-measure if it satisfies the following
conditions:

1) mλpXq “ mλp

n
ď

i“1

Xiq “ 1

2)

mλp

m
ď

i“1

Xiq “

m
ÿ

j“1

ÿ

X̂Pσpjq

λj´1mλpX̂q (7)

here each X̂ P σpjq has cardinality of j( card(X̂) =j) and σpjq represents
a collection of sets, where each member have exactly j number of disjoint
set(s) and mλpX̂q “

ś

X̂˚PX̂

mλpX̂˚q.

8
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2.2 Sugeno and Choquet integrals for nonnegative func-
tions

It’s well known that in case of classical measure (additive) measures, the
Lebesgue integral is the usual definition of an integral with respect to mea-
sure, and it allows the computation of the expected value of random variables.
Two concepts of integrals emerge; the one proposed by Choquet in 1953, and
the one proposed by Sugeno in 1974 which define integral of a function with
respect to a non-additive measure, i.e. capacity or game. Both are based on
decumulative distribution function on the integrand with respect to the ca-
pacity.
Most of the other concepts of integral are also based on the decumulative
function like the Shilkret integral, but other approaches are possible.

Definition 2.7. (Discrete Sugeno Integral)[58].

Let µ be a fuzzy normalized measure defined on the set of sets X “

n
ď

i“1

Xi,

where Xi are pairwise disjoint sets. The Sugeno integral of a function f :
X Ñ r0, 1s with respect to the fuzzy measure µ is given by:

pSq

ż

fdµ “ rfpX1q ^ µpA1qs_rfpX2q ^ µpA2qs_¨ ¨ ¨_rfpXnq ^ µpAnqs (8)

Here, µpA1q “ µpX1 Y X2 Y . . . Y Xnq, µpA2q “ µpX2 Y X3 Y . . . Y Xnq,
. . . , µpAnq “ µpXnq. The ranges tfpX1q, fpX2q, . . . , fpXnqu are defined in
ascending order as fpX1q ď fpX2q ď . . . ď fpXnq.

Example 2.5. Consider the setsXi, i P t1, 2, 3u with ranges given as fpX1q “

0.1, fpX2q “ 0.4, fpX3q “ 0.7 such that the fuzzy measure is defined as

function values Normalized fuzzy measure
µpHq 0 0
µpX1q 0.1 0.08
µpX2q 0.3 0.23
µpX3q 0.5 0.38

µpX1 Y X2q 0.6 0.46
µpX2 Y X3q 0.7 0.54
µpX1 Y X3q 0.8 0.62

µpX1 Y X2 Y X3q 1.3 1

To normalize the fuzzy measures, we divide all of them by the largest value
in measure. The Sugeno integral is defined as

pSq

ż

fdµ “ r0.1^ 1s _ r0.4^ 0.54s _ r0.7^ 0.38s

9
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which finally gives us

pSq

ż

fdµ “ 0.4.

Example 2.6. Consider the sets Xi, i P t1, 2, 3u with ranges defined as
fpX1q “ 0.4, fpX2q “ 0.6, fpX3q “ 0.8 and fuzzy values given as

gλpX1q=0.6,
gλpX2q=0.4,
gλpX3q=0.3.

We begin by calculating λ using the equation; λ ` 1 “
3

ś

i“1
p1 ` λgλpXiqq.

Simplifying the equation, we have λ`1 “ p0.6λ`1qp0.4λ`1qp0.3λ`1q, and
so, 0.072λ3` 0.54λ2` 0.3λ “ 0, thus we get λ P t0,´0.6042,´6.8958u. Since

λ P p´1,8q we have that λ “ 0 or λ “ -0.6042. Observing that
3

ř

i“1
gλpXiq ‰ 1,

we conclude that λ ‰ 0. Hence, we choose λ “ ´0.6042 and we calculate the
following measures
gλpX1 Y X2q “ gλpX1q ` gλpX2q ` λgλpX1q ¨ gλpX2q “ 0.855,
gλpX1 Y X3q “ gλpX1q ` gλpX3q ` λgλpX1q ¨ gλpX3q “ 0.7912,
gλpX2 Y X3q “ gλpX2q ` gλpX3q ` λgλpX2q ¨ gλpX3q “ 0.6275, and finally
gλpX1 Y X2 Y X3q “ gλpXq “ 1. Therefore, the Sugeno integral is

pSq
ş

fdgλ “ r0.4^ 1s _ r0.60^ 0.6275s _ r0.8^ 0.3s “ 0.6.

Definition 2.8. (Choquet Integral)[14].

Let µ be a fuzzy normalized measure defined on the set of sets X “

n
ď

i“1

Xi,

where Xi are pairwise disjoint sets. The Choquet integral of a function f :
X Ñ r0,8s with respect to the fuzzy measure µ is given by:

pCq

ż

A

fdµ “

n
ÿ

i“1

rfpXiq ´ fpXi´1qsµpAiq, (9)

Here, µpA1q “ µpX1 Y X2 Y . . . Y Xnq, µpA2q “ µpX2 Y X3 Y . . . Y Xnq,
. . . , µpAnq “ µpXnq. The ranges tfpX1q, fpX2q, . . . , fpXnqu are defined in
ascending order as fpX1q ď fpX2q ď . . . ď fpXnq fpX0q “ 0.

10
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Example 2.7. From example 2.6, we can equally compute Choquet integral
as shown below,

pCq

ż

A

fdgλ “

3
ÿ

i“1

rfpXiq ´ fpXi´1qsgλpAiq

“ rfpX1q ´ fpX0qs ¨ gλpA1q ` rfpX2q ´ fpX1qs ¨ gλpA2q ` rfpX3q ´ fpX2qs ¨ gλpA3q

“ 1p0.4q ` p0.6´ 0.4q0.6275` p0.8´ 0.6q0.3 “ 0.5855.

We observe that Sugeno integral value for example 2.6 is higher than the
Choquet integral. So, this suggests that the minimum value in the set of
values is not too low. This is because the Sugeno integral is more sensitive
to the minimum values in a set, while the Choquet integral is more sensitive
to the relative importance of the different values in a set.

Next we define the continuous Sugeno Integral. Suppose pX,Σ, µq is a fuzzy
measure space and that F is the class of all finite non-negative measurable
functions defined on pX,Σ, µq.
Then for any f P F, we write Fα “ tx : fpxq ě αu for α P r0,8s.

Definition 2.9 (Generalized Sugeno Integral). The generalized Sugeno in-
tegral of f P F on A P Σ is defined as

ż

˝,A

fdµ “ sup
tě0

pt ˝ µpA X tf ě tuqq. (10)

where tf ě tu “ tx P X : fpxq ě tu, µ is a monotone measure on Σ and ˝ is
a non-decreasing binary map.
Commonly encountered examples of the generalized Sugeno integral include:

1. The Sugeno integral
ż

A

fdµ “ sup
tě0

pt ^ µpA X tf ě tuqq, (11)

2. The Shilkret integral
ż

A

fdµ “ sup
tě0

pt.µpA X tf ě tuqq,

3. The q-integral and the semi-normed fuzzy integral.

11
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Here and subsequently, a ^ b “ minpa, bq and a _ b “ maxpa, bq.

Definition 2.10 ([64], Sugeno integral). Let µ be a fuzzy measure. If f P F
and A P Σ, then the Sugeno integral of f on A, with respect to the fuzzy
measure µ is defined by

ż

A

fdµ “
ł

αě0

rα ^ µpA X Fαqs. (12)

where
Ž

denotes the operation sup, or upper bound. If A “ X then
ż

X

fdµ “
ł

αě0

rα ^ µpf ě αqs.

Example 2.8. Let X “ r0, 1s, µ “ m2, where m is the Lebesgue measure,
fpxq “ x

2 . We have

Fα “ tx : fpxq ě αu “ r2α, 1s.

We only need to consider α P r0, 12q. So we have that
ż

A

fdµ “ sup
αPr0, 12 q

rα ^ p1´ 2αq
2
s.

In the expression, p1 ´ 2αq2 is a decreasing continuous function of α when
α P r0, 12q.
Hence, the supremum will be attained at the point which is the solution

of α “ p1´ 2αq2, that is, at α “ 1
4 .

Consequently, we have
ż

A

fdµ “
1
4
.

Let us enumerate some properties of the Sugeno integral which will be
useful in the sequel.

Proposition 1. ([64]) If µ is a fuzzy measure on X and f, g P F, α P r0,8s

then:

1.
ş

A
fdµ ď µpAq ðñ µpA X Fαq ď µpAq, α ě 0

2. If 1A is the characteristic function of A then
ş

X
f1Adµ “

ş

A
fdµ.

3.
ş

A
fdµ ą α ðñ Dβ ą α such that µpA X Fβq ą α.

12
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4. If µpAq ă 8, then
ş

A
fdµ ě α ðñ µpA X tf ě αuq ě α.

5. If µpAq ă 8, then
ş

A
fdµ ď α ðñ µpA X tf ě αuq ď α.

6. If f1 ď f2 then
ş

A
f1dµ ď

ş

A
f2dµ.

7.
ş

A
adµ “ a ^ µpAq for any constant a P r0,8s.

Remark 2. Consider the distribution function F associated to f on A, that
is, F pαq “ µpAX Fαq. Then, due to 4. and 5. of Proposition 1, we have that
F pαq “ α ñ

ş

A
fdµ “ α. Thus, from a numerical point of view, the Sugeno

integral can be calculated by solving the equation F pαq “ α.
Here and subsequently, a ^ b “ minpa, bq and a _ b “ maxpa, bq.

3 Hermite-Hadamard Inequality. ([44])

3.1 Introduction.

In this section, a computer program of solving inequalities of the form

a1fpα1x ` p1´ α1qyq ` ¨ ¨ ¨ ` anfpαnx ` p1´ αnqyq ď
1

y ´ x

ż y

x

fptqdt (13)

where ai, αi are non-negative real numbers and
n
ř

i“1
ai “ 1 is presented, where

the unknown function f : R Ñ R is assumed to be continuous. This in-
equality includes, as particular cases, many well-known inequalities such as
classical Hermite-Hadamard inequality in equation (1), Hermite-Hadamard
inequalities of higher orders, Bullen inequality, and others. In the literature,
there are known results where functional equations are solved with the use
of computer programs. However such results were limited to solving equa-
tions(see for example [2],[3], [7], [13], [21], [28],[50],[51]). To the best of my
knowledge, this is the first work where a computer program may be used to
solve functional inequalities. The construction of our program is completely
different from the methods used in the papers listed above and it is based
on the results connected with the use of stochastic orderings tools. The idea
to use stochastic orderings methods in the theory of inequalities was started
by T. Rajba in [53] and then continued in many papers see for example
[32],[38],[41][49],[52], [61]. The present approach is based on the ideas pre-
sented in the paper [62].
To present the solutions of (13) we need to use the higher-order convex func-
tions. The simplest way to introduce the notion of higher-order convexity

13
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is connected with divided differences of higher order which are recursively
defined as follows:

f rx1s “ fpx1q

and

f rx1, . . . , xns “
f rx1, . . . , xn´1s ´ f rx2, . . . , xns

xn ´ x1
.

Now, we can present the definition of n-convex function. Let I Ă R be an
interval. We say that function f is convex of order n if

f rx1, . . . , xn`2s ě 0, x1, . . . , xn`2 P I.

Observe that the notion of convexity of higher orders naturally extends
the usual convexity. First of all 0-convexity means non-decreasingness and
1-convexity is equivalent to the standard convexity. Moreover, in the class
of n-times differentiable functions, the condition f pnq ě 0 is equivalent with
pn ´ 1q-convexity. For a survey of higher-order convex functions see for ex-
ample [22].

3.2 A description of methods used in the computer
program

The computer program solving (13) is divided into three steps. Each step is
based on an important result. We explain these steps in this section.

3.2.1 Step 1

In this step, the main result from [6] is used. Let µ be a a non-zero bounded
Borel (signed) measure on the interval r0, 1s, and let

µn :“
ż 1

0
tndµptq, n “ 0, 1, 2, . . . .

Let n be the smallest non-negative integer such that µn ‰ 0. It was proved in
[6] that f : I Ñ R is a continuous function satisfying the integral inequality

ż 1

0
fpx ` tpy ´ xqqdµptq ě 0 (14)

then µnf is pn ´ 1q-convex.
Take λ as a probabilistic measure that is uniformly distributed in the

interval rx, ys and define a measure ν by the formula

ν “

n
ÿ

i“1

aiδαix`p1´αiqy

14
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where δαix`p1´αiqy is a measure concentrated in the point αix ` p1 ´ αiqy.
Further, let µ “ λ´ν, then our inequality (13) may be written as in the first
step, we find an n such that the functions

1, x, . . . , xn

satisfy (13) and x ÞÑ xn`1 does not satisfy it. Then we know that every
continuous f satisfying (13) has to be n-convex (or n-concave).

3.2.2 Step 2

Here we use a simple sufficient condition for the higher order convex ordering
from [16].

Theorem 3.1. Let X and Y be two random variables such that

ErXj
´ Y j

s “ 0, j “ 1, 2, . . . , s.

If the distribution functions FX , FY cross exactly s-times, at points x1, . . . , xs
and

p´1qs`1
pFY ptq ´ FXptqq ď 0 for all t P ra, x1s

then
ErfpXqs ď ErfpY qs

for all s-convex functions f : R Ñ R.

From now on it is clear that we need to pay attention to the cumula-
tive distribution functions (shortly CDF) of the measures λ, ν. Observe that
the CDF Fν is a nondecreasing step function and Fλ is strictly increasing.
Therefore there are two types of possible crossing points.

(i) We can have a crossing point in a node αix ` p1´ αiqy. It happens if

a1 ` ¨ ¨ ¨ ` ai´1 ă Fλpαix ` p1´ αiqyq

and
a1 ` ¨ ¨ ¨ ` ai ą Fλpαix ` p1´ αiqyq

(ii) There may be a crossing point between the nodes. It is the case if

a1 ` ¨ ¨ ¨ ` ai´1 ą Fλpαi´1x ` p1´ αi´1qyq

and
a1 ` ¨ ¨ ¨ ` ai´1 ă Fλpαix ` p1´ αiqyq.

15
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The program checks the above conditions and counts the crossing points. If
the obtained number of crossing points is equal to the number n obtained in
the first step then the procedure is finished. A continuous function satisfies
(13) if and only if it is n-convex (or n-concave, depending on the last sign
of Fλ ´ Fν). If there are more crossing points than n, we need to proceed to
the next step.

3.2.3 Step 3

If there are too many crossing points, then the convex ordering does not follow
from the previous step. Thus a more precise result has to be used. Let X, Y
be two random variables with the cumulative distribution functions F,G.
Denote F r0sptq :“ F ptq and F rksptq :“

şt

´8
F rk´1spsqds. Using this notation,

we formulate the following theorem from [57](see also [54]).

Theorem 3.2. Let X, Y be two random variables with the cumulative dis-
tribution functions F,G, respectively. Then inequality

ErfpXqs ě ErfpY qs

holds for all m-convex functions f : R Ñ R if and only if the following two
conditions are satisfied:

ErXk
s “ ErY k

s, k “ 1, . . . ,m (15)

and
p´1qm

`

Grms
ptq ´ F rms

ptq
˘

ě 0, for all t P R. (16)

To use this theorem our program calculates the functions F rms

λ and F rms
ν

and checks the condition (16). It is first done in nodes: if the sign of the
expression

F
rms

λ ´ F rms
ν (17)

is different in any two nodes then we know that the condition (16) is not
satisfied. However, if this sign is the same in all nodes it may still happen
that it is different between the nodes. Therefore, we find the critical points
of (17) and we check its values in these points. Then the procedure is fin-
ished. It should be emphasized that the form of (17) is different between
different nodes and, therefore, the whole task requires simple but awkward
calculations. Thus this is a very good task for the computer.

