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Abstract

The presented doctoral dissertation is focused on a very specific transport effect observed
in nonequilibrium systems, known as negative mobility. This non-intuitive phenomenon
manifests in the following way: when a particle traveling in a nonlinear system far from
equilibrium is subjected to a biased constant force, the direction of its net movement is
observed to be opposite to that promoted by the acting force. In this study, by means
of numerical methods, the negative mobility features and its origin have been explored.
Moreover, it has been demonstrated how this effect can be used for mechanical isolation
of one particle species from the others. A number of experiments involving negative mobility
have already reported on successful separation of two types of particles with different sizes in
microfluidic devices. However, no investigation on how to isolate in a controllable way desired
particles from a mixture of various species has been conducted. The presented research reveals
conditions that offer tailored isolation techniques by means of difference in the particles
mobility. The proposed innovative separation mechanisms may prove to be promising for
sorting difficult-to-separate mixtures, including those in biological systems.

Streszczenie

Tematem przewodnim niniejszej rozprawy doktorskiej jest szczególne zjawisko transportu
w układach nierównowagowych, zwane ujemną ruchliwością. Efekt ten, pozornie sprzeczny
z codzienną intuicją, przejawia się w następujący sposób: kiedy cząstka poruszająca się
w układzie nieliniowym w warunkach nierównowagowych poddana jest działaniu stałej siły,
wypadkowy kierunek jej przemieszczenia okazuje się być przeciwny do kierunku działającej
siły. W przedstawionej pracy za pomocą metod numerycznych zbadano własności i mechaniz-
my zjawiska ujemnej ruchliwości, a także pokazano, jak efekt ten może być wykorzystany do
mechanicznej separacji różnych typów cząstek. W urządzeniach mikroprzepływowych wykona-
no szereg eksperymentów, w których za pomocą zjawiska ujemnej ruchliwości udało się rozdzie-
lić cząstki o różnych rozmiarach. Nie przeprowadzono jednak dotychczas badań dotyczących
kontrolowanej separacji cząstek o określonych wlasnościach fizycznych spośród ich heteroge-
nicznej mieszaniny. W niniejszej pracy zaprezentowano warunki, które umożliwiają kontrolo-
waną izolację cząstek na podstawie różnicy w ich ruchliwości. Proponowane innowacyjne
metody separacji cząstek mogą okazać się przydatne w przypadku mieszanin, w których
rozdzielenie składników jest skomplikowanym zadaniem, co jest szczególnie charakterystyczne
dla układów biologicznych.
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1 Introduction

The transport phenomena have always played an important role in nature. Transportation is
the foundation of all the changes observed in our everyday environment. It entails weather
phenomena, geological changes, the water cycle in nature, transmission of nerve impulses,
metabolism of living creatures or communication within human global civilization, to name
just a few. Transport is ubiquitous in both micro and macro scale processes. This fact has
already been recognized by ancient philosophers – all entities move and nothing remains still
– has claimed Heraclitus in his treatise On Nature [1].

Because of the wide range of applications, transport remains an object of research in many
fields of modern science. From applied science and technology (energy and heat transfer [2],
hydrological processes [3], electrical circuits [4], gas transportation [5] and many others) to
biology and medicine (e.g. cellular transport [6], epidemiology [7], drugs delivery [8]) to human
behaviorism and culture (human migration [9] or trade [10]) the need to study transport
modeling has tremendously increased in recent years.

The presented doctoral dissertation is focused on a very specific case of transport phenome-
non. In this study the anomalous transport effect observed in the small-scale systems exposed
to nonequilibrium conditions is investigated. By the small-scale we understand the systems
for which the energy of thermal fluctuations is comparable to energy scales in the system.
Therefore, the impact of thermal fluctuations cannot be completely neglected and one is
mostly forced to work with probabilistic descriptions of the system. Hence, small-scale
transport significantly differs from the macroscopic one which we encounter in our daily life.

The research introduced in this dissertation is based on the classical model of a Brownian
particle, which has already been thoroughly described in the literature [11, 12]. This model
allows including additional factors such as acting forces, thermal fluctuations or geometry
of the particles’ environment in a straightforward and elegant way. Although the model of
Brownian motion appears to be a very basic and commonly used description, under some
specific circumstances, in particular for nonequilibrium setting, it exhibits interesting and
unique transport behaviour such as noise enhanced transport efficiency [13, 14], anomalous
diffusion [15, 16, 17], amplification of normal diffusion [18, 19] or non-monotonic temperature
dependence of normal diffusion [20].

Another remarkable transport effect observed for Brownian motion is the negative mobility.
This non-intuitive phenomenon manifests in a following way: when a particle traveling in
a nonlinear system far from equilibrium is subjected to a biased constant force, the direction
of its net movement is observed to be opposite to that promoted by acting force. In other
words, the direction of the particle velocity is opposite to the direction of biased force in the
system.

This effect has been known for almost four decades and was observed in multiple experi-
ments [21, 22, 23, 24, 25]. At the beginning, negative mobility was studied in a frame of
quantum mechanical effects in semiconductor devices [26, 27], photovoltaic effects in ruby
crystals [28, 29], tunnel junctions between superconductors with unequal energy gaps [30, 31]
and certain ionized gas mixtures [32, 33]. Then, it was also identified in theoretical studies
on interacting Brownian particles, as a collective effect of purely classical features of the
nonequilibrium system [34, 35]. Afterwards, relatively recently, it has been proven to exist
also in a large variety of classical, single particle models [22, 36, 37, 38, 39].

Negative mobility phenomenon is the leading subject of this dissertation. By means of
numerical methods we explore its features and demonstrate how this effect can be used for
mechanical isolation of one particle species from the others. Hence, we propose an innovative
sorting-like mechanism based on kinetic properties of the particles which may prove to be
promising for sorting difficult-to-separate mixtures, including those in biological systems.

The results presented in the following chapters have been published as a monothematic
collection of four articles. In the first article (A1) we investigated phenomenon of negative
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mobility and its relationship to inertia. We defined three different mechanisms responsible
for this effect. We revealed that this phenomenon is also present in the strong damping
regime, i.e. when the inertial term is almost negligible compared to the damping impact in
the system. Moreover, we discovered interesting parameter regimes, where negative mobility
is present only for particles with mass within a narrow interval of investigated mass space.

This led us to the idea of particle separation, which is a subject of the second article (A2).
In this article we presented an effective particle separation mechanism based on negative
mobility. The particles are distinguished by their dimensionless mass and the whole separation
process can be tuned by setting a proper value of external time-periodic force frequency.
Although our research is limited to strictly theoretical considerations, it can provide a guide for
further experimental studies in order to isolate nano- and microparticles, proteins, organelles
and cells.

The third article (A3) describes a similar particle separation process, but here the mecha-
nism is triggered by thermal fluctuations. By varying solely the temperature of the system,
one can separate particles of various, strictly defined sizes. Because the mechanism is based
on negative mobility induced by thermal noise present in the system, it is far less populated
in the parameter space. Nonetheless, it may be promising for separating particles that carry
no charge or can hardly be manipulated by means of an external field.

Finally, in the fourth article (A4) we supplemented our results by discussing the separation
mechanism in the frame of deterministic negative mobility. We demonstrated that when
particles are distinguished by their size, the separation can be achieved by adjusting three
different parameters that shape the particles’ transport. We also proved that this method can
be applied to particles of almost all sizes considered in the proposed model.

In this guidebook we lead the reader through the findings published in the articles.
We expound reasons and motivations for conducted research as well as its significance and
potential future applications. In order to present the most prominent outcomes we use the
original illustrations and some of the conclusions from the published articles. When necessary,
we refer the reader to the proper section in the articles to see more details and technical
information.

2 The transport model

Let us consider a one-dimensional collection of non-interacting Brownian particles moving in
a spatially periodic landscape. Let the particles be additionally subjected to unbiased time-
periodic force Acos(Ωt), of amplitude A and frequency Ω, and external static force F . The
dynamics of a single particle of mass M can be described then by the Langevin equation [40]

Mẍ+ Γẋ = −U ′(x) +A cos (Ωt) + F +
√

2ΓkBT ξ(t), (1)

where the potential U(x) is assumed to be symmetric with period L and energy barrier 2∆U

U(x) = ∆U sin(2πx/L). (2)

The energy dissipation is modeled by the Stokesian friction Γẋ, while the coupling of the
particle with thermal bath of temperature T is modeled by Gaussian white noise of zero mean
and unity intensity,

〈ξ(t)〉 = 0, 〈ξ(t) ξ(s)〉 = δ(t− s). (3)

The noise intensity factor
√

2ΓkBT follows from the fluctuation-dissipation theorem [41],
ensuring the equilibrium state for A = 0 and F = 0. The kB stands for the Boltzmann
constant. The dot and the prime notation denote differentiation with respect to time and
space, respectively.
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Since equation (1) is a second-order non-linear stochastic differential equation, the associa-
ted Fokker-Planck equation cannot be handled by any analytical method. In order to examine
its dynamics and features one needs to perform a comprehensive numerical study. However,
before numerical methods can be applied, the equation needs to be transformed into dimension-
less form. This procedure minimizes the number of parameters in the system and thus reduces
the complexity of the system as well as extensive numerical computation. Moreover, it ensures
independence of the obtained results on the given system setup. It is crucial for facilitating
the choice in realizing the best setup for testing theoretical predictions in experiments. The
non-dimensionalization process can be carried out in several ways [42]. In presented articles
we used two different parameterization scales. Here we present the provenance of scaling in
order to illustrate this procedure.

First, we define dimensionless variables by introducing characteristic units of length and
time [43]

x̂ =
x

L
, t̂ =

t

τ0
, τ0 = L

√
M

∆U
. (4)

The period L of potential U(x) is a spatial scaling factor. The τ0 is a characteristic time scale
for the conservative system (when Γ = A = 0), related to the period of particle linearized
oscillations within one potential well. It comes from a simplified version of Langevin equation
(1)

Mẍ = −U ′(x). (5)

This type of parameterization is often found to be useful for investigating the damping
influence on the system or for limiting case of small damping when Γẋ→ 0.

Next, we insert the dimensionless x̂ and t̂ into equation (1)

L

τ2
0

M ¨̂x+
L

τ0
Γẋ = − 1

L
U ′(x̂) +A cos

(
Ωτ0t̂

)
+ F +

√
2ΓkBT ξ(τ0t̂), (6)

and divide the entire equation by the inertial term coefficient LM/τ2
0 . After simplifying the

expression, one obtains the following formula

¨̂x+ γ ˙̂x = −Û ′(x̂) + a cos (ωt̂) + f +
√

2γD ξ̂(t̂), (7)

which is a dimensionless form of Langevin equation (1).
It is important to notice here that parameters in equation (7) have been rescaled and they

are no longer physical quantities that can be directly measured in the system. It has been
explicitly indicated by replacing the uppercase letters {Γ, A,Ω, F} from equation (1) with
lowercase letters {γ, a, ω, f}. Therefore, for example, the γ parameter is no longer a physical
friction coefficient Γ of the particle, but it is rescaled dimensionless friction coefficient, namely

γ = τ0/τ1 =
ΓL√
M∆U

, where τ1 =
M

Γ
, (8)

a combination of physical quantities present in equation (1). This procedure also reduced a
number of parameters in the equation: the dimensionless mass is set to unity, m = 1. The
explicit list of rescaled coefficient and their relation to physical quantities are depicted in
Table 1. The dimensionless thermal noise ξ̂(t̂) again satisfies the properties

〈ξ̂(t̂)〉 = 0, 〈ξ̂(t̂)ξ̂(ŝ)〉 = δ(t̂− ŝ) (9)

and the noise intensity factor is given by D = kBT/∆U , i.e. by the ratio of thermal
fluctuations and potential barrier energies.

Using the scales given in (4) one can investigate the five-dimensional parameter space
{γ, a, ω, f,D} of equation (7). This method of scaling is fundamental for two of the presented
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Symbol Dimensionless parameter Relation
m mass m = 1

γ friction coefficient γ = τ0/τ1 = ΓL√
M∆U

a oscillating force amplitude a = AL/∆U
ω oscillating force frequency ω = Ωτ0

f constant force f = F L/∆U
D noise intensity factor D = kBT/∆U

Table 1: Rescaled parameters and their relationship to physical quantities of the system.
Scaling suitable for investigating the damping impact on the system. Dimensionless mass m
is set to unity.