16
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3.3 Computer code

The Python code provided below is designed to be executed exclusively
within the Python Sagemath environment. It’s important to highlight that
the line from sage.all import * is functional solely in a Python environ-
ment with Sagemath installed. The subsequent code outlines our procedural
steps as follows:

(a) Commence by importing the following Python libraries. These include
sage.all, sys, sympy (Function, Symbol,symbols,cancel,N,sqrt,Rational),
numpy, scipy.special (comb) and time. Subsequently, define the required
variables and function. Here’s the code snippet illustrating the process:

import sys
from sage.all import *
from sympy import Function Symbol,symbols,cancel,
N,sqrt,Rational
import numpy as np
from scipy.special import comb
import time
import sympy as sp
import matplotlib.pyplot as plt
x=Symbol(’x’)
t=Symbol(’t’)
y=Symbol(’y’)
f= Function(’f’)

(b) We have introduced a Python function referred to as general inequalityp¨).
This function encapsulates the entire Steps 1-3 and operates by taking
a functional inequality in the form (13) as input. It’s worth highlight-
ing that the ”ď 1

y´x

şy

x
fptqdt” part of (13) remains consistent across all

members of (13). Therefore, this component is embedded within the
computer code and isn’t required as input when executing the code.
Consequently, the code is executed using the following command:

general inequality pa1fpα1x ` p1´ α1qyq ` ¨ ¨ ¨ ` anfpαnx ` p1´ αnqyqq

The input is formulated in terms of the function f , and it’s essential
to recognize that any other representation will result in the generation
of an error message.

17
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It’s important to highlight that the developed Python code is based on
Python version 3.8 and Sagemath 9.1, along with all their necessary prereq-
uisites. Both Python and Sagemath are open-source programming tools, and
it’s worth noting that some adjustments might be needed in the future to
ensure compatibility with forthcoming versions of these software tools.

In the next subsection, we provide some results accompanied by graphs as
well as some results without graphical representation. For a comprehensive
view of all results including graphs, please refer to the GitHub URL above
or feel free to reach out to the authors via email.

3.4 Results of the computer code

3.5 Functional inequalities considered by M. Bessenyei
and Z. Páles

Example 3.1. (cf. Corollary 1 in [5]). Suppose that f : rx, ys Ñ R,

f
`

x`y
2

˘

ď 1
y´x

şy

x
fptqdt

INPUT:
general inequalitypfppx ` yq{2qq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 1-concave
function.

From Step 2, we obtain the number of the crossing points of these function
to be 1. Since the number of crossing point is equal to 1 then we know that
the functional inequality is satisfied by every 1-concave function f .

Example 3.2. (cf. Corollary 2 in [5]). Suppose that f : rx, ys Ñ R,

18
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“

1
4fpxq ` 3

4f
`

1
3x ` 2

3y
˘‰

ď 1
y´x

şy

x
fptqdt

INPUT:
general inequalitypp1{4q ˚ fpxq ` p3{4q ˚ fpp1{3q ˚ x ` p2{3q ˚ yqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 2-convex
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 2. Since the number of crossing points is equal to 2 then we know that
the functional inequality is satisfied by every 2-convex functions f .

Example 3.3. (cf. Corollary 3 in [5]). Suppose that f : rx, ys Ñ R,

1
2f

´

3`
?
3
6 x ` 3´

?
3
6 y

¯

` 1
2f

´

3´
?
3
6 x ` 3`

?
3
6 y

¯

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{2q ˚ pfppp3` sqrtp3qq{6q ˚ x ` pp3´ sqrtp3qq{6q ˚ yq

` fppp3´ sqrtp3qq{6q ˚ x ` pp3` sqrtp3qq{6q ˚ yqqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 3-convex
functions.
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From Step 2, we obtain the number of the crossing points of these functions
to be 3. Since the number of crossing points is equal to 3 then we know that
the functional inequality is satisfied by every 3-convex functions f .

Example 3.4. (cf. Corollary 4 in [5]). Suppose that f : rx, ys Ñ R,

1
9fpxq` 16`

?
6

36 f
´

4`
?
6

10 x ` 6´
?
6

10 y
¯

` 16´
?
6

36 f
´

4´
?
6

10 x ` 6`
?
6

10 y
¯

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{9q ˚ fpxq ` pp16` sqrtp6qq{36q ˚ pfppp4` sqrtp6qq{10q ˚ x

` pp6´ sqrtp6qq{10q ˚ yqq ` pp16´ sqrtp6qq{36q
˚ pfppp4´ sqrtp6qq{10q ˚ x ` pp6` sqrtp6qq{10q ˚ yqqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 4-convex
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 4. Since the number of crossing points is equal to 4 then we know that

20
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the functional inequality is satisfied by every 4-convex functions f .
- The time taken to solve the problem is 0.5 seconds -

Example 3.5. (cf. Corollary 5 in [5]). Suppose that f : rx, ys Ñ R,

5
18f

´

5`
?
15
10 x ` 5´

?
15
10 y

¯

` 4
9f

`

x`y
2

˘

` 5
18f

´

5´
?
15
10 x ` 5`

?
15
10 y

¯

ď 1
y´x

şy

x
fptqdt

INPUT

general inequalitypp5{18q ˚ pfppp5` sqrtp15qq{10q ˚ x ` pp5´ sqrtp15qq{10q ˚ yqq

` p4{9q ˚ pfppx ` yq{2qq ` p5{18q ˚ pfppp5´ sqrtp15qq{10q ˚ x

` pp5` sqrtp15qq{10q ˚ yqqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 5-convex
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 5. Since the number of crossing points is equal to 5 then we know that
the functional inequality is satisfied by every 5-convex functions f .
- The time taken to solve the problem is 0.53 seconds -

3.6 Functional inequalities considered by T. Szostok

Example 3.6. (cf. Example 1 in [62]). Suppose that f : rx, ys Ñ R,

3
14fpxq ` 3

22f
`

2
3x ` 1

3y
˘

` 50
77f

`

3
10x ` 7

10y
˘

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp3{14q ˚ fpxq ` p3{22q ˚ fpp2{3q ˚ x ` p1{3q ˚ yq

` p50{77q ˚ fpp3{10q ˚ x ` p7{10q ˚ yqq
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OUTPUT:
By Step 1, every solution of the functional inequality must be a 2-convex
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 4.
By Step 3, the functional inequality is satisfied by every 2-convex functions
f .
- The time taken to solve the problem is 1.03 seconds -

Example 3.7. (cf. Example 2 in [62]). Suppose that f : rx, ys Ñ R,

1
5fpxq ` 3

10fp 712x ` 5
12yq ` 1

2fp14x ` 3
4yq ď 1

y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{5q ˚ fpxq ` p3{10q ˚ fpp7{12q ˚ x ` p5{12q ˚ yq

` p1{2q ˚ fpp1{4q ˚ x ` p3{4q ˚ yqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 2-convex
functions.
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From Step 2, we obtain the number of the crossing points of these functions
to be 4.
By Step 3, the functional inequality is satisfied by every 2-convex functions
f .
- The time taken to solve the problem is 0.51 seconds -

Example 3.8. (cf. Example 3 in [62]). Suppose that f : rx, ys Ñ R,

1
9fpxq ` 1

3fp34x ` 1
4yq ` 5

9fp14x ` 3
4yq ď 1

y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{9q ˚ fpxq ` p1{3q ˚ fpp3{4q ˚ x ` p1{4q ˚ yq

` p5{9q ˚ fpp1{4q ˚ x ` p3{4q ˚ yqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 2-convex
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 4.
By Step 3, the functional inequality is satisfied by every 2-convex functions
f .
- The time taken to solve the problem is 0.39 seconds -

3.7 Functional inequalities stemming from the known
closed quadrature rules

Example 3.9. The 2-point rule is called the trapezoidal rule. Let f : rx, ys Ñ

R,
“

1
2fpxq ` 1

2fpyq
‰

ď 1
y´x

şy

x
fptqdt
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INPUT:
general inequalitypp1{2q ˚ fpxq ` p1{2q ˚ fpyqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 1-concave
function.

From Step 2, we obtain the number of the crossing points of these functions
to be 1. Since the number of crossing points is equal to 1 then we know that
the functional inequality is satisfied by every 1-concave function f .
- The time taken to solve the problem is 0.2 seconds -

Example 3.10. The 3-point rule is known as Simpson’s rule. Let f : rx, ys Ñ

R,
“

1
6fpxq ` 2

3f
`

x`y
2

˘

` 1
6fpyq

‰

ď 1
y´x

şy

x
fptqdt

INPUT:
general inequalitypp1{6q ˚ fpxq ` p2{3q ˚ fppx ` yq ˚ p1{2qq ` p1{6q ˚ fpyqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 3-concave
functions.

From Step 2, we obtain the number of the crossing points of these functions
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to be 3. Since the number of crossing points is equal to 3 then we know that
the functional inequality is satisfied by every 3-concave functions f .
- The time taken to solve the problem is 0.25 seconds -

Example 3.11. The 4-point closed rule is Simpson’s 3/8 rule. Let f :
rx, ys Ñ R,

1
8

“

fpxq ` 3f
`

x`2y
3

˘

` 3f
`2x`y
3

˘

` fpyq
‰

ď 1
y´x

şy

x
fptqdt

INPUT:
general inequalitypp1{8q ˚ pfpxq ` 3 ˚ fppx` 2 ˚ yq ˚ p1{3qq ` 3 ˚ fpp2 ˚ x` yq ˚

p1{3qq ` fpyqqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 3-concave
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 5.
By Step 3, the functional inequality is satisfied by every 3-concave function
f .
- The time taken to solve the problem is 0.83 seconds -

Example 3.12. The 5-point closed rule is Boole’s rule. Let f : rx, ys Ñ R,

1
90

“

7fpxq ` 32f
`3x`y
4

˘

` 12f
`

x`y
2

˘

` 32f
`

x`3y
4

˘

` 7fpyq
‰

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{90q ˚ p7 ˚ fpxq ` 32 ˚ fpp3{4q ˚ x ` p1{4q ˚ yq

` 12 ˚ fppx ` yq{2q ` 32 ˚ fpp1{4q ˚ x ` p3{4q ˚ yq ` 7 ˚ fpyqqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 5-concave
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functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 7.
By Step 3, the functional inequality is satisfied by every 5-concave functions
f .
- The time taken to solve the problem is 6.69 seconds -

Example 3.13. The 6-point closed rule. Let f : rx, ys Ñ R,

r 1288

“

19fpxq ` 75f
`4x`y
5

˘

` 50f
`3x`2y
5

˘

` 50f
`2x`3y
5

˘

` 75f
`

x`4y
5

˘

` 19fpyq
‰

ď
1

y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{288q ˚ p19 ˚ fpxq ` 75 ˚ fpp4{5q ˚ x ` p1{5q ˚ yq

` 50 ˚ fpp3{5q ˚ x ` p2{5q ˚ yq ` 50 ˚ fpp2{5q ˚ x ` p3{5q ˚ yq

` 75 ˚ fpp1{5q ˚ x ` p4{5q ˚ yq ` 19 ˚ fpyqqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 5-concave
functions.
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From Step 2, we obtain the number of the crossing points of these functions
to be 9.
By Step 3, the functional inequality is satisfied by every 5-concave functions
f .
- The time taken to solve the problem is 18.22 seconds -

Example 3.14. The 7-point closed rule. Let f : rx, ys Ñ R,

1
840r41fpxq ` 216f

`5x`y
6

˘

` 27f
`4x`2y
6

˘

` 272f
`3x`3y
6

˘

` 27f
`2x`4y
6

˘

` 216f
`

x`5y
6

˘

` 41fpyqs ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{840q ˚ p41 ˚ fpxq ` 216 ˚ fpp5{6q ˚ x ` p1{6q ˚ yq

` 27 ˚ fpp4{6q ˚ x ` p2{6q ˚ yq ` 272 ˚ fpp3{6q ˚ x ` p3{6q ˚ yq

` 27 ˚ fpp2{6q ˚ x ` p4{6q ˚ yq ` 216 ˚ fpp1{6q ˚ x ` p5{6q ˚ yq

` 41 ˚ fpyqqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 7-concave
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 11.
By Step 3, the functional inequality is satisfied by every 7-concave functions
f .
- The time taken to solve the problem is 61.2 seconds -

Example 3.15. The 8-point closed rule. Let f : rx, ys Ñ R,

1
17280r751fpxq ` 3577f

`6x`y
7

˘

` 1323f
`5x`2y
7

˘

` 2989f
`4x`3y
7

˘

` 2989f
`3x`4y
7

˘

` 1323f
`2x`5y
7

˘

` 3577f
`

x`6y
7

˘

` 751fpyqs ď 1
y´x

şy

x
fptqdt
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INPUT:

general inequalitypp1{17280q ˚ p751 ˚ fpxq ` 3577 ˚ fpp6{7q ˚ x ` p1{7q ˚ yq

` 1323 ˚ fpp5{7q ˚ x ` p2{7q ˚ yq ` 2989 ˚ fpp4{7q ˚ x ` p3{7q ˚ yq

` 2989 ˚ fpp3{7q ˚ x ` p4{7q ˚ yq ` 1323 ˚ fpp2{7q ˚ x ` p5{7q ˚ yq

` 3577 ˚ fpp1{7q ˚ x ` p6{7q ˚ yq ` 751 ˚ fpyqqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 7-concave
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 13.
By Step 3, the functional inequality is satisfied by every 7-concave functions
f .
- The time taken to solve the problem is 74.09 seconds -

Example 3.16. The 9-point closed rule. Let f : rx, ys Ñ R,

1
28350r989fpxq ` 5888f

`7x`y
8

˘

´ 928f
`6x`2y
8

˘

` 10496f
`5x`3y
8

˘

´ 4540f
`4x`4y
8

˘

` 10496f
`3x`5y
8

˘

´ 928f
`2x`6y
8

˘

` 5888f
`

x`7y
8

˘

` 989fpyqs ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{28350q ˚ p989 ˚ fpxq ` 5888 ˚ fpp7{8q ˚ x ` p1{8q ˚ yq

´ 928 ˚ fpp6{8q ˚ x ` p2{8q ˚ yq ` 10496 ˚ fpp5{8q ˚ x ` p3{8q ˚ yq

´ 4540 ˚ fpp4{8q ˚ x ` p4{8q ˚ yq ` 10496 ˚ fpp3{8q ˚ x ` p5{8q ˚ yq

´ 928 ˚ fpp2{8q ˚ x ` p6{8q ˚ yq ` 5888 ˚ fpp1{8q ˚ x ` p7{8q ˚ yq

` 989 ˚ fpyqqq

OUTPUT:
’This equation does not belong to class (1)’
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Example 3.17. The 10-point closed rule. Let f : rx, ys Ñ R,

1
89600r2857pfpxq ` fpyqq ` 15741

`

f
`8x`y
9

˘

` f
`

x`8y
9

˘˘

` 1080
`

f
`7x`2y
9

˘

` f
`2x`7y
9

˘˘

` 19344
`

f
`6x`3y
9

˘

` f
`3x`6y
9

˘˘

` 5778
`

f
`5x`4y
9

˘

` f
`4x`5y
9

˘˘

s ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{89600q ˚ p2857 ˚ pfpxq ` fpyqq

` 15741 ˚ pfpp8{9q ˚ x ` p1{9q ˚ yq ` fpp1{9q ˚ x ` p8{9q ˚ yqq

` 1080 ˚ pfpp7{9q ˚ x ` p2{9q ˚ yq ` fpp2{9q ˚ x ` p7{9q ˚ yqq

` 19344 ˚ pfpp6{9q ˚ x ` p3{9q ˚ yq ` fpp3{9q ˚ x ` p6{9q ˚ yqq

` 5778 ˚ pfpp5{9q ˚ x ` p4{9q ˚ yq ` fpp4{9q ˚ x ` p5{9q ˚ yqqqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 9-concave
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 13.
By Step 3, the functional inequality is satisfied by every 9-concave functions
f .
- The time taken to solve the problem is 245.0 seconds -

Example 3.18. The 11-point closed rule. Let f : rx, ys Ñ R,

1
598752r16067pfpxq ` fpyqq ` 106300

`

f
`9x`y
10

˘

` f
`

x`9y
10

˘˘

´ 48525
`

f
`8x`2y
10

˘

` f
`2x`8y
10

˘˘

` 272400
`

f
`7x`3y
10

˘

` f
`3x`7y
10

˘˘

´ 260550
`

f
`6x`4y
10

˘

` f
`4x`6y
10

˘˘

` 427368f
`5x`5y
10

˘

s ď 1
y´x

şy

x
fptqdt
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INPUT:

general inequalitypp1{598752q ˚ p16067 ˚ pfpxq ` fpyqq

` 106300 ˚ pfpp9{10q ˚ x ` p1{10q ˚ yq ` fpp1{10q ˚ x ` p9{10q ˚ yqq

´ 48525 ˚ pfpp8{10q ˚ x ` p2{10q ˚ yq ` fpp2{10q ˚ x ` p8{10q ˚ yqq

` 272400 ˚ pfpp7{10q ˚ x ` p3{10q ˚ yq ` fpp3{10q ˚ x ` p7{10q ˚ yqq

´ 260550 ˚ pfpp6{10q ˚ x ` p4{10q ˚ yq ` fpp4{10q ˚ x ` p6{10q ˚ yqq

` 427368 ˚ fpp5{10q ˚ x ` p5{10q ˚ yqqq

OUTPUT:
’This equation does not belong to class (1)’

3.8 Functional inequalities stemming from the known
open Newton-Cotes rules

Example 3.19. The 2-point rule. Let f : rx, ys Ñ R,

1
2f

`

2
3x ` 1

3y
˘

` 1
2f

`

1
3x ` 2

3y
˘

ď 1
y´x

şy

x
fptqdt

INPUT:
general inequalitypp1{2q˚fpp2{3q˚x`p1{3q˚yq`p1{2q˚fpp1{3q˚x`p2{3q˚yqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 1-convex
function.

From Step 2, we obtain the number of the crossing points of these functions
to be 3.
By Step 3, the functional inequality is satisfied by every 1-convex function
f .
- The time taken to solve the problem is 0.3 seconds -
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Example 3.20. The 3-point rule. Let f : rx, ys Ñ R,

1
3

“

2f
`

3
4x ` 1

4y
˘

´ f
`

2
4x ` 2

4y
˘

` 2f
`

1
4x ` 3

4y
˘‰

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{3q ˚ p2 ˚ fpp3{4q ˚ x ` p1{4q ˚ yq ´ fpp2{4q ˚ x ` p2{4q ˚ yq

` 2 ˚ fpp1{4q ˚ x ` p3{4q ˚ yqqq

OUTPUT:
’This equation does not belong to class (1)’

Example 3.21. The 4-point rule. Let f : rx, ys Ñ R,

1
24

“

11f
`

4
5x ` 1

5y
˘

` f
`

3
5x ` 2

5y
˘

` f
`

2
5x ` 3

5y
˘

` 11f
`

1
5x ` 4

5y
˘‰

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{24q ˚ p11 ˚ fpp4{5q ˚ x ` p1{5q ˚ yq ` fpp3{5q ˚ x ` p2{5q ˚ yq

` fpp2{5q ˚ x ` p3{5q ˚ yq ` 11 ˚ fpp1{5q ˚ x ` p4{5q ˚ yqqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 3-convex
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 3. Since the number of crossing point is equal to 3 then we know that
the functional inequality is satisfied by every 3-convex functions f .
- The time taken to solve the problem is 0.37 seconds -

Example 3.22. The 5-point rule. Let f : rx, ys Ñ R,

1
20

“

11f
`

5
6x ` 1

6y
˘

´ 14f
`

4
6x ` 2

6y
˘

` 26f
`

3
6x ` 3

6y
˘

´ 14f
`

2
6x ` 4

6y
˘

` 11f
`

1
6x ` 5

6y
˘‰

ď 1
y´x

şy

x
fptqdt
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INPUT:

general inequalitypp1{20q ˚ p11 ˚ fpp5{6q ˚ x ` p1{6q ˚ yq ´ 14 ˚ fpp4{6q ˚ x ` p2{6q ˚ yq

` 26 ˚ fpp3{6q ˚ x ` p3{6q ˚ yq ´ 14 ˚ fpp2{6q ˚ x ` p4{6q ˚ yq

` 11 ˚ fpp1{6q ˚ x ` p5{6q ˚ yqqq

OUTPUT:
’This equation does not belong to class (1)’

Example 3.23. The 6-point rule. Let f : rx, ys Ñ R,

1
1440r611f

`

6
7x ` 1

7y
˘

´ 453f
`

5
7x ` 2

7y
˘

` 562f
`

4
7x ` 3

7y
˘

` 562f
`

3
7x ` 4

7y
˘

´ 453f
`

2
7x ` 5

7y
˘

` 611f
`

1
7x ` 6

7y
˘

s ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{1440q ˚ p611 ˚ fpp6{7q ˚ x ` p1{7q ˚ yq

´ 453 ˚ fpp5{7q ˚ x ` p2{7q ˚ yq ` 562 ˚ fpp4{7q ˚ x ` p3{7q ˚ yq

` 562 ˚ fpp3{7q ˚ x ` p4{7q ˚ yq ´ 453 ˚ fpp2{7q ˚ x ` p5{7q ˚ yq

` 611 ˚ fpp1{7q ˚ x ` p6{7q ˚ yqqq

OUTPUT:
’This equation does not belong to class (1)’

Example 3.24. The 7-point rule. Let f : rx, ys Ñ R,

1
945r460f

`

7
8x ` 1

8y
˘

´ 954f
`

6
8x ` 2

8y
˘

` 2196f
`

5
8x ` 3

8y
˘

´ 2459f
`

4
8x ` 4

8y
˘

` 2196f
`

3
8x ` 5

8y
˘

´ 954f
`

2
8x ` 6

8y
˘

` 460f
`

1
8x ` 7

8y
˘

s ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{945q ˚ p460 ˚ fpp7{8q ˚ x ` p1{8q ˚ yq

´ 954 ˚ fpp6{8q ˚ x ` p2{8q ˚ yq ` 2196 ˚ fpp5{8q ˚ x ` p3{8q ˚ yq

´ 2459 ˚ fpp4{8q ˚ x ` p4{8q ˚ yq ` 2196 ˚ fpp3{8q ˚ x ` p5{8q ˚ yq

´ 954 ˚ fpp2{8q ˚ x ` p6{8q ˚ yq ` 460 ˚ fpp1{8q ˚ x ` p7{8q ˚ yqqq

OUTPUT:
’This equation does not belong to class (1)’

Example 3.25. Weddle’s rule. Let f : rx, ys Ñ R,

1
20rfpxq`5f

`

5
6x ` 1

6y
˘

`f
`

4
6x ` 2

6y
˘

`6f
`

3
6x ` 3

6y
˘

`f
`

2
6x ` 4

6y
˘

`5f
`

1
6x ` 5

6y
˘

` fpyqs ď 1
y´x

şy

x
fptqdt
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INPUT:

general inequalitypp1{20q ˚ pfpxq ` 5 ˚ fpp5{6q ˚ x ` p1{6q ˚ yq ` fpp4{6q ˚ x ` p2{6q ˚ yq

` 6 ˚ fpp3{6q ˚ x ` p3{6q ˚ yq ` fpp2{6q ˚ x ` p4{6q ˚ yq

` 5 ˚ fpp1{6q ˚ x ` p5{6q ˚ yq ` fpyqqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 5-concave
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 11.
By Step 3, the functional inequality is satisfied by every 5-concave functions
f .
- The time taken to solve the problem is 16.19 seconds -

Example 3.26. Hardy’s rule. Let f : rx, ys Ñ R,

1
600

“

28fpxq ` 162f
`

5
6x ` 1

6y
˘

` 220f
`

3
6x ` 3

6y
˘

` 162f
`

1
6x ` 5

6y
˘

` 28fpyq
‰

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{600q ˚ p28 ˚ fpxq ` 162 ˚ fpp5{6q ˚ x ` p1{6q ˚ yq

` 220 ˚ fpp3{6q ˚ x ` p3{6q ˚ yq

` 162 ˚ fpp1{6q ˚ x ` p5{6q ˚ yq ` 28 ˚ fpyqqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 5-concave
functions.
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From Step 2, we obtain the number of the crossing points of these functions
to be 7.
By Step 3, the functional inequality is satisfied by every 5-concave functions
f .
- The time taken to solve the problem is 11.33 seconds -

Example 3.27. A 3-point extended rule for odd n. Applying Simpson’s 3/8
rule and Simpson’s rule (3-point) twice, and adding gives. Let f : rx, ys Ñ R,

1
10r
3
8fpxq`98f

`

9
10x ` 1

10y
˘

`98f
`

8
10x ` 2

10y
˘

`1724f
`

7
10x ` 3

10y
˘

`43f
`

6
10x ` 4

10y
˘

`23f
`

5
10x ` 5

10y
˘

`43f
`

4
10x ` 6

10y
˘

`1724f
`

3
10x ` 7

10y
˘

`98f
`

2
10x ` 8

10y
˘

`98f
`

1
10x ` 9

10y
˘

` 3
8fpyqs ď 1

y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{10q ˚ pp3{8q ˚ fpxq ` p9{8q ˚ fpp9{10q ˚ x ` p1{10q ˚ yq

` p9{8q ˚ fpp8{10q ˚ x ` p2{10q ˚ yq

` p17{24q ˚ fpp7{10q ˚ x ` p3{10q ˚ yq

` p4{3q ˚ fpp6{10q ˚ x ` p4{10q ˚ yq

` p2{3q ˚ fpp5{10q ˚ x ` p5{10q ˚ yq

` p4{3q ˚ fpp4{10q ˚ x ` p6{10q ˚ yq

` p17{24q ˚ fpp3{10q ˚ x ` p7{10q ˚ yq

` p9{8q ˚ fpp2{10q ˚ x ` p8{10q ˚ yq

` p9{8q ˚ fpp1{10q ˚ x ` p9{10q ˚ yq ` p3{8q ˚ fpyqqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 3-concave
functions.
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From Step 2, we obtain the number of the crossing points of these functions
to be 19.
By Step 3, the functional inequality is satisfied by every 3-concave functions
f .
- The time taken to solve the problem is 4.23 seconds -

3.9 Higher-order convex function of the functional in-
equality with negative results

Example 3.28. Let f : rx, ys Ñ R,
“

1
18fpxq ` 21

34f
`2x`y
3

˘

` 50
153f

`

x`9y
10

˘‰

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{18q ˚ fpxq ` p21{34q ˚ fpp2 ˚ x ` yq{3q
` p50{153q ˚ fppx ` 9 ˚ yq{10qq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 2-convex
functions.
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From Step 2, we obtain the number of the crossing points of these functions
to be 4.
By Step 3, the functional inequality is satisfied neither by all 2-convex func-
tions nor by all 2-concave functions.
- The time taken to solve the problem is 0.54 seconds -

Example 3.29. Let f : rx, ys Ñ R,
“

1
15fpxq ` 24

65f
`19x`5y
24

˘

` 22
39f

`

x`3y
4

˘‰

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{15q ˚ fpxq ` p24{65q ˚ fpp19 ˚ x ` 5 ˚ yq{24q
` p22{39q ˚ fppx ` 3 ˚ yq{4qq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 2-convex
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 4.
By Step 3, the functional inequality is satisfied neither by all 2-convex func-
tions nor by all 2-concave functions.
- The time taken to solve the problem is 0.37 seconds -

Example 3.30. Let f : rx, ys Ñ R,
“

1
30fpxq ` 243

610f
`22x`5y
27

˘

` 104
183f

`

x`3y
4

˘‰

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{30q ˚ fpxq ` p243{610q ˚ fpp22{27q ˚ x ` p5{27q ˚ yq

` p104{183q ˚ fpp1{4q ˚ x ` p3{4q ˚ yqq
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OUTPUT:
By Step 1, every solution of the functional inequality must be a 2-convex
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 4.
By Step 3, the functional inequality is satisfied neither by all 2-convex func-
tions nor by all 2-concave functions.
- The time taken to solve the problem is 0.35 seconds -

Example 3.31. Let f : rx, ys Ñ R,
“

1
45fpxq ` 49

120f
`23x`5y
28

˘

` 41
72f

`

x`3y
4

˘‰

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{45q ˚ fpxq ` p49{120q ˚ fpp23{28q ˚ x ` p5{28q ˚ yq

` p41{72q ˚ fpp1{4q ˚ x ` p3{4q ˚ yqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 2-convex
functions.
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From Step 2, we obtain the number of the crossing points of these functions
to be 4.
By Step 3, the functional inequality is satisfied neither by all 2-convex func-
tions nor by all 2-concave functions.
- The time taken to solve the problem is 0.35 seconds -

Example 3.32. Let f : rx, ys Ñ R,
“

1
90fpxq ` 841

2010f
`24x`5y
29

˘

` 344
603f

`

x`3y
4

˘‰

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp1{90q ˚ fpxq ` p841{2010q ˚ fpp24{29q ˚ x ` p5{29q ˚ yq

` p344{603q ˚ fpp1{4q ˚ x ` p3{4q ˚ yqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 2-convex
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 4.
By Step 3, the functional inequality is satisfied neither by all 2-convex func-
tions nor by all 2-concave functions.
- The time taken to solve the problem is 0.36 seconds -

Example 3.33. Let f : rx, ys Ñ R,
“

7
108fpxq ` 841

2268f
`23x`6y
29

˘

` 320
567f

`

x`3y
4

˘‰

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp7{108q ˚ fpxq ` p841{2268q ˚ fpp23{29q ˚ x ` p6{29q ˚ yq

` p320{567q ˚ fpp1{4q ˚ x ` p3{4q ˚ yqq
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OUTPUT:
By Step 1, every solution of the functional inequality must be a 2-convex
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 4.
By Step 3, the functional inequality is satisfied neither by all 2-convex func-
tions nor by all 2-concave functions.
- The time taken to solve the problem is 0.33 seconds -

Example 3.34. Let f : rx, ys Ñ R,
“

5
108fpxq ` 961

2484f
`25x`6y
31

˘

` 352
621f

`

x`3y
4

˘‰

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp5{108q ˚ fpxq ` p961{2484q ˚ fpp25{31q ˚ x ` p6{31q ˚ yq

` p352{621q ˚ fpp1{4q ˚ x ` p3{4q ˚ yqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 2-convex
functions.
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From Step 2, we obtain the number of the crossing points of these functions
to be 4.
By Step 3, the functional inequality is satisfied neither by all 2-convex func-
tions nor by all 2-concave functions.
- The time taken to solve the problem is 0.41 seconds -

Example 3.35. Let f : rx, ys Ñ R,
“

13
216fpxq ` 3481

9288f
`47x`12y

59

˘

` 656
1161f

`

x`3y
4

˘‰

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp13{216q ˚ fpxq ` p3481{9288q ˚ fpp47{59q ˚ x ` p12{59q ˚ yq

` p656{1161q ˚ fpp1{4q ˚ x ` p3{4q ˚ yqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 2-convex
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 4.
By Step 3, the functional inequality is satisfied neither by all 2-convex func-
tions nor by all 2-concave functions.
- The time taken to solve the problem is 0.33 seconds -

Example 3.36. Let f : rx, ys Ñ R,
“

29
414fpxq ` 11881

32430f
`86x`23y
109

˘

` 1192
2115f

`

x`3y
4

˘‰

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp29{414q ˚ fpxq ` p11881{32430q ˚ fpp86{109q ˚ x ` p23{109q ˚ yq

` p1192{2115q ˚ fpp1{4q ˚ x ` p3{4q ˚ yqq
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OUTPUT:
By Step 1, every solution of the functional inequality must be a 2-convex
functions.