Symbol Dimensionless parameter Relation
m mass m = τ1/τ0 = M ∆U

Γ2 L2

γ friction coefficient γ = 1
a oscillating force amplitude a = AL/∆U
ω oscillating force frequency ω = Ωτ0

f constant force f = F L/∆U
D noise intensity factor D = kBT/∆U

Table 2: Rescaled parameters and their relationship to physical quantities of the system.
Scaling suitable for investigating inertia impact on the system. Dimensionless friction
coefficient γ is set to unity.

articles (A3, A4). However, because of the conditionm = 1, these units restrict analysis of the
mass impact on the system dynamics. In order to enable such opportunity, we need to apply
different scaling, suitable for testing the inertia influence on the system and the overdamped
limiting case of Mẍ→ 0 [43], namely

x̂ =
x

L
, t̂ =

t

τ0
, τ0 =

ΓL2

∆U
. (10)

Here the characteristic time τ0 follows from an overdamped approximation of equation (1),
where the mass term is omitted,

Γẋ = −U ′(x), (11)

and it corresponds to the time scale for an overdamped particle to move from the maximum
of the potential U(x) to its minimum. After inserting units (10) into equation (1), the
dimensionless Langevin equation transforms into the following form

m¨̂x+ ˙̂x = −Û ′(x̂) + a cos (ωt̂) + f +
√

2D ξ̂(t̂). (12)

This rescaled dimensionless equation was used in the article (A1) and (A2). Table 2 presents
the relation between rescaled and physical parameters according to the units (10). From
now on, only the dimensionless variables will be used in this study and therefore, in order to
simplify the notation, the hat symbol will be omitted in all equations.

3 Negative mobility

3.1 The non-intuitive phenomenon

Dynamics of the small-scale systems can reveal astounding effects and may often mislead our
intuition. However, since the fluctuations play a key role at this scale, unexpected physical
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a) b)

c) d)

Figure 1: Panel (a) and (b): fragments of exemplary particle trajectory x(t) and particle
velocity ẋ(t), respectively, resulting from deterministic (D = 0) Langevin equation (12).
Parameters are set to the following values: m = 0.5, a = 10, ω = 5.95, f = 0.5, γ = 1
and initial conditions are given by x(0) = 1, ẋ(0) = 0.5. Panel (c): a collection of trajectories
x(t) of 6 particles moving in the system governed by equation (12) with D = 0.001. All
particles are subjected again to the same parameter values, but the trajectories differ by the
thermal noise realization. Panel (d): velocity curves ẋ(t) for particles presented in panel (c).
The directed velocity calculated based on presented parameters, additionally averaged over
different initial conditions (x(0) ∈ [0, 1], ẋ(0) ∈ [−2, 2]) is equal to 〈v〉 = 1.83.

phenomena that contradict our everyday experience should not be a surprise. In this section
we will discuss the phenomenon of negative mobility, i.e. the particle transport directed
opposite to the direction indicated by an external static force applied to the system.

The mobility describes particle’s ability to move through the medium in response to
currently operating forces. It can be investigated by tracking the relationship between force
acting on the particle and mean particle velocity. Hence, the observable of the foremost
interest in this study is directed velocity of the particle 〈v〉, which can be expressed by the
formula (A1, sec: Model)

〈v〉 = lim
t→∞

1

t

∫ t

0
ds 〈ẋ(s)〉, (13)

where 〈·〉 indicates averaging over all realizations of thermal noise as well as over initial
conditions for the particle’s position x(0) and its velocity ẋ(0). The latter is obligatory for
deterministic limit D ∝ T → 0 when dynamics may be non-ergodic and results can be affected
by specific choice of initial conditions [44].

In Fig. 1 we briefly illustrate the procedure of directed velocity 〈v〉 determination. First,
the collection of particle trajectories according to equation (12) is generated. In panel (a) we
present an exemplary fragment of trajectory x(t) of such a particle for deterministic dynamics
(D = 0), as well as its velocity curve ẋ(t) in panel (b). Different particle trajectories start

6



−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

f

−2.0

−1.0

0.0

1.0

2.0
〈v
〉

(a)

m = 0.50

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

f

−2.0

−1.0

0.0

1.0

2.0

〈v
〉

(b)

m = 0.47

Figure 2: Panel (a): the directed velocity curve 〈v〉 as a function of external force f depicted for
parameters presented in Fig. 1: m = 0.5, a = 10, ω = 5.95, D = 0.001, f ∈ [−2, 2] and γ = 1.
The curve consists of 400 points calculated for different f value, each based on 104 sampled
particles trajectories. Panel (b): the example of directed velocity curve exhibiting negative
mobility phenomenon for the same parameters as in panel (a), but nowm = 0.47. It proves the
system high sensitivity to even small changes in parameters values: for m = 0.47 the negative
mobility is present, while for slightly increased mass value m = 0.5 the effect vanishes and
the regular transport behaviour is observed.

to diverge when we include non-zero thermal noise in the equation (12). In panel (c) all
particles are subjected to the same parameter values, but the trajectories differ by thermal
noise realization. The given set of trajectories is then additionally multiplied by series of
different initial conditions (initial particle position x(0), initial particle velocity ẋ(0)). Each
particle trajectory is associated with particle velocity curve ẋ(t) shown in panel (d). From
the whole spectrum of particles subjected to the same set of parameters {m, a, ω, f,D}, the
directed velocity 〈v〉 is calculated according to equation (13). More details on the computation
process is explained in section 4.

Due to the large parameter space and complex dynamics of equation (12) the emerging
directed velocity-force curve is typically a nonlinear function of applied bias f . This relation
can be expressed in a form

〈v〉(f) = µ(f) f, (14)

where µ(f) is a nonlinear particle mobility. From the symmetries related to Langevin equation
it follows that directed velocity is odd as a function of the external force f , i.e. 〈v〉(−f) =
−〈v〉(f) and in consequence 〈v〉(f = 0) ≡ 0 [45]. Since the observable of our interest is anti-
symmetric around f = 0, we limit our further consideration to the positive bias f > 0. In
general, 〈v〉 is an increasing function of the static force f and as one would expect, resultant
particle displacement follows the direction of the acting force f . In Fig. 2 (a) we plot the
directed velocity curve versus external static force f for exemplary set of parameters considered
in Fig. 1. For f > 0 we observe 〈v〉 = µ(f) f > 0 and thus the particle mobility is positive,
i.e. µ(f) > 0.

However, in the parameter space there exist also regimes for which the particle moves
on average in the direction opposite to the applied bias, i.e. 〈v〉 < 0 for f > 0, exhibiting
anomalous behaviour in the form of negative mobility phenomenon [38, 46], namely

for f > 0 : 〈v〉 = µ(f) f < 0 =⇒ µ(f) < 0. (15)

This non-intuitive effect is presented in Fig. 2 (b). The velocity curve responses with the
sign opposite to the force f and in consequence 〈v〉 < 0 for f > 0: the negative mobility is
observed. If the value of f is high enough, the 〈v〉 curve coincides with the force sign again.
The plots drawn for a symmetrical range of the f -axis indeed shows the anti-symmetric shape
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of the 〈v〉(f) curve. It is important to notice here that considered system is very sensitive
to any changes in parameter values. The curves presented in Fig. 2 are plotted for almost
identical set of parameters, they differ only in the mass value. The negative mobility effect
visible for m = 0.47 (panel (b)) vanishes completely when m = 0.5 (panel (a)).