From Step 2, we obtain the number of the crossing points of these functions
to be 4.
By Step 3, the functional inequality is satisfied neither by all 2-convex func-
tions nor by all 2-concave functions.
- The time taken to solve the problem is 0.4 seconds -

Example 3.37. Let f : rx, ys Ñ R,
“

3
46fpxq ` 4107

11086f
`88x`23y
111

˘

` 136
241f

`

x`3y
4

˘‰

ď 1
y´x

şy

x
fptqdt

INPUT:

general inequalitypp3{46q ˚ fpxq ` p4107{11086q ˚ fpp88{111q ˚ x ` p23{111q ˚ yq

` p136{241q ˚ fpp1{4q ˚ x ` p3{4q ˚ yqq

OUTPUT:
By Step 1, every solution of the functional inequality must be a 2-convex
functions.
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From Step 2, we obtain the number of the crossing points of these functions
to be 4.
By Step 3, the functional inequality is satisfied neither by all 2-convex func-
tions nor by all 2-concave functions.
- The time taken to solve the problem is 0.38 seconds -

Remark 3. It should be clearly stated that in the case where we get the
negative result, we do not know how the solutions of (13) can be character-
ized. The only thing we know is that there exist n-convex functions which
do not satisfy (13).

Remark 4. Observe that in Example 3.26 we obtained the Bullen type in-
equality for 3-convex functions.
Obviously, such a result does not hold for 2-convexity. This observation mo-
tivates the following conjecture.
Conjecture : Show that for every odd number n the integral 1

y´x

şb

a
fpxqdx

is less than or equal to the arithmetic mean of the n`1
2 -points Gauss rule

and n`3
2 -points Lobatto rule.

Remark 5. Note that the integral mean 1
y´x

şy

x
fptqdt occurring in (13) may

be written in the form
F pyq ´ F pxq

y ´ x
,

where F is the antiderivative of f. After this observation, we observe that
(13) is an inequality associated with a particular case of the equation

n
ÿ

i“1

N
ÿ

p“1

γipFppaipx ` bipyq “

m
ÿ

j“1

M
ÿ

q“1

pαjqx ` βjqyqfqpcjqx ` djqyq (18)

which was considered in [50]. Indeed, it is enough to take n “ 1, N “ 2
F1 “ F2 “ F and γ11 “ 1, γ12 “ ´1 to obtain

n
ÿ

i“1

N
ÿ

p“1

γipFppaipx ` bipyq “ F pyq ´ F pxq.

On the other hand, taking m “ 1, α1q “ ´1, β1q “ 1, q “ 1, . . .M ; fq “ aqf
and d1q “ 1´ cjq we get

m
ÿ

j“1

M
ÿ

q“1

pαjqx ` βjqyqfqpcjqx ` djqyq “ py ´ xq

M
ÿ

q“1

aqfpc1qx ` p1´ c1qqyq.

Thus, after such substitutions, we arrived at the equation connected di-
rectly with (13).
Therefore, it seems of interest to investigate in future research inequalities

connected with other particular cases of (5).
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4 QUASI-ARITHMETIC MEANS.([42])

In this section, we present the Sugeno Integral of Hermite-Hadamard Inequal-
ity for the case of quasi-arithmetically convex (q-ac) functions which acts as
a generator for all quasi-arithmetic means in the frame work of Sugeno Inte-
gral.
The following theorem gives the Sugeno integral variant of the inequality (1).

Theorem 4.1 ([27]). let f : ra, bs Ă p0,8q ÝÑ r0,`8q be a convex function
with fpaq ‰ fpbq. Then

pSq

ż b

a

fdµ ď
ł

αPΓ

ˆ

α ^ µ

ˆ

ra, bs X

"

x ě
αpb ´ aq ` afpaq ´ bfpbq

fpbq ´ fpaq

*˙˙

where
Γ “ rfpaq ^ fpbq, fpaq _ fpbqs .

In the present work we formulate results connected to the Hermite-Hadamard
inequality for quasi-arithmetic means and its Sugeno integral variant. This
yields a generator for all the quasi-arithmetic means, for example see results
[27].

Now let us recall some classical results on quasi-arithmetic means and
Hermite-Hadamard inequalities for them.

Definition 4.1. Let I Ă R be an interval, and let φ : I Ñ R and ψ : J Ñ R
be strictly monotone and continuous functions. We say that f : I Ñ R, is
(φ, ψ)-quasi-arithmetically convex ((φ, ψ)-q-ac) if fpIq Ă J and the following
inequality

fpMφpx, y, tqq ď Mψpfpxq, fpyq, tq (19)

holds for all x, y P I, t P r0, 1s. Here Mφ : I ˆ I ˆ r0, 1s Ñ I defined by

Mφpx, y, tq :“ φ´1
pp1´ tqφpxq ` tφpyqq . (20)

and Mψ : J ˆ J ˆ r0, 1s Ñ J is defined analogously.

Remark 6. Let us note that we may assume without loss of generality that
the generator φ is strictly increasing.

Functions Mφ : I ˆ I ˆ r0, 1s Ñ I and Mψ : J ˆ J ˆ r0, 1s Ñ J are
called quasi-arithmetic means. Let us note that, we have Mφ

`

x, y, 12
˘

:“

φ´1
´

φpxq`φpyq

2

¯

. In particular, taking as φ : I Ñ R the identity idI and as ψ
the idJ we obtain

Mφpx, y, tq “ p1´ tqx ` ty,
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and
Mψpa, b, tq “ p1´ tqa ` tb,

in other words both are linear means, and (19) becomes the classical convex-
ity.
Using the hyperbolic function φ : p0,8q Ñ R given by φpxq “ 1

x
in (20),

we get the generalized harmonic mean

Hpx, y, tq :“
`

p1´ tqx´1
` ty´1

˘´1
“

xy

tx ` p1´ tqy
.

And using the logarithmic function φ : p0,8q Ñ R given by φpxq “ lnx in
(20), we obtain the generalized geometric mean

Gpx, y, tq “ x1´tyt.

Let us start with the following.

Proposition 2. [1] Let I, J Ă R be some intervals, and let φ : I Ñ R, and
ψ : J Ñ R, be continuous and strictly monotone functions. Then f : I Ñ R
is (φ, ψ)-qa-c if and only if g “ ψ ˝ f ˝ φ´1 : φpIq Ñ R is convex.

Proof. LetMφ,Mψ be quasi-arithmetic means, generated by φ and ψ respec-
tively. Suppose that f is (φ, ψ)-qa-c, i.e. for every x, y P I, and t P r0, 1s we
have

f
`

φ´1
pp1´ tqφpxq ` tφpyqq

˘

ď ψ´1
pp1´ tqψpfpxqq ` tψpfpyqqq . (21)

Now let g : φpIq Ñ R be defined as g “ ψ ˝ f ˝ φ´1. For arbitrary a, b P φpIq,
choose x, y P I so that a “ φpxq, b “ φpyq. Let t P r0, 1s be arbitrary. We get,
using (φ, ψ)-qa-convexity of f, and taking into account the definition of g,

gpp1´ tqa ` tbq “ gpp1´ tqφpxq ` tφpyqq “

ψ
`

f
“

φ´1
pp1´ tqφpxq ` tφpyqq

‰˘

ď p1´ tqψpfpxqq ` tψpfpyqq “

p1´ tqψ ˝ fpφ´1
paqq ` tψ ˝ fpφ´1

pbqq “ p1´ tqgpaq ` tgpbq.

To get the converse, assume that g “ ψ˝f˝φ´1 is convex, let x, y P I, t P r0, 1s
be arbitrary, put a “ φpxq, b “ φpyq. We obtain by convexity of g

ψ ˝ f
“

φ´1
pp1´ tqφpxq ` tφpyqq

‰

“ gpp1´ tqa ` tbq ď

p1´ tqgpaq ` tgpbq “ p1´ tqψ ˝ fpφ´1
paqq ` tψ ˝ fpφ´1

pbqq “

p1´ tqψpfpxqq ` tψpfpyqq,

and so the Proposition is proved.

44

50:2536633068



We can express or compose the Borel probability measure in terms of a
derivative and a measure. This gives us a special case of Theorem 1 in [40]
as seen in the theorem below.

Theorem 4.2. [40] Let I Ă R and J Ă R be intervals, and let φ : I Ñ R
be a differentiable and strictly monotone function and let ψ : J Ñ R be a
strictly monotone and continuous. Further, let f : I Ñ R be a (φ, ψ)-qa-c
function. Then the following inequalities hold

f

ˆ

Mφ

ˆ

x, y,
1
2

˙˙

ď

ψ´1

ˆ

1
φpyq ´ φpxq

ż y

x

pψ ˝ fq puqφ1
puqdu

˙

ď Mψ

ˆ

fpxq, fpyq,
1
2

˙

(22)

for all x, y P I, x ‰ y.

Proof. Let g : φpIq Ñ ψpJq be given by g “ ψ˝f ˝φ´1. Since f is (φ, ψ)-q-ac,
in view of Proposition 2 the function g is convex. Hence, in view of (1) we
get

g

ˆ

a ` b

2

˙

ď
1

b ´ a

ż b

a

gptqdt ď
gpaq ` gpbq

2

for every a, b P φpIq, a ‰ b. Substituting a “ φpxq and b “ φpyq for some
x, y P I we can rewrite the above as

ψ

„

f

ˆ

φ´1

ˆ

φpxq ` φpyq

2

˙˙ȷ

ď

1
φpyq ´ φpxq

ż φpyq

φpxq

pψ ˝ fq
`

φ´1
ptq

˘

dt ď
ψpfpxqq ` ψpfpyqq

2
.

Now, substituting in the integral u “ φ´1ptq or φpuq “ t we get from the well
known theorem on changing variables in the integral

ψ

„

f

ˆ

φ´1

ˆ

φpxq ` φpyq

2

˙˙ȷ

ď

1
φpyq ´ φpxq

ż y

x

pψ ˝ fq puqφ1
puqdu ď

ψpfpxqq ` ψpfpyqq

2
.

It remains to take ψ´1 on both sides of the above inequalities to get our
assertion.

We have in particular the following
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Corollary 4.2.1. Let I Ă R be an interval, and let φ : I Ñ R be a differen-
tiable and strictly monotone function. Further, let f : I Ñ R be a (φ, id)-qa-c
function. Then the following inequalities hold

f

ˆ

Mφ

ˆ

x, y,
1
2

˙˙

ď

1
φpyq ´ φpxq

ż y

x

fpuqφ1
puqdu ď

fpxq ` fpyq

2
, (23)

for all x, y P I, x ‰ y.

Remark 7. We observe that in equation (23), for φpxq “ 1
x
we obtain φ1pxq “

´ 1
x2
and then

f

ˆ

2xy
x ` y

˙

ď
xy

y ´ x

ż y

x

fptq

t2
dt ď

fpxq ` fpyq

2
,

which is the Hermite-Hadamard inequality for harmonically convex functions
see [31]. Similarly for φpxq “ lnx, φ1pxq “ 1

x
we get

f p
?
xyq ď

1
ln y ´ lnx

ż y

x

fptq

t
dt ď

fpxq ` fpyq

2
,

which is the Hermite-Hadamard inequality for geometrically convex func-
tions. In the same way we can be able to generate other H-H inequalities
from the inequality (23).
Let us consider also the inequality (22). Putting φpxq “ 1

x
“ ψpxq, we

obtain

f

ˆ

2xy
x ` y

˙

ď
y ´ x

xy
şy

x
1

fptqt2
dt

ď
2fpxqfpyq

fpxq ` fpyq
,

which is the Hermite-Hadamard inequality for functions being harmonic-
harmonic convex (HH-convex). Similarly, when we put φ “ ψ “ ln, we
obtain

fp
?
xyq ď exp

ˆ

1
lnx ´ ln y

ż y

x

ln fptq

t
dt

˙

ď
a

fpxqfpyq,

or the Hermite-Hadamard inequality for geometric-geometric convex func-
tions (GG-convex).
We may also mix the two above cases, putting φpxq “ 1

x
and ψpxq “ lnx.

We would obtain

f

ˆ

2xy
x ` y

˙

ď exp
ˆ

xy

y ´ x

ż y

x

ln fptq

t2
dt

˙

ď
a

fpxqfpyq,

or the Hermite-Hadamard for geometric-harmonic convex functions (GH-
convex).
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4.1 Hermite-Hadamard inequality for Sugeno integral
based on quasi arithmetically convex functions

In this section we extend the results in theorem 4.2 by its Sugeno counterpart.

Theorem 4.3. Let f : R Ñ r0,8q be Mφ,Mψ quasi-arithmetic means, gen-
erated by φ and ψ respectively. Suppose that f is (φ, ψ)-qa-c, i.e. for every
x, y P I, and t P r0, 1s we have

f
`

φ´1
pp1´ tqφpxq ` tφpyqq

˘

ď ψ´1
pp1´ tqψpfpxqq ` tψpfpyqqq .

If f P F then

pSq

ż b

a

fdµ ď

$

&

%

Ž

αPΓ pα ^ µ pra, bs X tx ě Qpαquqq , fpaq ă fpbq,
fpaq ^ µpra, bsq, fpaq “ fpbq,
Ž

αPΓ pα ^ µ pra, bs X tx ď Qpαquqq , fpaq ą fpbq,
(24)

where Γ “ convtfpaq, fpbqu, and Qpαq :“ φ´1
´

ψpαqpφpbq´φpaqq`φpaqψpfpbqq´φpbqψpfpaqq

ψpfpbqq´ψpfpaqq

¯

.

Proof. Let tx “
φpxq´φpaq

φpbq´φpaq
. We have that

φpxq “ p1´ txqφpaq ` txφpbq

Thus
fpxq “ fpφ´1

pφpxqq “ fpφ´1
pp1´ txqφpaq ` txφpbqqq

“ fpMφpa, b, txqq ď Mψpfpaq, fpbq, txq

“ ψ´1
pp1´ txqψpfpaqq ` txψpfpbqqq “: hpxq

Hence by 6. of Proposition 1 we have

pSq

ż b

a

fdµ ď pSq

ż b

a

ψ´1
pp1´ txqψpfpaqq ` txψpfpbqqdµ “: pSq

ż b

a

hdµ

So we have

pSq

ż b

a

fdµ ď pSq

ż b

a

hdµ “
ł

αě0

pα ^ µ pra, bs X Hαqq , (25)

where Hα “ tx P ra, bs : hpxq ě αu. Consider the following three cases

(i) fpaq “ fpbq,

(ii) fpaq ă fpbq,
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(iii) fpaq ą fpbq.

In the case (i), we get h “ const “ fpaq. Then pSq
şb

a
hdµ “ fpaq ^ µpra, bsq.

Let us consider the case (ii). First of all, we notice that hpra, bsq “

rfpaq, fpbqs. So, when we deal with α P r0, fpaqq we get

Hα “ tx P ra, bs : hpxq ě αu “ ra, bs,

and consequently
µ pra, bs X Hαq “ µpra, bsq,

which implies
ł

0ďαďfpaq

pα ^ µ pra, bs X Hαqq “ fpaq ^ µpra, bsqq .