At first one might object that this phenomenon is inconsistent with the fundamental laws
of physics. According to Newton’s second law, when force acting on the particle increases
from f = 0 to a finite value, one should always expect a finite acceleration directed in the
same course, and thus a change in velocity to a finite value of the same sign. However, this
conclusion is not valid for nonlinear dynamics, where we cannot simply use the superposition
principle for linear equations and totalize all other forces already present in the system for
f = 0 with the effect of the external force f . In presented model (12) we are dealing with
nonlinear dynamics evidenced by the existence of the term −U ′(x).

Moreover, one might also indicate that directed velocity 〈v〉 opposite to a static force f
contradicts thermodynamic stability criteria, the principle of Le Châtelier, and ultimately the
second law of thermodynamics. Again, such an argument is no longer conclusive for out of
equilibrium systems. This is guaranteed by the periodic driving term a cos (ωt) in equation
(12).

Hence, it should be emphasised that the key prerequisite for the occurrence of the negative
mobility effect is nonlinear system driven far from thermal equilibrium into a time-dependent
nonequilibrium state [38, 40, 46]. To further dispel doubts, it is also worth mentioning that
the presence of inertial term in equation (12) is likewise indispensable - in the case of one-
dimensional overdamped dynamics of Brownian motion the negative mobility was proven not
to emerge [46].

3.2 The role of system parameters

The exploration of five-dimensional parameter space {m, a, ω,D, f} of equation (12) is highly
challenging. It is difficult to predict any relationship between the presence of negative mobility
and the parameters configuration, since equation (12) is nonlinear and highly sensitive to any
changes in parameter space. Observed for a fixed set of parameters, it can suddenly vanish
when one of the parameters is slightly changed. For another configuration of the parameter
space it can last for a very wide parameters range. In this section we look closer at the effect
of parameters on negative mobility, and using numerical methods, we investigate more deeply
the features of this phenomenon.

In our research we adopted the following strategy. We numerically simulated dimensionless
Langevin equation in a form of (7) or (12) for wide range of parameter values, namely for
a ∈ [0, 25], ω ∈ [0, 20], m ∈ [0.01, 10] or γ ∈ [0.01, 10] and for several values of f ∈ [0, 2]
and D ∈ [10−5, 10−1]. Then, we explored obtained data in order to isolate the parameter
regimes for which negative mobility is observed. Among all those regimes we sought for any
correlations that might indicate a parameter influence on negative mobility course. For better
clarity we decided to present the data on two-dimensional maps, which enables us to illustrate
a connection between the studied phenomenon and two chosen parameters. The examples of
such maps are shown in Fig. 3, 4 and 5. The color scale corresponds to directed velocity
values and blue areas indicate negative mobility regimes, i.e. 〈v〉 < 0. Based on these three
figures, we discuss the potential impact of individual parameters on this phenomenon. The
data presented here was obtained according to the equation (12).

Let us first analyze the effect of static force f . In Fig. 3 we introduce four two-dimensional
maps of directed velocity 〈v〉 for different values of f : panel (a) f = 0.2, (b) f = 0.4, (c)
f = 0.6, (d) f = 0.8. Each map is plotted for identical ranges of frequency ω (Y-axis)
and amplitude a (X-axis). At first glance one can notice that the maps are full of band-like
structures, where the stripes of negative velocity are interspersed with the stripes of positive
velocity and the difference in its magnitude in the neighbouring regions can be significant.
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Figure 3: Directed velocity 〈v〉 of Brownian particle as a function of the amplitude a and the
frequency ω of the external unbiased harmonic driving a cos (ωt) is shown for different values
of the bias f with D = 0 and m = 0.1. Panel (a) f = 0.2, (b) f = 0.4, (c) f = 0.6, (d)
f = 0.8. The blue areas indicate negative mobility regimes.

Figure 4: The directed velocity 〈v〉 versus the amplitude a and the frequency ω is presented
for different values of the particle mass m with D = 0 and f = 0.5. Panel (a) m = 0.05, (b)
m = 0.1, (c) m = 0.15, and (d) m = 0.2. The blue areas indicate negative mobility regimes.

9



Figure 5: Directed velocity 〈v〉 versus the amplitude a and the frequency ω is depicted for
different values of thermal noise intensity D with m = 0.1 and f = 0.5. Panel (a) D = 0, (b)
D = 10−5, (c) D = 10−3, (d) D = 10−2. The blue areas indicate negative mobility regimes.

This observation applies to all maps presented in Fig. 3 – 5. For small f negative mobility
areas form narrow bands stretched across the entire map. As force value rises higher, these
bands become wider, but at the same time they slowly shrink, and finally disappear. This boils
down to the conclusion that the greater the force f value, the less likely it is to encounter the
negative mobility regimes. It is also consistent with our intuition – as static force f become
larger and larger it eventually tents to dominate in the transport process.

The role of the particle mass m in negative mobility phenomenon seems to be non-trivial.
Directed velocity 〈v〉 maps depicted for different values of the mass m are shown in Fig.
4: panel (a) m = 0.05, (b) m = 0.1, (c) m = 0.15, and (d) m = 0.2 . Again, the band-
like structure slowly transfers as mass value becomes larger – it changes inclination and the
pattern becomes more horizontal oriented. However, for higher values ofm some new negative
mobility bands appear, while at the same time blue areas tend to disappear in other regions.
This effect suggests that there may exist some optimal value of m for negative mobility to
occur. Therefore, in addition to the charts presented in Fig. 4, we simulated two-dimensional
maps of directed velocity 〈v〉 on (a, ω) plane for nearly 110 values of mass m ∈ [0.01, 10]. For
each m value we determined the percentage of points with negative velocity in the analyzed
parameter space. The result is introduced in Fig. 6. Indeed, we observe a maximum in the
negative mobility fraction curve. This calculation has been carried out for several values of
external force f and noise intensity D. As the force value becomes larger, the fraction of
negative mobility for given mass decreases and the curve maximum shifts to the right, i.e.
towards higher mass values. The increase of the noise intensity D does not change the shape
of curve, but it rather reduces it. Hence, one can conclude that the thermal fluctuations in
the system disturb the negative mobility regimes.

This conclusion is confirmed in Fig. 5, where we present directed velocity maps for different
values of the noise intensity D: panel (a) D = 0, (b) D = 10−5, (c) D = 10−3, (d) D = 10−2.
Along with the increase in the noise value, the structure visible in the maps blurs, areas of
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Figure 6: The fraction of negative mobility area as a function of mass m in the analyzed
parameter space: a ∈ [0, 25] and ω ∈ [0, 20] is presented in panel (a) for D = 0 and different
values of the bias f and in panel (b) for f = 0.5 and several noise intensity values D. The
blue curves in both charts correspond to the same parameter set.
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Figure 7: The fraction of negative mobility area in the analyzed parameter space, a ∈ [0, 20],
ω ∈ [0, 20],m ∈ [0.1, 10] for different values of bias f . Panel (a): for periodic driving amplitude
a and panel (b): for periodic driving frequency ω. The noise intensity value is set to zero, i.e.
D = 0.

negative mobility vanish and finally negative and positive velocity bands disappear almost
completely. This is again in line with our intuition: the greater the noise D, the fewer areas
are highlighted and the whole plane of directed velocity tends to a common average state.

Parameters that shape harmonic driving force a cos (ωt) in the system have been chosen to
figure as the axes of two-dimensional maps. One cannot definitely say what is the direct trend
for negative mobility as a and ω increase or decrease in the system. Similar to the case of mass
m, here we also meet optimal values which are highly dependent on other parameters value,
e.g. static force f . In Fig. 7 we present a fraction of negative mobility dependent on amplitude
a and frequency ω for several values of static force f . In panel (a) all curves are relatively
similar and they decrease as the static force f value becomes higher. At the same time the
maximum of the curves is shifted to the right, towards the higher values of amplitude a. In
panel (b) a prominent fraction of negative mobility observed for low frequencies ω disappears
for f > 0.5 All curves share a common maximum region, although for curves plotted for
f < 0.5 it is only a local extreme. Moreover, we can notice that for a < 5 and ω > 15 the
negative mobility is rather rare to occur.

Although there is no significant correlation between parameter combination and occurrence
of negative mobility, the studied system is full of interesting effects accompanying this pheno-
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External force f Percentage of negative mobility
f = 0.05 4.62%
f = 0.1 4.20%
f = 0.3 3.29%
f = 0.5 2.11%
f = 0.8 1.51%
f = 1.0 1.21%
f = 1.5 0.28%

Table 3: Percentage of negative mobility regimes per 400× 400× 400 = 64× 106 parameter
sets generated for area: a ∈ [0, 25], ω ∈ [0, 20],m ∈ [0.1, 10] and D = 0 for several values of f .

menon. Again, we cannot predict where the directed velocity happens to appear negative in
the parameter space, but we can numerically simulate the system behaviour and in this way
observe its dynamics. There exist many surprising properties of negative mobility regimes,
which are too compound to be illustrated by two-dimensional graphs. Therefore in addition
to presented figures we also prepared a collection of short animation in the form of the ".gif"
files, which can be seen on the website: https://github.com/aslapik/negative_mobility.
In these animations one can observe how negative mobility regimes develop according to the
parameter changes and how this evolution, although seemingly regular and ordered, forms
extremely complicated structures.

3.3 The origin

At this point it is important to question the origin of the negative mobility phenomenon. We
distinguished three different mechanisms responsible for this effect rooted in: (1) deterministic
chaotic dynamics, (2) deterministic non-chaotic dynamics and (3) thermal fluctuations. The
second one, to the best of author knowledge, has never been described in the literature
before (A1).

The most common reason for existence of negative mobility effect is complex chaotic
dynamics of the system. In Fig. 8 in panel (a) directed velocity 〈v〉 is plotted versus external
force f . The curve is non-linear and for f ≈ [0.1, 0.7] negative mobility occurs, i.e. 〈v〉 < 0. In
panel (b), for f = 0.66, selected from negative interval, we investigate the impact of thermal
noise on directed velocity 〈v〉. Indeed one can observe negative mobility existence only for
relatively small values of D. As noise intensity increases, the directed velocity curve rises up
and finally it becomes positive. Hence, negative mobility has purely deterministic origin here
and thermal fluctuations has destructive impact on this effect. In panel (c) the bifurcation
diagram of 〈v〉 is shown for the same set of parameters as in panel (a) (D = 0). Each blue
dot represents an attractor for the asymptotic long time directed velocity 〈v〉. For almost
all values of f in considered range there exist the continuum of directed velocity solutions.
This facts suggests that the system is mostly chaotic in this interval. In order to confirm this
conclusion in panel (d) we depicted the maximal Lyapunov exponent λ for the parameter set
presented in panel (a). The curve is positive in almost entire interval of f for which negative
mobility occurs. Therefore, in the presented parameter regime negative mobility phenomenon
is indeed induced by chaotic deterministic (D = 0) dynamics of the system described by
equation (12).

Appearance of the noise term in equation (12) has usually a devastating consequence,
i.e. the regimes of negative mobility present in deterministic parameter space wane, and as
the noise intensity increases, they completely vanish. However, for a certain combination
of parameters negative mobility can be induced by a proper value of the noise intensity D
[38, 47]. This effect is illustrated in Fig. 9. In panel (a) the directed velocity 〈v〉 is presented
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Figure 8: The negative mobility of Brownian particle induced by the deterministic chaotic
dynamics. Panel (a) the directed velocity 〈v〉, (c) bifurcation diagram of the directed velocity
〈v〉, (d) the maximal Lyapunov exponent λ as the function of the external static bias f with
D = 0. Panel (b) the directed velocity 〈v〉 versus thermal noise intensity D for f = 0.66.
Parameter values: m = 0.0555, a = 8.55, ω = 12.38.
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Figure 10: The negative mobility of the strongly damped Brownian particle m � 1 induced
by the deterministic non-chaotic dynamics. Panel (a) the directed velocity 〈v〉, (c) bifurcation
diagram of the directed velocity 〈v〉, (d) the maximal Lyapunov exponent λ as the function
of the external static bias f with D = 0. Panel (b) the directed velocity 〈v〉 versus thermal
noise intensity D for f = 0.5. Other parameters values: m = 0.1, a = 8.55, ω = 12.38.

again as a function of external force f for non-zero noise intensity D = 0.0009. Negative
mobility emerges in the wide interval for f ∈ [0, 0.8]. In panel (b) directed velocity is plotted
against the noise intensity D for f = 0.5, i.e for static force value correlated with the strongest
negative mobility effect. Unlike the previous case, here the effect is only visible for a narrow
interval of the noise intensity D. Both low and high noise values eliminate this effect. Only
a very well defined noise value around D = 10−3 can induce negative mobility effect in given
regime of parameters.