On the other hand, if α ą fpbq thenHα “ H, and consequently µ pra, bs X Hαq “

0 which implies
ł

fpbqăα

pα ^ µ pra, bs X Hαq “ 0q .

we now obtain
ł

αě0

pα ^ µ pra, bs X Hαqq “
ł

αPΓ

pα ^ µ pra, bs X Hαqq ,

which proves our assertion about Γ in the case (ii), and we can replace (25)
with

pSq

ż b

a

fdµ ď pSq

ż b

a

hdµ “
ł

αPΓ

pα ^ µ pra, bs X Hαqq . (26)

Next is to find the formula (24). Assume that fpaq ă fpbq, the proof in the
case fpaq ą fpbq is analogous):

hpxq ě α ðñ

ψ´1
pp1´ txqψpfpaqq ` txψpfpbqqq ě α ðñ

x ě φ´1

ˆ

ψpαqpφpbq ´ φpaqq ` φpaqψpfpbqq ´ φpbqψpfpaqq

ψpfpbqq ´ ψpfpaqq

˙

ðñ

x ě Qpαq.

Corollary 4.3.1. Let f : R Ą I Ñ r0,8q be a qa-c function, satisfying

f
`

φ´1
pp1´ tqφpxq ` tφpyqq

˘

ď p1´ tqfpxq ` tfpyq
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for every x, y P I, and t P r0, 1s. If f P F then

pSq

ż b

a

fdµ ď

$

&

%

Ž

αPΓ pα ^ µ pra, bs X tx ě P pαquqq , fpaq ă fpbq,
fpaq ^ µpra, bsq, fpaq “ fpbq,
Ž

αPΓ pα ^ µ pra, bs X tx ď P pαquqq , fpaq ą fpbq,
(27)

where Γ “ convtfpaq, fpbqu, and P pαq :“ φ´1
´

αpφpbq´φpaqq`φpaqfpbq`φpbqfpaq

fpbq´fpaq

¯

.

Proof. Take ψ “ idr0,8q in the previous Theorem.

Example 4.1. From Theorem 4.3, we can obtain the Hermite-Hadamard
inequality for Sugeno integral for different (φ, ψ)-qa-means. In particular,
considering φpxq “ x “ ψpxq in (24), we obtain

Qpαq “
αpb ´ aq ` afpbq ´ bfpaq

fpbq ´ fpaq

which is the linear mean.
Similarly for φpxq “ 1

x
“ ψpxq, we have

Qpαq “
αabpfpaq ´ fpbqq

pa ´ bqfpbqfpaq ` αpbfpaq ´ afpbqq

And this gives us Hermite-Hadamard inequality for Sugeno integral based on
harmonic mean.
Next is for φpxq “ lnpxq “ ψpxq,

Qpαq “ exppRpαqq

where

Rpαq “

ˆ

lnαpln b ´ ln aq ` ln a ln fpbq ´ ln b ln fpaq

ln fpbq ´ ln fpaq

˙

.

Thus we obtain Hermite-Hadamard inequality for Sugeno integral based on
geometric mean.
We may also consider different means for φ and ψ, in particular φpxq “ 1

x

and ψpxq “ lnx. We obtain

Qpαq “
abpln fpaq ´ ln fpbqq

lnαpa ´ bq ` b ln fpbq ´ a ln fpaq

and this gives Hermite-Hadamard inequality for Sugeno integral based on
geometric-harmonic means.
In the same way we can obtain other H-H inequalities for Sugeno integral
from (24).
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Example 4.2. From Corollary 4.3.1, we can generate the Hermite-Hadamard
inequality for Sugeno integral for different qa-means. In particular, putting
φpxq “ x in (27), we obtain

P pαq “
αpb ´ aq ` afpbq ´ bfpaq

fpbq ´ fpaq

which is the linear mean.
Similarly for φpxq “ 1

x
, we have

P pαq “
ab pfpbq ´ fpaqq

αpa ´ bq ` bfpbq ´ afpaq

and this gives us harmonic mean. And for φpxq “ lnpxq, we obtain geometric
mean with

P pαq “ exppQpαqq

where

Qpαq “

ˆ

αpln a ´ ln bq ` fpbq ln a ´ fpaq ln b
fpbq ´ fpaq

˙

.

In the same way we can obtain other H-H inequalities for Sugeno integral
from (27).

Corollary 4.3.2. Consider a measure space pX,Σ, µq where µ is a Lebesgue
measure on X “ R, then from equation (24) we obtain

pSq

ż b

a

fdµ ď

$

&

%

Ž

αPΓ pα ^ pb ´ Qpαqqq , fpaq ă fpbq,
fpaq ^ b ´ a, fpaq “ fpbq,
Ž

αPΓ pα ^ pQpαq ´ aqq , fpaq ą fpbq,
(28)

where

Qpαq :“ φ´1

ˆ

ψpαqpφpbq ´ φpaqq ` φpaqψpfpbqq ´ φpbqψpfpaqq

ψpfpbqq ´ ψpfpaqq

˙

.

We now compute (28) for particular cases of qa-means. Starting with
linear mean where

Qpαq “

ˆ

αpb ´ aq ` afpbq ´ bfpaq

fpbq ´ fpaq

˙

,

consider the following cases:

(i) fpaq “ fpbq,
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(ii) fpaq ă fpbq,

(iii) fpaq ą fpbq.

Case (i) doesn’t change. And for case (ii) the minimum between α and b ´

Qpαq is attained at their point of intersection due to being strictly monotonic.
So,

α “ b ´ Qpαq ðñ

α “ b ´
αpa ´ bq ` afpbq ´ bfpaq

fpbq ´ fpaq
ðñ

αpfpbq ´ fpaq ` a ´ bq “ bpfpbq ´ fpaqq ´ afpbq ` bfpaq.

So

α “
bpfpbq ´ fpaqq ` bfpaq ´ afpbq

fpbq ` a ´ b ´ fpaq
.

Taking into account of Remark 2, and 1. of Proposition 1 we have that,

pSq

ż b

a

fdµ ď
bpfpbq ´ fpaqq ` bfpaq ´ afpbq

fpbq ` a ´ b ´ fpaq
^ pb ´ aq.

The proof for case (iii) is analogous.
Next is the harmonic mean, similarly like in the case of linear mean. We see
that

α “ b ´
αabpfpaq ´ fpbqq

pa ´ bqfpaqfpbq ` αpbfpaq ´ afpbqq
.

So

α “
´A ˘

?
B2 ´ 4AC
2A

(29)

where A “ bfpaq´afpbq, B “ pa´bqfpbqfpaq´b2fpaq`abfpbq`abfpaq´

abfpbq and C “ ´bpa ´ bqfpbqfpaq from Remark 2, and 1. of Proposition 1

pSq

ż b

a

fdµ ď α ^ pb ´ aq

α is defined in (29) The proof for case (iii) is analogous. And case (i) is
constant. In the same way we can be able to compute (28) for other particular
cases of qa-means.
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4.2 Conclusion.

In this section, we established the Hermite-Hadamard integral inequality
for the Sugeno integral based on quasi-arithmetic means which acts as a
generator for all Hermite-Hadamard quasi-arithmetic means in the frame
work of Sugeno integral.
In the next section, we present some selected results on Lagrangian means
which are not quasi-arithmetic means.

5 Lagrangian mean. ([43]),([55]), ([56])

Some well-known quasi-arithmetic means are Lagrangian. For-example arith-
metic and geometric means. However, there some arithmetic means which
are not lagrangian like harmonic mean and similarly there some Lagrangian
means which are not arithmetic like Logarithmic mean. So in this chapter
we present our results about Logarithmic mean.

Definition 5.1. Let f be a continuous, strictly monotonic function, defined
on an interval I. We define the Lagrangian mean µ associated with f as

µpx, yq “

$

’

&

’

%

f´1
´

1
y´x

şy

x
fptqdt

¯

x ‰ y

x x “ y.

(30)

for x, y P I.

5.1 Characterization of the logarithmic mean

Definition 5.2. Let I be an interval of real numbers. A function f : I ÝÑ

p0,8q is said to be log-convex if logpfq is convex, or equivalently, if for all
x, y P I and t P r0, 1s one has the inequality:

fptx ` p1´ tqyq ď fpxq
tfpyq

1´t (31)

We note that if f and g are convex functions and g is monotonic nondecreas-
ing, then g ˝ f is convex. Moreover, since f “ expplogpfqq (here log “ ln), it
follows that a log-convex function is convex, but the converse is not true.

Applying (1) for a log-convex function f we obtain the following inequality
(see [23, Theorem 2.1] or [20, Theorem 2.5]):

f
´x ` y

2

¯

ď
1

y ´ x

ż y

x

fptqdt ď Lpfpxq, fpyqq, (32)
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with the logarithmic mean L on the right-hand side.
We can go further with generalizations. Let f : I Ñ R and ϕ be an increasing
function defined on the range of f . The function f is said to be ϕ-convex
whenever ϕ ˝ f is convex, that is

ϕpfptx ` p1´ tqyqq ď tϕpfpxqq ` p1´ tqϕpfpyqq, x, y P I,

and if ϕ is one-to-one,

fptx ` p1´ tqyq ď ϕ´1
ptϕpfpxqq ` p1´ tqϕpfpyqqq, x, y P I. (33)

A special case of ϕ-convex functions is a class of r-convex functions defined
on p0,8q, with ϕpxq “ xr for r P Rzt0u and ϕpxq “ lnx for r “ 0. For the
next result we need a notion of a generalization of logarithmic means, namely
so called extended logarithmic means defined by

Lrpx, yq :“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

r

r ` 1
¨
yr`1 ´ xr`1

yr ´ xr
, r ‰ ´1, 0, x ‰ y,

xy
ln y ´ lnx
y ´ x

, r “ ´1, x ‰ y,

y ´ x

ln y ´ lnx
, r “ 0, x ‰ y,

x, x “ y.

(34)

Surely, for r “ 0 we have a logarithmic mean.
The following result from [23] describes the extension of the Hermite-

Hadamard inequality for r-convex functions.

Theorem 5.1. Suppose f : I Ñ p0,8q is an r-convex function. Then

1
y ´ x

ż y

x

fptqdt ď Lrpfpxq, fpyqq. (35)

We show how the right-hand side of the Hermite-Hadamard inequality
looks like for a general ϕ-convex function and when the mean on the right-
hand side is a Lagrangian mean like it is in the case of the logarithmic mean
in (32).

In what follows we give some short general introduction concerning means.
Let I Ă R be an interval. A function M : I2 Ñ R is called a mean if

minpx, yq ď Mpx, yq ď maxpx, yq, x, y P I. (36)

Every mean is reflexive, that is Mpx, xq “ x for all x P I. A mean M is
symmetric if Mpx, yq “ Mpy, xq for all x, y P I, homogeneous if Mptx, tyq “
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tMpx, yq for t ą 0 and all x, y P I such that tx, ty P I, and M is said to
be a strict mean if the inequalities in (36) are strict whenever x ‰ y. More
information about means can be found for instance in [9].

For p P R we define a function Lrps : p0,8q2 Ñ R by the formula

Lrps
px, yq :“

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

ˆ

yp`1 ´ xp`1

pp ` 1qpy ´ xq

˙1{p

, p ‰ ´1, 0, x ‰ y,

y ´ x

ln y ´ lnx
, p “ ´1, x ‰ y,

1
e

ˆ

yy

xx

˙1{py´xq

, p “ 0, x ‰ y,

x, x “ y,

(37)

for all x, y P p0,8q. The function Lrps is a symmetric, strict, homogeneous
mean and it is called the generalized logarithmic mean of order p of x and
y. As special cases of generalized logarithmic means we obtain the geometric
mean (p “ ´2), the logarithmic mean (p “ ´1), the identric mean (p “ 0),
the arithmetic mean (p “ 1). For no p the function Lrps is the harmonic mean.
(For more details cf., e.g., [8]).
A common generalization of (34) and (37) is given in the notion of Sto-

larsky means but we will not deal with such a generalization in the work.

If I is open and f : I Ñ R is differentiable with one-to-one derivative then
by the Lagrange mean value theorem for every x, y P I, x ‰ y, there exists a
uniquely determined Mf px, yq between x and y such that

fpxq ´ fpyq

x ´ y
“ f 1

pMf px, yqq .

The assumption about f is satisfied by strictly convex, or strictly concave,
continuously differentiable functions. The function Mf : I2 Ñ I defined by

Mf px, yq :“

$

&

%

pf 1
q

´1

ˆ

fpyq ´ fpxq

y ´ x

˙

, x ‰ y

x, x “ y
(38)

is a mean on I and it is called a Lagrangian mean (see [4]). These means
are reflexive, symmetric and strict. The generalized logarithmic means, Lrps,
are examples of Lagrangian means (it is enough to take fpxq “ xp`1 for
p ‰ ´1, 0, fpxq “ log x for p “ ´1, and fpxq “ x log x for p “ 0).
Some properties of Lagrangian means are expressed in the following two

facts.
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Fact 1. (see [9, Theorem 1, p. 344], [8, Theorems 29], [4, Corollary 7]) La-
grangian means are equal, Mf pa, bq “ Mgpa, bq for all a, b, if and only if for
some α, β, γ, α ‰ 0,

fpxq “ αgpxq ` βx ` γ, x P R.

Fact 2. (see [9, Theorem 1, p. 346], [8, Theorems 30]) If a Lagrangian mean
Mf is homogeneous then for some p P R, and all a and b we have Mf pa, bq “

Lrpspa, bq.

As a consequence of Fact 1 without loss of generality we can assume that f
is convex. As a consequence of Fact 2, there is no function f such that Mf is
the harmonic mean. Otherwise, since the harmonic mean is homogeneous it
would have to be Lrps for some p, and the harmonic mean is not a generalized
logarithmic mean.

We proceed now with a theorem which generalizes inequalities (32) or (35).

Theorem 5.2. Suppose f : I Ñ R. Let ϕ be a strictly increasing function
defined on the range of f and Φ – its primitive function. If f is a ϕ-convex
function, then

1
y ´ x

ż y

x

fpsqds ď Λϕpfpxq, fpyqq, (39)

where

Λϕpx, yq :“

$

&

%

yϕpyq ´ Φpyq ´ xϕpxq ` Φpxq

ϕpyq ´ ϕpxq
, x ‰ y,

x, x “ y.

Proof. We integrate inequality (33) with respect to t, that is,

ż 1

0
fptx ` p1´ tqyqdt ď

ż 1

0
ϕ´1

ptϕpfpxqq ` p1´ tqϕpfpyqqqdt. (40)

Starting with the left-hand side of (40), with the substitution s :“ tx`p1´tqy
we obtain

ż 1

0
fptx ` p1´ tqyqdt “

1
x ´ y

ż x

y

fpsqds.

For the right-hand side of (40), assume first that fpxq “ fpyq in order to get
fpxq as a result of integration. Suppose now fpxq ‰ fpyq. We shall use the
so called Laisant formula, i.e.,

ż

ϕ´1
pzqdz “ zϕ´1

pzq ´ Φpϕ´1
pzqq ` C,
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where Φ is a primitive function of ϕ and C is an arbitrary constant.
With z :“ tϕpfpxqq ` p1´ tqϕpfpyqq we have

ż 1

0
ϕ´1

ptϕpfpxqq ` p1´ tqϕpfpyqqqdt

“
1

ϕpfpxqq ´ ϕpfpyqq

ż ϕpfpxqq

ϕpfpyqq

ϕ´1
pzqdz

“
1

ϕpfpxqq ´ ϕpfpyqq

”

zϕ´1
pzq ´ Φpϕ´1

pzqq

ıϕpfpxqq

ϕpfpyqq

“
fpxqϕpfpxqq ´ Φpfpxqq ´ fpyqϕpfpyqq ` Φpfpyqq

ϕpfpxqq ´ ϕpfpyqq
.

This completes the proof.

Since the logarithmic mean is a special case of Lagrangian means, we general-
ize the log-convexity in equation (31) to see if the inequality in equation (32)
satisfied by log-convex functions can be generalized for Lagrangian means
other than logarithmic one. In the next theorem, we consider the right hand
side of inequality (39) to be the general form of the Lagrangian mean, gen-
erated by ϕ and solve the corresponding equation.

Theorem 5.3. Let ϕ be a strictly increasing real function from the class C3,
defined on an interval J , and with non-vanishing first and second derivatives.
Then

Λϕpx, yq “ Mϕpx, yq,

for all x, y P J , if and only if ϕpxq “ 1
a
ln |ax`b|`c for some a, b, c P R, a ‰ 0,

such that ax ` b for all x P J has a constant sign.

Proof. It is easy to check that ϕ “ ln is a solution of equation (5.3).
Solving (5.3) we immediately assume that x ‰ y. We have

xϕpxq ´ Φpxq ´ yϕpyq ` Φpyq

ϕpxq ´ ϕpyq
“ pϕ1

q
´1

ˆ

ϕpxq ´ ϕpyq

x ´ y

˙

. (41)

For solving (41), we denote

Λpx, yq :“
xϕpxq ´ Φpxq ´ yϕpyq ` Φpyq

ϕpxq ´ ϕpyq

and

Mpx, yq :“ pϕ1
q

´1

ˆ

ϕpxq ´ ϕpyq

x ´ y

˙

. (42)
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Since

ϕ1
pMpx, yqq “

ϕpxq ´ ϕpyq

x ´ y
,

then

ϕ2
pMpx, yqq ¨

BM

Bx
px, yq “

ϕ1pxqpx ´ yq ´ ϕpxq ` ϕpyq

px ´ yq2

ϕ3
pMpx, yqq ¨

„

BM

Bx
px, yq

ȷ2

` ϕ2
pMpx, yqq ¨

B2M

Bx2
px, yq

“
ϕ2pxqpx ´ yq2 ´ 2rϕ1pxqpx ´ yq ´ ϕpxq ` ϕpyqs

px ´ yq3
.

In what follows we observe that there exists the limit of B2M
Bx2

px, yq as y tends
to x and we compute it. For, first we compute

lim
yÑx

BM

Bx
px, yq “

1
ϕ2pxq

¨ lim
yÑx

ϕ1pxqpx ´ yq ´ ϕpxq ` ϕpyq

px ´ yq2
“
1
2

lim
yÑx

ϕ1pxqpx ´ yq ´ ϕpxq ` ϕpyq

px ´ yq2
“ lim

yÑx

´ϕ1pxq ` ϕ1pyq

´2px ´ yq
“
ϕ2pxq

2

lim
yÑx

ϕ2pxqpx ´ yq2 ´ 2rϕ1pxqpx ´ yq ´ ϕpxq ` ϕpyqs

px ´ yq3
“
ϕ3pxq

3
.

Therefore, there exists the limit of B2M
Bx2

px, yq the limit as y Ñ x,

1
4
ϕ3

pxq ` ϕ2
pxq ¨

ˆ

lim
yÑx

B2M

Bx2
px, yq

˙

“
ϕ3pxq

3

and

lim
yÑx

B2M

Bx2
px, yq “

1
12
ϕ3pxq

ϕ2pxq
. (43)

Next we compute the partial derivatives of Λ with respect to x:

BΛ
Bx

px, yq “ ϕ1
pxq ¨

ϕpyqpy ´ xq ` Φpxq ´ Φpyq

rϕpxq ´ ϕpyqs2

B2Λ
Bx2

px, yq “ ϕ2
pxq ¨

ϕpyqpy ´ xq ` Φpxq ´ Φpyq

rϕpxq ´ ϕpyqs2

` ϕ1
pxq ¨

rϕpxq ´ ϕpyqs2 ´ 2ϕ1pxqrϕpyqpy ´ xq ` Φpxq ´ Φpyqs

rϕpxq ´ ϕpyqs3
.
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In order to compute the limit of B2Λ
Bx2

px, yq as y Ñ x, first we compute the
following limits:

lim
yÑx

ϕpyqpy ´ xq ` Φpxq ´ Φpyq

rϕpxq ´ ϕpyqs2
“
1
2ϕ1pxq

,

lim
yÑx

rϕpxq ´ ϕpyqs2 ´ 2ϕ1pxqrϕpyqpy ´ xq ` Φpxq ´ Φpyqs

rϕpxq ´ ϕpyqs3
“ ´

ϕ2pxq

3rϕ1pxqs2
.

Therefore,

lim
yÑx

B2Λpx, yq

Bx2
“ ϕ2

pxq ¨
1
2ϕ1pxq

´ ϕ1
pxq ¨

ϕ2pxq

3rϕ1pxqs2
“

ϕ2pxq

6ϕ1pxq
. (44)

From equations (43) and (44) we derive that the solution ϕ of equation (41)
satisfies

1
12
ϕ3pxq

ϕ2pxq
“
1
6
ϕ2pxq

ϕ1pxq
. (45)

That is,
ln |ϕ2

pxq| “ 2 ln |ϕ1
pxq| ` lnC,

with a positive C, and
ϕ2

pxq “ ´arϕ1
pxqs

2

with a nonzero constant a. Further, since ϕ1pxq does not vanish, we have

ϕ2pxq

rϕ1pxqs2
“ ´a

and
ϕpxq “

1
a
ln |ax ` b| ` c

with a, b, c P R, a ‰ 0.

Corollary 5.3.1. Suppose f : I Ñ p0,8q. Let ϕ : p0,8q Ñ R be a strictly
increasing function from the class C3 and with non-vanishing first and second
derivatives. If Λϕpx, yq “ Mϕpx, yq, for all x, y P I, then the logarithmic
mean is the only one (up to a translation) which is both Lagrangian and of
the form Λϕ. More exactly,

Λϕpx, yq “ Mϕpx, yq “
y ´ x

lnpay ` bq ´ lnpax ` bq
´
b

a

for some a ą 0, b ě 0.

Therefore, logarithmic mean is the only (up to a affine translation) La-
grangian mean satisfying the right-hand side of the Hermite-Hadamard in-
equality.
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5.2 A note on a result by J. Sándor

The note concerns a result contained in [55]. The author claims, among oth-
ers, that the following theorem holds (cf. Theorem 2.5 in [55]).

Theorem 5.4. Let f : ra, bs Ă p0,8q ÝÑ p0,8q be a geometric convex
function such that the application x ÝÑ

fpxq

x
is increasing. Then one has the

inequalities

1
ln b ´ ln a

ż b

a

fpxq

x
dx ď

1
Apa, bq

Lpafpaq, bfpbqq ď Lpfpaq, fpbqq. (46)

Here A stands for the arithmetic mean, and L for the logarithmic mean,
i.e. the mean defined by

Lpx, yq :“
" x´y
lnx´ln y , x ‰ y,

x, x “ y.

It is observed that the last inequality on the right hand side does not hold.
Indeed,consider the following example.

Example 5.1. Let ra, bs “ r1, 2s and let f : r1, 2s ÝÑ p0,8q be given by
fpxq “ x2. Then f is geometric convex (even geometric affine), since

ľ

x,yPr1,2s

ľ

λPr0,1s

`

fpxλy1´λq “ pxλy1´λq
2

“ pxλq
2
py1´λq

2
“ fpxλqfpy1´λq

˘

.

Also the application x ÝÑ
fpxq

x
“ x is increasing. However, if we take a “ 1

and b “ 2 and substitute it into (46) we get

1
Apa, bq

Lpafpaq, bfpbqq “
2
3
7
3 ln 2

“
14
9 ln 2

ą
3
2 ln 2

“ Lpfpaq, fpbqq.

When studying the proof of Theorem 5.4, we see that while the first inequality
is a consequences of previous results, the last inequality is a consequence of
the following lemma (cf. Lemma2.3 in [55]).

Lemma 5.5. If q
p

ě b
a

ě 1, then

Lppa, qbq ď Lpp, qqApa, bq. (47)

The proof is based on the study of a function k defined for u ě v by

kpuq :“ pv ´ 1qpu ` 1q lnpuvq ´ 2puv ´ 1q ln v.

The author writes that k is increasing, and hence the inequality (47) follows.
The point is that the function k does not correspond to the inequality (47).
Indeed, we have
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Lemma 5.6. If q
p

ě b
a

ě 1, then

"

Lppa, qbq ą Lpp, qqApa, bq, if q
p

ą b
a

ą 1,
Lppa, qbq “ Lpp, qqApa, bq, if b

a
“ 1 or b

a
“

q
p
.

(48)

Proof. Let u “
q
p
and v “ b

a
. By our assumptions we may rewrite the in-

equality (48) as (we admit that u´1
lnu “ 1, if u “ 1)

#

uv´1
lnpuvq

ą v`1
2

u´1
lnu , if u ą v ą 1,

uv´1
lnpuvq

“ v`1
2

u´1
lnu , if v “ 1 or v “ u.

(49)

We see that (49) is equivalent to
"

2puv ´ 1q lnpuq ´ pv ` 1qpu ´ 1q lnpuvq ą 0, if u ą v ą 1,
2puv ´ 1q lnpuq ´ pv ` 1qpu ´ 1q lnpuvq “ 0, if v “ 1 or v “ u.

(50)

Fix a v ě 1 and define the application kv : rv,8q ÝÑ R given by

kvpuq “ 2puv ´ 1q lnpuq ´ pv ` 1qpu ´ 1q lnpuvq. (51)

Let us note that kvpvq “ 0. Let us also observe that k1 “ 0, which amounts
to the second part of (50), and a fortiori (49) or (48). Thus to prove (50),
and hence (49), and consequently (48) it is enough to assume that v ą 1,
and show that kv is strictly increasing. Let us calculate the derivative of kv.
We have for each u P pv,8q

k1
vpuq “ (52)

2
„

v lnpuq ` puv ´ 1q
1
u

ȷ

´ pv ` 1q
„

lnpuvq ` pu ´ 1q
1
u

ȷ

“

2v lnpuq ` 2v ´
2
u

´ pv ` 1q
„

lnpuq ` 1´
1
u

ȷ

´ pv ` 1q lnpvq “

p2v ´ v ´ 1q
„

lnpuq ` 1´
1
u

ȷ

´ pv ` 1q lnpvq ` pv ´ 1q
2
u

“

pv ´ 1q
„

lnpuq ` 1`
1
u

ȷ

´ pv ` 1q lnpvq.

Put hpuq :“ lnpuq ` 1` 1
u
, u ě 1. Since

h1
puq “

1
u

´
1
u2

“
u ´ 1
u2

ą 0, u ą 1,

we see that h is increasing in r1,8q. Taking into account (52), we see that

k1
vpuq ą pv ´ 1qhpvq ´ pv ` 1q ln v, u ě v. (53)
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Denote by ϕ the mapping defined on r1,8q by the formula

ϕpvq “ pv ´ 1qhpvq ´ pv ` 1q ln v “ ´ ln v2 `
v2 ´ 1
v

.

We have ϕp1q “ 0, and ϕ1pvq “ ´2 1
v

` 1` 1
v2

“
`

1´ 1
v

˘2
ą 0, v ą 1. Hence ϕ

is increasing, and consequently ϕpvq ą 0, v ą 1. HenceThus, in view of (53),
we get kvpuq ą 0 for all u ą v.
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6 Application of Fuzzy Integral in Portfolio
Risk Management. ([45])

6.1 Introduction

Portfolio risk management is a critical aspect of asset allocation and invest-
ment management that focuses on identifying, assessing, and mitigating risks
associated with a portfolio of assets.
A portfolio, comprising investment classes such as stocks, bonds with dif-
ferent ratings, equity,commodities, and real estate, is subject to numerous
risks arising from market fluctuations (like movements in stock prices, inter-
est rates, exchange rates etc.), economic conditions and other factors.
Portfolio risk management plays a pivotal role in the investment decision-
making process because it involves analyzing the risk-return characteristics
of individual assets and their interactions within a portfolio to construct an
optimal allocation that aligns with investors’ risk tolerance and objectives.
By managing risks effectively, investors can protect their capital from poten-
tial losses and enhance the potential for achieving desired returns.

In the next subsection we explore the belief overview of the fundamental
principles of Modern Portfolio theory and its relevance in portfolio risk man-
agement.

6.1.1 Modern Portfolio Theory

Modern Portfolio Theory (MPT), introduced by Harry Markowitz in 1952,
is one of the most important and influential economic theories dealing with
finance and investment. It revolutionized the field of investment manage-
ment by providing a systematic framework for portfolio construction and
risk management. It is an investment theory based on the idea that risk-
averse investors can construct portfolios to maximize the expected return for
a given level of risk. It aims at optimize the risk-return trade-off by diversi-
fying investments across different assets. Diversification is away of holding a
combination of investments across a mix of different assets with low or nega-
tive correlations and this minimizes the impact of individual asset volatility
on the overall portfolio. By doing so, investors can maximize higher returns
with lower risk. MPT is based on the fact that investors are rational decision-
makers who seek to maximize returns while minimizing risk. Risk is measured
by the standard deviation of an asset’s returns, and return refers to the po-
tential gain or loss an investment can generate. We can represents a set of
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portfolios that offer the highest expected returns for a given level of risk or
the lowest risk for a given level of expected return on an efficient frontier
[35],[36],[37].

6.1.2 Efficient frontier

The efficient frontier is a powerful concept in Modern Portfolio Theory that
guides investors in constructing diversified portfolios that maximize expected
returns for a given level of risk or minimize risk for a given level of expected
returns. The efficient frontier helps investors make informed decisions about
their asset allocation because by choosing a portfolio on the efficient frontier
that aligns with their risk tolerance and financial goals, investors can achieve
the best trade-off between risk and return. It’s derived by combining different
assets with varying risk and return characteristics to achieve an optimal
portfolio allocation.
The efficient frontier is created by plotting all possible portfolios of risky
assets on a graph with expected return on the y-axis and risk (as measured by
standard deviation) on the x-axis. All points on the efficient frontier represent
optimal portfolios with the highest expected return for a given level of risk or
the lowest risk for a given level of expected return and portfolios lying below
the efficient frontier are sub-optimal because they provide lower returns for
the same level of risk or higher risk for the same level of return.
Below is the efficient frontier graph.
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As you can see, the efficient frontier is a curve that slopes upward from the
lower left corner of the graph to the upper right corner. There are three
portfolios on the efficient frontier, labeled A, B, and C.

1. Portfolio A is located on the left side of the efficient frontier. This means
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that it has a lower expected return than Portfolio B or Portfolio C, but
it also has a lower level of risk.

2. Portfolio B is located in the middle of the efficient frontier. This means
that it has an expected return that is higher than Portfolio A, but it
also has a higher level of risk.

3. Portfolio C is located on the right side of the efficient frontier. This
means that it has the highest expected return of the three portfolios,
but it also has the highest level of risk.

So an investor who is risk-averse might choose Portfolio A. This portfolio
would have a lower expected return than Portfolio B or Portfolio C, but it
would also have a lower level of risk. And an investor who is risk-seeking
might choose Portfolio C. This portfolio would have the highest expected
return of the three portfolios, but it would also have the highest level of risk.
Ultimately, the choice of which portfolio to invest in is a personal decision
that should be made based on an investor’s individual risk tolerance and
return objectives.