The third mechanism of negative mobility formation is rooted in the non-chaotic dynamics
of the system (12). The example of such parameters regime is presented in Fig. 10. In
panel (a) directed velocity curve depicted for external force f exhibits negative mobility in
the interval f ≈ [0.25, 0, 5]. The same quantity, depicted for f = 0.5 versus thermal noise
intensity D demonstrates destructive impact of noise on negative mobility effect. It proves
that deterministic dynamics stands behind negative directed velocity 〈v〉 value in presented
parameters regime. The bifurcation diagram in panel (c) shows a surprising simple structure of
attractors for directed velocity 〈v〉 in deterministic case. There are two asymptotically stable
solutions corresponding to 〈v〉 = ±2. What is interesting, in the negative mobility window
f ≈ [0.25, 0, 5] only one attractor 〈v〉 = −2 survives. This suggests that in the considered
parameter regime deterministic dynamics is non-chaotic, but still negative mobility manifests
itself. The diagram of maximal Lyapunov exponent λ in panel (d) confirms this fact: the λ
is positive when two attractors coexists (chaotic dynamics) and λ = 0 for single-attractor-
window related to negative mobility interval, pointing to non-chaotic dynamics. Again, to
the best of author knowledge, this kind of mechanism has never been reported before.

In general, the negative mobility is low populated in the parameter space of equation
(12) and due to the lack of correlation with particular parameter values it is not easy to
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Figure 11: The directed velocity 〈v〉 of the driven Brownian particle versus its inertia m.
Panel (a): a = 8.55, ω = 12.38 and f = 0.5. The blue curve is for the deterministic case
D = 0 and the red curve is for the noisy system with D = 0.0009. Panel (b): a = 9.845,
ω = 16.64, f = 0.25 and D = 10−5. Negative mobility effect is present for relatively small
values of mass m� γ = 1.

detect. For example, for a single run of simulation with given parameter set a ∈ [0, 25], ω ∈
[0, 20],m ∈ [0.1, 10], f = 0.5 and D = 0 we generate 400 × 400 × 400 = 64 × 106 values of
directed velocity, from which only 2.11% exhibit negative mobility. Numerical analysis shows
that this percentage decreases as external force f value becomes higher. The percentage of
the negative mobility occurrence in presented regime for several values of f is shown in Table
3. More details on the mechanisms of this effect formation can be found in (A1).

3.4 Strong damping regime

The impact of inertia on the negative mobility phenomenon was a main topic of the first
article (A1). Since the inertial term is often neglected when dissipation outweighs dynamics
in equation (1), in so called overdamped cases, we wanted to investigate the negative mobility
effect without using this approximation, i.e. for a strong damping regime for whichm� γ = 1.
We attempted to answer the question whether it is still possible to observe this phenomenon
in such a case.

Omitting the inertial term in (1) enormously simplifies the modeling and in many cases
it allows for analytical solution of the corresponding Fokker-Planck equation. However,
properties and features which occur in the system with inertia term can completely disappear
when the mass term is neglected. This is the case for negative mobility. As it turned out
from our research, negative mobility indeed manifests itself even for relatively small masses,
for strongly damped dynamics, i. e. m� γ. However, the inertial term is a key element for
negative mobility formation and this effect cannot be observed for a one-dimensional dynamics
in overdamped approximation, when m = 0 [46].

An example of such parameter regime is shown in Fig. 11. In panel (a) we depict directed
velocity 〈v〉 of the Brownian particle versus its mass m for deterministic dynamics (D = 0)
and for noisy system (D = 0.0009) for parameter set already used in Fig. 8-10. The minimum
of directed velocity falls near m = 0.1. The curve smooths and the negative mobility interval
shrinks as the thermal fluctuation appears. In panel (b) we observe directed velocity curve
for different set of parameters – the negative 〈v〉 occurs for significant smaller value of mass
m, which undoubtedly indicates strong damping regime, since m ≈ 0.03� 1 = γ.

Moreover, one can also notice that the maximum of the curve for f = 0.25 presented
in Fig. 6 corresponds to m ≈ 0.1. It means that for weak external force f we expect the
maximum number of negative mobility regimes to arise for mass m an order of magnitude
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smaller than friction coefficient γ = 1, that is for strong damping regime. Therefore, when
adapting overdamped approximation one may lose significant information about the dynamics
of the system – even for tiny value of mass m the dynamics of model (12) can be rich and
may exhibit anomalous transport effects.

3.5 Negative mobility in experiments

The negative mobility effect for a one-dimensional dynamics was described theoretically in
2007 for a system very similar to one described in this study [38, 48]. A year later it was
confirmed experimentally in the measurements involving determination of current-voltage
characteristics of the microwaved-driven Josephson junction [49]. Since then this phenomenon
has been a subject of many studies concerning electrokinetic effects, stochastic dynamics,
laminar flow and transport in biological-based systems. Further examples of this effect has
been described theoretically in companionship of coloured noise [50], white Poissonian noise
[14, 47], dichotomous process [51] and for Brownian motion with presence of time-delayed
feedback [52, 53], non-uniform space-dependent damping [54] and potential phase modulation
[55]. Other illustrations include a vibrational motor [56], two coupled resistively shunted
Josephson junctions [57, 58], active Janus particles in a corrugated channel [59], entropic
electrokinetics [60] as well as nonlinear response of inertial tracers in steady laminar flows
[61].

However, this phenomenon has also been examined in experimental research. In 2010
negative mobility has been observed for a system consisting of colloidal particles [24]. In
this study the authors managed to observe the migration of colloidal beads in a structured
microfluidic channel in the opposite direction to the static force, realized by a static dc-voltage
potential. The experiment setup and microfluid device structure was based on the previous
theoretical research [22]. In addition, it was noticed that negative mobility response is very
sensitive to particles properties. It was found that not every species of particles subjected
to the same conditions exhibits negative mobility. This opened the possibility of steering
different particle species in opposite directions under identical experimental conditions. The
proof-of-principle of such a separation scheme has been demonstrated in [62]. Focusing on
two different species of colloidal beads, it has been possible to identified a suitable amplitude
and frequency of ac-driving, such that one particle species exhibits negative mobility, whereas
the other species responds in a classical transport, according to the direction of the bias.

Finally, in 2016 the scientists from Arizona University performed similar experiment
involving intracellular organelles [25]. Therefore, negative mobility opened up new, fascinating
perspectives for the separation of micrometre-sized colloidal particles or even biological com-
pounds of comparable size, like cells or cell organelles. The prominent results of these
experiments, together with previously mentioned discovery of special directed velocity regimes,
led us to the idea of separation mechanisms based on negative mobility phenomenon, which
are to be introduced in the next sections of this guidebook.

4 Computational details

In order to investigate the transport behaviour of the considered model we performed a large
number of numerical simulations for equation (7) and (12). Before introducing the idea of
separation mechanisms, we would like to briefly discuss the computational details of performed
simulations.