6.1.3 Criticism of Modern Portfolio theory and why we need a
non-additive measure

The traditional models and analysis procedures for portfolio optimization
are, in most cases, based on the assumption that the distribution of returns
of an asset is normal. This means that in practice, a portfolio of stocks under-
goes small percentage daily losses and gains much more often than negligible
or extreme fluctuations.
While as the MPT theorem appears to be a good method of optimal portfolio
construction and management, it uses the mathematical concept of variance
to quantify risk. And this can only be justified under the assumption of el-
liptically distributed returns such as normal distribution returns.
Modern portfolio theory has been criticized because it assumes that returns
follow a Gaussian distribution(normal distribution).
In 1960s, Benoit Mandeltbrot and Eugene Fama showed the inadequacy of
this assumption and proposed the use of a stable distribution instead. Ste-
fan Mittnik and Svetlozar Rachev presented strategies for deriving optimal
portfolios in such settings [59],[60],[63].
B. Mandelbrot, a French mathematician of Polish origin who researches in
the field of fractal geometry, disagreed with the applicability of the Gaussian
distribution in explaining the reality of financial markets. And he suggested
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that extreme movements are much more likely than the commonly used mod-
els in finance predict. This is why traditional methods in risk management
and finance are being increasingly criticized.
Traditional risk measures such as standard deviation or Value at Risk (VaR)
often rely on precise probabilities or distributions, which may not accurately
capture the complex and unpredictable nature of financial markets. However
fuzzy measures, through the incorporation of haircuts, captures the imprecise
and uncertain nature of risk and this offer a more comprehensive approach
to risk analysis, enabling us to make better-informed investment .
The assumption of a normal distribution underestimates the probability of
large and important price movements for portfolio optimization. And rely-
ing on the correlation matrices, it fails to capture the relevant dependence
structure among the characteristics of assets. So we propose a new non-
additive(fuzzy) aggregation function which not only doesn’t assume any dis-
tribution but it captures the diversification and dependencies or complexities
with in the characteristics of an asset . So by employing non-additive fuzzy
measures in portfolio risk management, we gain a more accurate understand-
ing of the portfolio’s risk profile and can make informed investment decisions
accordingly.

6.2 Optimization approach to find λ

In situations where the domain is extensive, solving the polynomial equation
to determine the optimal value of λ can become intricate and convoluted.
To address this, we propose an iterative approach as an alternative, allowing
us to obtain the optimal value for λ without having to solve complex poly-
nomial functions. This iterative method proves advantageous, particularly in
real-world scenarios characterized by larger domains, surpassing the limita-
tions of conventional techniques and that’s the gradient descent.

6.2.1 Gradient Descent

Gradient descent is an iterative optimization algorithm for finding the min-
imum of a function. It is a very powerful algorithm that is used in a wide
variety of applications, including machine learning, data science, optimiza-
tion, finance, and engineering. It aims to adjust the parameters of a model
iteratively by taking steps proportional to the negative gradient of the cost
function at a given point.
Gradient descent works by starting at a random point and then repeatedly
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moving in the direction of the negative gradient of the function. The gradient
of a function is a vector that points in the direction of the steepest ascent of
the function. So, by moving in the direction of the negative gradient, we are
moving in the direction of the steepest descent

The mathematical expression for gradient descent is as follows:

xt “ xt´1 ´ α∇fpxt´1q, t P N

where:
xt is the value of the parameter at iteration t,
xt´1 is the value of the parameter at iteration t ´ 1 ,
α is the learning rate and,
∇fpxt´1q is the gradient of the function at xt´1
The main parameters of gradient descent are the learning rate and the num-
ber of iterations. The learning rate controls how much the parameter is up-
dated at each iteration. A larger learning rate will cause the parameter to be
updated more quickly. However, the algorithm may overshoot the minimum
and fail to converge. A smaller learning rate will cause the parameter to be
updated more slowly, but it may also cause the algorithm to converge more
slowly. The number of iterations controls how many times the algorithm will
update the parameter. A larger number of iterations will increase the accu-
racy of the solution, but it will also take longer to find the solution.
Besides the learning rate, Initial Parameters pt0q the initial values of the pa-
rameters influence the starting point of the optimization process. Different
initial values can lead to different local minima or convergence rates.

6.2.2 Cost Function

The cost function quantifies the error or discrepancy between the predicted
output of a model and the actual output. It represents the objective to be
minimized during training. The choice of the cost function depends on the
specific problem and model.
The cost function should be differentiable since the gradient descent algo-
rithm relies on calculating the gradient ∇fpxt´1q to update the parameters.
Differentiability ensures that the algorithm can find the direction of steepest
descent to iteratively approach the minimum.
With the form provided in Definition 2.6, we proceed to introduce our op-
timization methodology. We convert equation (7) into a cost function, or
penalty function, and employ an iterative technique, specifically gradient de-
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scent, to determine the optimal value of λ that minimizes the cost function.
Based on equation (7), we formulate the following cost function.

Definition 6.1. Let Xi, i P t1, ¨ ¨ ¨ , nu be pairwise disjoint sets and let X
represent the union of all these Xi sets. Letmλ : X Ñ r0, 1s, the cost function
C : p´1,8q Ñ R`, is defined as

Cpλq “ 1
2

˜

1´
n
ř

j“1

ř

X̂Pσpjq

λj´1mλpX̂q

¸2

(54)

and mλpX̂q “
ś

X̂˚PX̂

mλpX̂˚q.

6.2.3 Algorithm for Gradient Descent

Next, we use gradient descent to find the best value of λ such that equation
(54) is approximately zero.
Implementing the gradient descent update rule. Below is the algorithm for
the Gradient Descent optimization method

1. Initialize the weight (parameter) λ to some initial value.

2. Set the learning rate α (step size) to a small positive value.

3. Iterative Update: Repeat the following steps until the convergence cri-
terion is met:

a. Compute the gradient of the cost function with respect to λ i.e.

∇Cpλq “

¨

˝

n
ÿ

j“1

ÿ

X̂Pσpjq

λj´1mλpX̂q ´ 1

˛

‚

¨

˝

n
ÿ

j“2

ÿ

X̂Pσpjq

pj ´ 1qλj´2mλpX̂q

˛

‚.

where mλpX̂q “
ś

X̂˚PX̂

mλpX̂˚q.

b. Update λ at iteration t using the gradient at iteration t ´ 1 and
learning rate:
λt :“ λt´1 ´ α∇Cpλt´1q, t P N.

c. Repeat steps a and b for a predefined number of iterations or until
the cost function reaches a desired threshold.

4. Return the optimized weights λ
.
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6.2.4 Computer Code for Computing mλ-measure

6.2.5 Function to Compute λ

import numpy as np
import itertools as it

def compute lambda ( lad , X, i t e r a t i o n , e r ro r , l e a r n i n g r a t e ) :
lamda = lad
power = [ ]
i f len (X) > 4 :
a = l e a r n i n g r a t e

else :
a = 1

for i in range (1 , len (X) + 1 ) :
l i s t c omb i n a t i o n s = i t . combinat ions (X, i )
for item in l i s t ( l i s t c omb i n a t i o n s ) :

power . append ( item )
co = [ 0 ]
for j in range ( i t e r a t i o n ) :

c s = 1
cs1 = 0
for i in power :

c s = cs − np . f l o a t 6 4 (np . power ( lamda , len ( i ) − 1)
∗ np . prod ( i ) )
i f len ( i ) > 1 :

cs1 = cs1 + np . f l o a t 6 4 ( ( len ( i ) − 1)
∗ ( ( lamda )∗∗ ( len ( i ) − 2) ) ∗ np . prod ( i ) )

co s t = ( cs ∗∗2) ∗ 0 .5
co . append ( co s t )
lamda = lamda + a ∗ ( cs ∗ cs1 )
i f co [−1] <= er r o r :
print ( ”lambda : ” , round( lamda , 4 ) )
break

i f co [−1] > e r r o r :
print ( ’ c o s t g r e a t e r than accepted e r r o r ’ )

return round( lamda , 4)

6.2.6 Function to Compute Pairs

def pa i r s ( lad , X) :
n ew l i s t =[ ]
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for i in range (1 , len (X)+1):
n ew l i s t . append ( ”X ”+str ( i ) )

i f len (X)> 2 :
lamda=lad
power=[ ]
p a i r s =[ ]
paip =[ ]
f i n a l =[ ]
a l l s e t =[ ]
powers new=[ ]
n ew l i s t p a i r s =[ ]
for i in range (1 , len (X)+1):

l i s t c omb i n a t i o n s =i t . combinat ions (X, i )
for item in l i s t ( l i s t c omb i n a t i o n s ) :

power . append ( item )
for i in range (1 , len ( n ew l i s t )+1):

l i s t c omb i n a t i o n s =i t . combinat ions ( new l i s t , i )
for item in l i s t ( l i s t c omb i n a t i o n s ) :

powers new . append ( item )
for i in power :

i f len ( i )!=1 and len ( i ) != len (X) :
p a i r s . append ( i )

for i in powers new :
i f len ( i )!=1 and len ( i ) != len ( n ew l i s t ) :

n ew l i s t p a i r s . append ( i )
npower=[ ]
for i in pa i r s :

for j in range (1 , len ( i )+1) :
l i s t c omb ina t i o n s 1 =i t . combinat ions ( i , j )
for item in l i s t ( l i s t c omb ina t i o n s 1 ) :

npower . append ( item )
ncs=0
for i i in npower :

ncs= ncs+ ( ( ( lamda )∗∗ ( len ( i i )−1))∗np . prod ( i i ) )
paip . append ( ncs )

f i n a l . append (round( paip [ 0 ] , 4 ) )
for i in range (1 , len ( paip ) ) :

f i n a l . append (round( paip [ i ]−paip [ i −1 ] ,4) )
for i in range (1 , len (X)+1):

a l l s e t . append ( ”X ”+str ( i ) )
print ( ”m−lambda ( [ X ” , i , ” ])=” ,X[ i −1] , sep=”” )
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for i in range ( len ( p a i r s ) ) :
print ( ”m−lambda ( [ ” + ’U ’ . j o i n ( n ew l i s t p a i r s [ i ] ) + ’ ] ’ ”)=” ,
f i n a l [ i ] , sep=”” )

print ( ”m−lambda ( [ ” + ’U ’ . j o i n ( a l l s e t ) + ’ ] ’ ”)=” ,1 , sep=”” )
e l i f len (X)==2:

for i in range (1 , len (X)+1):
print ( ”m−lambda ( [ X ” , i , ” ])=” ,X[ i −1] , sep=”” )

print ( ”m−lambda ( [ X 1UX 2])=” ,1 , sep=”” )

Function to Compute mλ-measure

We combine the above python functions to get the mλ-measure function

def m lambda measure (X) :
lad=0
i t e r a t i o n =1000000
e r r o r =0.000000000001
l e a r n i n g r a t e =0.0001
l a d i=compute lambda ( lad ,X, i t e r a t i o n , e r ro r , l e a r n i n g r a t e )
return pa i r s ( l ad i ,X)
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So upto this end we’ve an overview of fuzzy measure theory, as a mathemat-
ical framework used to model and quantify uncertainty and imprecision. It
provides a more nuanced and flexible approach to risk assessment compared
to traditional deterministic methods. Since fuzzy sets and membership func-
tions, enables the representation and manipulation of imprecise information.
By employing fuzzy measure theory, we can capture the inherently uncertain
nature of risk within portfolio management. So building on the foundation of
fuzzy measure theory, and taking advantage of non-additive measure(fuzzy)
in portfolio risk management.
In order to capture the inherent uncertainties associated with the market
value of assets, we employ the concept of haircuts to portray the fuzzy den-
sities. So, next we explore the concept of haircuts.

6.3 Haircuts

In the context of portfolio risk management, haircuts represent a percentage
reduction in the market value of an asset. The purpose of applying haircuts is
to protect against potential losses if the asset’s value declines. By using hair-
cuts as an alternative risk measure of uncertainties(fuzzy densities), we can
capture and quantify the imprecise and uncertain aspects of asset risk. This
enables us to incorporate more comprehensive risk assessment techniques
within MPT, enhancing our ability to construct portfolios that account for
a range of potential outcomes.

Different assets or asset classes are assigned specific haircuts based on their
risk characteristics. Factors such as market fluctuations, liquidity, credit qual-
ity, and volatility are taken into consideration when determining the magni-
tude of haircuts for each asset. By adjusting asset values using haircuts, we
can better reflect the uncertain and imprecise nature of risk, allowing for a
more accurate representation of asset values within the portfolio.

The haircut can be thought of as a measure of the uncertainty associated
with the asset’s value. For example, an asset with a high haircut would be
considered riskier than an asset with a lower haircut.

Example 6.1. Let’s examine assets X and Y. Asset X is valued at 100 Polish
Zloty (PLN) with a 10% haircut, while Asset Y is valued at 100 Polish Zloty
(PLN) with a 20% haircut. From this, we can deduce that asset Y is riskier
than asset X.
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Through the combination of fuzzy integral and fuzzy measures repre-
sented by haircuts, we derive an all-encompassing risk score for the portfolio.
This thorough risk assessment considers asset weights and the distribution
of haircuts among various assets.

To illustrate the practical implementation of these concepts in portfolio con-
struction, we provide a compelling case study. By integrating haircuts as
fuzzy measures in the portfolio risk assessment, we demonstrate how this ap-
proach enhances our comprehension of the portfolio’s risk profile. We present
the case study results, highlighting the valuable insights gained from this
methodology.

6.4 Application

Modern Portfolio Theory (MPT) revolutionized portfolio construction by
emphasizing the importance of diversification to optimize risk and return.
Although various aggregation functions, such as the Sugeno and Choquet
integrals, have been widely applied in decision-making and risk assessment,
they fail to explicitly consider diversification as illustrated in the next exam-
ple below.
So we propose the development of a new aggregation function that accounts
for the crucial aspect of diversification. And by introducing this new func-
tion, we aim to enhance the risk management capabilities within Modern
Portfolio Theory (MPT) and further refine portfolio optimization strategies
which enables portfolio managers and investors to accurately evaluate and
optimize the risk-return trade-off.

Let’s begin by the definition and an example on the d-Choquet integral(aggregation
function).

Definition 6.2. (see[10, Definition 3.1])

Let µ be a fuzzy normalized measure defined on the set of sets X “

n
ď

i“1

Xi,

where Xi are pairwise disjoint sets. The integral of a function f : X Ñ r0, 1s
with respect to the fuzzy measure µ is given by:

pOq

ż

A

fdµ “

n
ÿ

i“1

rfpXiq ´ fpXi´1qs
2µpAiq, (55)

Here, µpA1q “ µpX1 Y X2 Y . . . Y Xnq, µpA2q “ µpX2 Y X3 Y . . . Y Xnq,
. . . , µpAnq “ µpXnq. The ranges tfpX1q, fpX2q, . . . , fpXnqu are defined in

72

78:3239150435



ascending order as fpX1q ď fpX2q ď . . . ď fpXnq, with the convention that

fpX0q “ 0 and
n
ř

i“1
fpXiq “ 1.

Example 6.2. From example 2.6, we can also compute special case of d-
Choquet integral as shown below,

pOq

ż

A

fdgλ “

3
ÿ

i“1

rfpXiq ´ fpXi´1qs
2gλpAiq

“ rfpX1q ´ fpX0qs
2

¨ gλpA1q ` rfpX2q ´ fpX1qs
2

¨ gλpA2q

` rfpX3q ´ fpX2qs
2

¨ gλpA3q.

“ p0.4q2 ` p0.6´ 0.4q2 ¨ 0.6275` p0.8´ 0.6q2 ¨ 0.3 “ 0.1971.

In the next example, we aim to demonstrate that the Sugeno and Choquet
integrals do not adequately capture diversification, which is an important
factor in MPT and as well decision-making. Instead, the d-Choquet integral
addresses this limitation.

Example 6.3. In this example, we consider a portfolio consisting of secu-
rities such as bonds and stocks, with assigned haircut measures of 0.1 for
bonds and 0.5 for stocks. The union of the stock and bond haircuts is equal
to 1, indicating that they are mutually exclusive. Additionally, the expected
returns for bonds and stocks are 0.05 and 0.1, respectively.
We examine three portfolios: A, B, and C. Portfolio A allocates 100% to
bonds and 0% to stocks. Portfolio B allocates 75% to bonds and 25% to
stocks, indicating a diversified allocation. Portfolio C allocates 0% to bonds
and 100% to stocks.
Let us first summarise the above information into tables.

Expected Returns of the Financial Instruments

Securities Expected returns
Bonds 0.05
Stocks 0.1

Risk of the Financial Instruments
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Haircut Measure Haircut value
m(Bonds) 0.1
m(Stocks) 0.5

m(Bonds Y stocks) 1

Portfolio Allocation

Portfolio Bonds Stock
Portfolio A 100% Bonds 0
Portfolio B 75% Bonds 25% Stocks
Portfolio C 0 100% Stocks

It is evident that portfolio B exhibits diversification by allocating a por-
tion to both bonds and stocks. To assess whether the Sugeno and Choquet
integrals capture this diversification, we will apply these aggregation func-
tions to the portfolios.
In the table below are the results for the integrals.

Portfolio Sugeno Integral Choquet Integral d-Choquet Integral Expected return
Portfolio A 0.1 0.1 0.1 0.05
Portfolio B 0.25 0.3 0.0875 0.065
Portfolio C 0.5 0.5 0.5 0.1

We can compare the results of these aggregation functions with the diver-
sified portfolio B and determine whether they adequately capture the benefits
of diversification.
It is observed that the Sugeno integral indicates a small risk for portfolio A,
followed by B, and then C. The Choquet integral also ranks the portfolios
as A, B, and C in terms of risk. However,the d-Choquet integral highlights
portfolio B as having the lowest risk, followed by portfolio A, and then port-
folio C.
These findings align with the fact that portfolio B exhibits diversification
through the allocation of both bonds and stocks. Therefore,the d-Choquet
integral provides a more accurate representation of the risk associated with
the portfolios, highlighting the benefits of diversification in portfolio B. This
underscores the importance of considering diversification when assessing risk
in investment portfolios.
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6.4.1 Case study

In the case study, our focus is on the risk assessment and construction of
efficient frontiers for a portfolio consisting of four financial instruments: X1
representing bonds rated AAA,X2 representing bonds rated BBB and better,
X3 representing stocks, andX4 representing derivatives. For each instrument,
haircut density values are provided to quantify the risk associated with them.
These values reflect the reduction in the stated value of the instrument to
account for potential losses.
To capture the inter-dependencies among the instruments, we compute their
unions using the mλ- measure as defined in Definition 2.6. These unions
represent the combined risk factors across multiple instruments, consider-
ing their respective haircuts. By incorporating the unions, we gain a more
comprehensive understanding of the overall risk profile of the investment
portfolio.

6.4.2 Haircuts measures

Given the haircut densities mλpX1q “ 0.1,mλpX2q “ 0.2,mλpX3q “ 0.5 and
mλpX4q “ 0.95, we apply gradient descent by the aid of a computer code
presented in Section 6.2.4 to solve for the optimal value of λ and the corre-
sponding mλ measure values for various unions.

Input:
Inputting the haircut densities in the computer program, we can now com-
pute λ and the corresponding mλ measure values for various unions i.e,

m lambda measure ( [ 0 . 1 , 0 . 2 , 0 . 5 , 0 . 9 5 ] ) .

Output :
We obtain the value,
λ “ ´0.971 .
Since we’ve λ , we can now compute mλ measure values for various unions.
The results are provided in the table below.
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Haircut Measure Haircut Value(Risk)
mλpX1q 0.1
mλpX2q 0.2
mλpX3q 0.5
mλpX4q 0.95

mλpX1 Y X2q 0.2806
mλpX1 Y X3q 0.5514
mλpX1 Y X4q 0.9578
mλpX2 Y X3q 0.6029
mλpX2 Y X4q 0.9655
mλpX3 Y X4q 0.9888

mλpX1 Y X2 Y X3q 0.6444
mλpX1 Y X2 Y X4q 0.9718
mλpX1 Y X3 Y X4q 0.9928
mλpX2 Y X3 Y X4q 0.9968

mλpX1 Y X2 Y X3 Y X4q 1

The below table provides the expected returns for the financial instru-
ments. These expected returns offer insights into the potential profitability
or loss associated with each instrument.

Financial Instruments Expected Returns
X1 0.05
X2 0.08
X3 0.12
X4 0.2

Subsequently, we assign weights to each asset within the portfolio, ensuring
that the sum of all allocated weights amounts to 1, as the entire portfolio
must be fully invested. For our analysis, we simulated a total of 256 portfo-
lios using the provided four financial instruments. After obtaining the allo-
cated weights, as shown in Table 1 (highlighted in green), we can proceed to
compute the portfolio risk and portfolio expected return using the following
formulas:

6.4.3 Portfolio Expected Return

The expected return of an investment or portfolio is the average return that
an investor can anticipate over a given time period. It is calculated as the
weighted sum of the individual asset returns or asset class returns in a port-
folio. The formula for the expected return of a portfolio is:
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EpP q “

n
ÿ

i“1

wi ¨ Ri

In the formular,
EpP q represents the expected return of the portfolio.
n is the number of assets in the portfolio.
wi is the weight (proportion) of asset i in the portfolio
Ri is the expected return of asset i

Now we compute the expected returns of each of the portfolios,

EpP1q “ fpX1q ¨ 0.05` fpX2q ¨ 0.08` fpX3q ¨ 0.12` fpX4q ¨ 0.2 “ 0.2
EpP2q “ fpX1q ¨ 0.05` fpX2q ¨ 0.08` fpX3q ¨ 0.12` fpX4q ¨ 0.2 “ 0.1 ¨ 0.12` 0.9 ¨ 0.2 “ 0.192
EpP3q “ fpX1q ¨ 0.05` fpX2q ¨ 0.08` fpX3q ¨ 0.12` fpX4q ¨ 0.2 “ 0.2 ¨ 0.12` 0.8 ¨ 0.2 “ 0.184
EpP4q “ fpX1q ¨ 0.05` fpX2q ¨ 0.08` fpX3q ¨ 0.12` fpX4q ¨ 0.2 “ 0.3 ¨ 0.12` 0.7 ¨ 0.2 “ 0.176
EpP5q “ fpX1q ¨ 0.05` fpX2q ¨ 0.08` fpX3q ¨ 0.12` fpX4q ¨ 0.2 “ 0.4 ¨ 0.12` 0.6 ¨ 0.2 “ 0.168

...
EpP256q “ fpX1q ¨ 0.05` fpX2q ¨ 0.08` fpX3q ¨ 0.12` fpX4q ¨ 0.2 “ 0.05.

6.4.4 Portfolio Risk

To determine the portfolio risk for each portfolio, we utilize the d-Choquet
integral as described in Definition 6.2:

pOq

ż

P1

fdmλ “ rfpX1q ´ fpX0qs
2

¨ mλpX1 Y X2 Y X3 Y X4q

` rfpX2q ´ fpX1qs
2

¨ mλpX2 Y X3 Y X4q

` rfpX3q ´ fpX2qs
2

¨ mλpX3 Y X4q

` rfpX4q ´ fpX3qs
2

¨ mλpX4q “ 0.95

pOq

ż

P2

fdmλ “ rfpX1q ´ fpX0qs
2

¨ mλpX1 Y X2 Y X3 Y X4q

` rfpX2q ´ fpX1qs
2

¨ mλpX2 Y X3 Y X4q

` rfpX3q ´ fpX2qs
2

¨ mλpX3 Y X4q ` rfpX4q ´ fpX3qs
2

¨ mλpX4q

“ p0.1q2 ¨ 0.9888` p0.9´ 0.1q2 ¨ 0.95
“ 0.617888
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pOq

ż

P3

fdmλ “ rfpX1q ´ fpX0qs
2

¨ mλpX1 Y X2 Y X3 Y X4q

` rfpX2q ´ fpX1qs
2

¨ mλpX2 Y X3 Y X4q

` rfpX3q ´ fpX2qs
2

¨ mλpX3 Y X4q ` rfpX4q ´ fpX3qs
2

¨ mλpX4q

“ p0.2q2 ¨ 0.9888` p0.8´ 0.2q2 ¨ 0.95
“ 0.381552

pOq

ż

P4

fdmλ “ rfpX1q ´ fpX0qs
2

¨ mλpX1 Y X2 Y X3 Y X4q

` rfpX2q ´ fpX1qs
2

¨ mλpX2 Y X3 Y X4q

` rfpX3q ´ fpX2qs
2

¨ mλpX3 Y X4q ` rfpX4q ´ fpX3qs
2

¨ mλpX4q

“ p0.3q2 ¨ 0.9888` p0.7´ 0.3q2 ¨ 0.95
“ 0.240992

pOq

ż

P5

fdmλ “ rfpX1q ´ fpX0qs
2

¨ mλpX1 Y X2 Y X3 Y X4q

` rfpX2q ´ fpX1qs
2

¨ mλpX2 Y X3 Y X4q

` rfpX3q ´ fpX2qs
2

¨ mλpX3 Y X4q ` rfpX4q ´ fpX3qs
2

¨ mλpX4q

“ p0.4q2 ¨ 0.9888` p0.6´ 0.4q2 ¨ 0.95
“ 0.196208

...

pOq

ż

P256

fdmλ “ rfpX4q ´ fpX3qs
2

¨ mλpX1 Y X2 Y X3 Y X4q

` rfpX3q ´ fpX2qs
2

¨ mλpX1 Y X2 Y X3q

` rfpX2q ´ fpX1qs
2

¨ mλpX2 Y X1q ` rfpX2q ´ fpX1qs
2

¨ mλpX1q

“ 1 ¨ 0.1
“ 0.1.
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The table below summarizes the results for the portfolio risk and expected
return values for each portfolio.

Table 1: Portfolio risk and expected return

Portfolio fpX1q fpX2q fpX3q fpX4q Portfolio Expected Return Portfolio Risk
Portfolio 1 0 0 0 1 0.2 0.95
Portfolio 2 0 0 0.1 0.9 0.192 0.617888
Portfolio 3 0 0 0.2 0.8 0.184 0.381552
Portfolio 4 0 0 0.3 0.7 0.176 0.240992
Portfolio 5 0 0 0.4 0.6 0.168 0.196208
Portfolio 6 0 0 0.5 0.5 0.16 0.2472
...

...
...

...
...

...
...

Portfolio 255 0.9 0.1 0 0 0.053 0.066806
Portfolio 256 1 0 0 0 0.05 0.1

The analysis of the portfolio data presented in the table above has provided
valuable insights into the risk-return characteristics of various investment
options. By factoring in the non-additive risk measures in portfolio analysis,
we gain a deeper understanding of the risk dynamics within the portfolio,
facilitating more informed and robust decision-making. Below is the graph
to show the efficient frontier with optimal portfolios.
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All portfolios below the efficient frontier curve are sub-optimal, as they do
not offer the highest expected return for a given level of risk. Only those
portfolios on the curve are optimal. Portfolio 203 has the smallest risk and
at the same level of risk with other portfolios,it maximizes the returns. This
means that it is the portfolio with the highest Sharpe ratio, which is a mea-
sure of the return per unit of risk. Portfolio 1 has the highest risk and highest
returns.
The selection of portfolios ultimately hinges upon individual investors’ risk
preferences and investment objectives. Risk-averse individuals are more in-
clined to invest in portfolios like Portfolio 203 or those in close proximity on
the efficient frontier, which offer optimal returns at reduced risk levels.On
the other hand, risk seekers may opt for portfolios like Portfolio 1 or those
in close proximity drawn to the potential for higher returns despite the ac-
companying elevated risk.
Ultimately, Modern Portfolio Theory highlights the importance of construct-
ing portfolios that align with individual risk tolerances, financial goals, and
time horizons. Whether one aims for stability or embraces greater risk, un-
derstanding the dynamics of the efficient frontier empowers investors to make
informed and strategic investment decisions tailored to their unique prefer-
ences and objectives.
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[3] Sz. Baják and Zs. Páles, Computer aided solution of the invariance
equation for two-variable Stolarsky means, Comput. Math. Appl. 216
(11) (2010), 3219–3227.

[4] L. Berrone, J. Moro, Lagrangian means. Aequ. Math. 55 (1998), 217–
226.
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(1883) 6.

[27] A. Ebadian, M. Oraki, Hermite-Hadamard inequality for Sugeno inte-
gral based on harmonically convex functions.J. Computational Analysis
and Applications, 29(3) (2021), 532-543.
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[31] İ. İşcan, Hermite-Hadamard type inequalities for harmonically con-
vex functions. Hacettepe Journal of Mathematics and Statistics, 43 (6)
(2014), 935-942.
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inequalities of the Hermite-Hadamard type, Math. Inequal. Appl. 20
(2) (2017), 363–375.

[55] J. Sándor, On upper Hermite-Hadamard inequalities for geometric-
convex and log-convex functions. Notes on Number Theory and Discrete
Mathematics, 20(5), (2014)25-30.

[56] J. Sándor, Corrigendum to “On upper Hermite–Hadamard inequali-
ties for geometric-convex and log-convex functions” [Notes on Number
Theory and Discrete Mathematics, 2014, Vol. 20, No. 5, 25–30]

[57] M. Shaked and J.G. Shanthikumar, Stochastic Orders, Springer
Series in Statistics, 2007.

[58] M. Sugeno, Theory of fuzzy integrals and its application, Doctoral The-
sis, Tokyo Institute of Technology, 1974.

[59] R. Svetlozar, S. Mittnik, Stable Paretian Models in Finance, Wiley,
(2000) ISBN 978-0-471-95314-2.

[60] R. Svetlozar, S. Mittnik, “New Approaches for Portfolio Optimiza-
tion: Parting with the Bell Curve , Risk Manager Journal (2006).

[61] T. Szostok, Ohlin’s lemma and some inequalities of the Hermite-
Hadamard type, Aequat. Math. 89 (2015), 915–926

[62] T. Szostok, Inequalities of Hermite-Hadamard type for higher-order
convex functions, revisited, Commun. Pure Appl. Anal. 20 (2) (2021),
903–914.

[63] D.Toker, H. Christoph, M.StefanPortfolio Optimization When Risk
Factors Are Conditionally Varying and Heavy Tailed, Computational
Economics. 29: 333–354. doi:10.1007/s10614-006- 9071-1 (2007).

[64] Z. Wang, G. Klir, Fuzzy Measure Theory. Plenum, New York, 1992.

85

91:8445824490



[65] X.-M. Zhang, Y.-M. Chu, X.-H. Zhang, The Hermite-Hadamard
type inequality of GA-convex functions and its application. J. Inequal.
Appl., (2010), Article ID 507560.

86

92:3918497417


	Introduction
	Preliminaries
	Fuzzy measure theory
	Sugeno and Choquet integrals for nonnegative functions

	Hermite-Hadamard Inequality. (T2)
	Introduction.
	A description of methods used in the computer program
	Step 1
	Step 2
	Step 3

	Computer code
	Results of the computer code
	Functional inequalities considered by M. Bessenyei and Z. Páles
	Functional inequalities considered by T. Szostok
	Functional inequalities stemming from the known closed quadrature rules
	Functional inequalities stemming from the known open Newton-Cotes rules
	Higher-order convex function of the functional inequality with negative results

	QUASI-ARITHMETIC MEANS.(T0)
	Hermite-Hadamard inequality for Sugeno integral based on quasi arithmetically convex functions
	Conclusion.

	Lagrangian mean. (T1),(JS), (JS1)
	Characterization of the logarithmic mean 
	A note on a result by J. Sándor

	Application of Fuzzy Integral in Portfolio Risk Management. (T3)
	Introduction
	Modern Portfolio Theory
	Efficient frontier
	Criticism of Modern Portfolio theory and why we need a non-additive measure

	Optimization approach to find 
	Gradient Descent
	Cost Function
	Algorithm for Gradient Descent
	Computer Code for Computing m-measure
	Function to Compute 
	Function to Compute Pairs

	Haircuts
	Application
	Case study
	Haircuts measures
	Portfolio Expected Return
	Portfolio Risk


	Bibliography