The computation is based on the software created by one of the authors of the published
articles (JS). It is an optimized program coded in C++ language that performs numerical
integration grounded on the predictor-corrector algorithm [63, 64]. The fundamental advantage
of this software is the use of parallel computation based on graphical processing units technology
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(GPU). Since the particle trajectories are mutually independent and no data sharing needs
to take place between them, the simultaneous calculation of paths for different realizations of
noise and initial conditions enables a significant speed up of the computation time. Depending
on the algorithm implementation, it allows to accelerate the calculations of the order of 103

times compared to classical computing based on processors (CPU) performance. This method
of coding is becoming more and more popular in computational physics. More information
about GPU computing and its efficiency can be found in [65] and [66].

Each simulation process produces a directed velocity 〈v〉 data set consisting of 400 ×
400 × 400 = 64 × 106 values corresponding to different regimes of model parameters. The
value of directed velocity 〈v〉 for every parameter combination is calculated by averaging over
4096 particle trajectories generated independently for a range of initial conditions distributed
uniformly over the intervals x0 ∈ [0, L = 1] and v0 ∈ [−2, 2]. Each trajectory is spanned over
1000 periods 2π/ω of the external time-periodic force with 400 − 800 numerical integration
steps per period. Therefore, producing one trajectory of the system requires minimum 4×105

integration steps. For deterministic dynamics, when the thermal noise is absent (D = 0), it
took on average 4 full days to simulate the whole data set. For non-zero fluctuations, even
up to 8 days were needed. All simulation have been performed using GeForce GTX TITAN
graphics cards manufactured by Nvidia.

The generated data sets have been thoroughly analyzed for the presence of negative
mobility phenomenon. The examination has been performed by the use of Python scripts
specially prepared for this purpose. A careful investigation of the obtained data sets was a
difficult and time-consuming procedure. However, at this stage of our research we were able
to observe the effects and mechanisms presented in this guidebook and in the accompanying
articles. It turned out that analyzed data contains a whole range of interesting regimes related
to negative mobility. In the published results we decided to exemplify the most prominent
outcomes.

5 Separation mechanisms

Separation and fractionation of micrometer-sized and submicrometer-sized particles has gro-
wing importance in both research and industrial applications, including chemical and biological
research as well as medical diagnostics. Although there exist many methods of isolating
particles based on both passive and active techniques – from classical filtration and dielectro-
phoresis to optical, magnetic and acoustic sorting, to name just a few – more efficient and
innovative methods are constantly being sought [67, 68]. For example, in the latest report on
particle separation in passive microfluidic devices [68] the authors described a whole range
of different methods for particle separation. They highlighted the significant improvement
in design productivity and fabrication of microseparators since 2014. However, they also
pointed out the high need of simple portable solutions to separate and detect the particles.
The achievement of a low-cost and simple setup is still required for practical applications such
as medical and clinical ones. Moreover, clogging and throughput remain still a challenge for
researchers.

The separation mechanism we propose in this dissertation is based on described phenome-
non of negative mobility. In terms of Brownian motion we consider the following problem:
is it possible to use negative mobility in order to mechanically separate a mixture of various
particles in a controlled manner? A number of experiments involving negative mobility already
reported on successful separation of two types of particles with different sizes in a microfluidic
devices [24, 25]. However, no investigation on how to isolate desired particles among others
has been conducted. Here we reveal conditions that guarantee controlled particles isolation by
the means of difference in their mobility. Since in the data sets considered at the beginning
of our research we encountered unusual parameter regimes for which negative mobility is
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Figure 12: Panel (a): the directed velocity 〈v〉 as a function of particle mass m. The negative
mobility is observed only for a very narrow interval of mass m. In the inset we present the
enlarged area showing the negative mobility interval (grey area in the plot). Parameter values:
a = 5.125, ω = 3.75, f = 1, D = 0.0001. Panel (b): two-dimensional map of directed velocity
〈v〉 of the Brownian particle as a function of external periodic driving frequency ω and particle
mass m. The magnitude of velocity 〈v〉 is illustrated by the colour scale where the shades of
blue indicate negative mobility. Parameter values: a = 5.9375, f = 1, D = 0.0001.

observed only for a specific mass value among the whole mass interval, we came up with an
idea of mass-based particle separation.

5.1 The mass-based separation mechanism

The first separation strategy is based on the data sets obtained from the simulations of the
Langevin equation rescaled according to the units given in (10). This scaling enables to
investigate the five-dimensional parameter space: {m, a, ω, f,D}.

As already mentioned, the idea of particle separation arose after the discovery of certain
parameter regimes, for which negative mobility was observed only for a very narrow interval
of mass m. In Fig. 12 in panel (a) we depict an example of such a data set. Among many
particles with masses from a wide interval m ∈ [0.01, 10] only those with mass m∗ ≈ 1.13
will move in the opposite direction to the acting bias f = 1, because here 〈v〉 < 0. All
other particles with positive velocity 〈v〉 > 0 will follow the direction of the bias f . As a
consequence, after a finite time, the particles with mass close to m∗ ≈ 1.13 will be separated
form the others. The m∗ value stands here for a mass point situated in the middle of the
negative directed velocity interval.

This interesting transport property can be very promising for particle separation as long
as we can somehow control and adjust the mass valuem∗ of the particle. Hence, we attempted
to explore the parameter space of the Langevin equation (12) in order to find regimes that
would enable us to control the occurrence of the negative mobility by tuning just one parameter
value. After comprehensive numerical analysis we identified all regimes for which negative
directed velocity appears only for a small interval of mass [m∗−δm,m∗+δm]. Among selected
parameter regimes we focused on those which reveal a specific functional dependence between
the isolated mass m∗ and one of the parameter {a, ω, f,D}.

In Fig. 12 in panel (b) we present an example of directed velocity map as a function of
external driving frequency ω and dimensionless mass m. The value of directed velocity 〈v〉 is
depicted by a colour scale. Blue area on the plot indicates negative velocity, i.e. occurrence
of negative mobility. Here, for a given value of ω negative mobility is present only for a
very narrow interval of mass m. Therefore, by applying parameters presented in Fig. 12 (b),
namely setting f = 1.0, a = 5.9375, D = 0.0001, one is able to tune up negative mobility to
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Figure 13: Panel (a): dependence of mass m∗ tailored for separation as a function of the
external driving frequency ω for different temperatures D ∝ T with fixed values of a = 5.125
and f = 1. Originally the curves overlap at the deterministic line D = 0, but have been
manually separated to improve readability. Panel (b): the same characteristics shown for
various values of the external driving amplitude a with D = 0.0001 and f = 1. In the inset
of panel (a) we present additional parameter regime with very wide mass m∗ interval.

given mass value m ∈ [0.5, 7] by changing only the value of frequency ω, and as a consequence,
isolate particles with chosen mass m from the others.

In order to examine our results more carefully we isolated negative velocity area from
two-dimensional map into a functional graph. On the horizontal axis we depicted ω values.
On the vertical axis the m∗ for given ω value is marked by a point, while the interval of width
2δm is indicated as an error bar. As depicted in Fig. 12 (a), the m∗ is the mass value situated
in the middle of the mass interval for which negative mobility appears. The directed velocity
is classified to be negative if 〈v〉 ≤ −0.01.

In Fig. 13 in panel (a) negative mobility is plotted against frequency ω and mass m
for several values of noise intensity D. Since originally the curves overlap, i.e. all data sets
coincide the deterministic dynamic case with D = 0, the subsequent plots have been shifted
to the right in order to improve readability of the chart. The data sets prove that the thermal
fluctuations does not affect location of the negative mobility area, but rather cause them to
shrink. For D = 0.0003 only few points remain. In the subplot of Fig. 13 (a) another regime
of parameters is presented for f = 1.0, a = 9.75 and relatively high noise value D = 0.001. In
this case the points of negative mobility emerge over nearly entire area of investigated mass
interval, i.e for m ≈ [0.01, 10]. In Fig. 13 in panel (b) analogues graph is shown for different
values of amplitude a. The negative mobility in this parameters regime is present for a wide
range of amplitude values, from a ≈ 4 to a ≈ 8.

The dependence presented in Fig. 13 can be also identified for negative mobility regimes
in the domains of m∗(a) and m∗(f), however, in these cases it covers only small subintervals
of mass axis. It is also worth mentioning, that here we focused on the parameter regimes
which enable us to use negative mobility mechanism in order to select particles of given mass
among the whole considered interval m ∈ [0.01, 10] unambiguously. There exist a wide range
of other parameter regimes that enable to use this mechanism locally, i.e. regimes for which
negative velocity is observed for m ≈ m1 and m ≈ m2 (m1 � m2), which can still be useful
in many situations while particle mass is limited to m� m2.

At this point it may be interesting to verify how many points from the considered mass
intervalm ∈ [0.01, 10] can be triggered by the mechanism described in this section. For several
values of static force f , we investigated deterministic data sets (D = 0) and selected all such
pairs of amplitude and frequency (a, ω) for which negative mobility was found only for one
interval [m∗ − δm,m∗ + δm]. The results are shown on the graphs presented in Fig. 14. The
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Figure 14: The mass m∗ targeted for separation (color coded scale) by the negative mobility
effect as a function of the external driving amplitude a and frequency ω for different values
of the bias f . Thermal noise intensity is set to zero D = 0.

color scale refers to the mass value which is shown on the logarithmic scale.
It turned out that the number of triggered mass m∗ points depends on applied static bias

f . For f = 0.1 the percentage of triggered points was found to be the highest (88% of all
mass values considered in the model). A careful study of the maps in Fig. 14 can reveal
more interesting conclusions. The color distribution, and so the mass m∗ distribution as well,
seems to be very similar within all plots. Moreover, the shape formed by the coloured points
is somehow rescaled as the value of static force f increases. Namely, the structure visible for
f = 1.5 seems to be stretched out for smaller values of f . This may give us a generalized
image of connection of negative mobility distribution on the (a, ω) plane and a magnitude
of mass m. Small masses can be rather isolated by negative mobility mechanism with low
values of frequency ω and amplitude a (dark blue dots). For moderate values of ω and a
island of red and yellow-green points can be observed, i.e. masses close to m ≈ 10 and m ≈ 1
respectively. Then, for high frequencies and moderate amplitude value again blue areas can
be found, which corresponds to m ≈ 0.1.

The idea of particle separation introduced in this section has been presented in article (A2).
We demonstrated that under an additional action of applied constant bias only particles of the
specific mass value migrate in the direction opposite to this net force whereas the others move
concurrently towards it. The biggest advantage of proposed mechanism is fact, that unlike
many popular particle sieving-based isolation methods, here the particles are distinguished
due to their masses, not sizes. Therefore, this mechanism would enable to detect a difference
in masses even in a mixture of identical size particles.

5.2 The temperature-induced separation mechanism

Encouraged by the successful definition of separation mechanism tuned by the proper value
of external driving force frequency ω, in the next step, we attempted to find an evidence
whether this effect can be also controlled by the temperature of the system T ∝ D. In article
(A3) we investigated a role of the thermal noise in the negative mobility phenomenon and we
sought for such parameter regimes that would enable to trigger and thus control separation
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Figure 15: Panel (a): the directed velocity versus the thermal noise intensity D ∝ T for two
values of γ. For γ = 1.895 the increase in noise intensity reduces the negative mobility effect.
For γ = 1.935 the curve forms a peak and thus the noise induced negative mobility is observed.
Parameter values: a = 5.75, ω = 3.75, f = 0.1. Panel (b): the noise induced negative mobility
regimes observed for relatively high temperatures. The blue curve is obtained according to
equation (7) with parameter values a = 5.75, ω = 1.6, f = 0.1, while the red curve comes
from equation (12) with parameter set a = 8.25, ω = 5.15, f = 0.1.

mechanism by the magnitude of noise intensity D.
In the following discussion the Langevin equation is rescaled according to the units given

in (4). Because the mass parameter value is set to unity, i.e. m = 1, we distinguish the
particles due to their friction coefficient γ, which is closely related to the particle linear size
by the Stokes formula

Γ = 6πηR and γ =
ΓL√
M∆U

, (16)

where η is a viscosity of the surrounding medium and R is the radius of the spherical particle.
We have already demonstrated that thermal fluctuations have a destructive impact on the

negative mobility phenomenon. However, as mentioned before, in the parameter space one
may also encounter the noise induced negative mobility regimes, i.e. the negative mobility
effect present only for a specific range of non-zero noise intensity values. Moreover, for such
regimes, by adjusting the noise intensity one can amplify the negative velocity effect. Let
us re-introduce this phenomenon in Fig. 15 in panel (a). For γ = 1.895 the negative value
of directed velocity 〈v〉 observed for deterministic dynamics (D = 0) is fading away as noise
intensity increases, until eventually it becomes positive. This is a classical – deterministic –
negative mobility effect. However, for γ = 1.935, different behaviour is observed – the positive
value of 〈v〉, present for the deterministic regime (D = 0), turns negative for a non-zero noise
intensity, only within a certain D interval, and the strongest effect is visible for D ≈ 2×10−4.
This is where the noise induced effect comes in.

The noise induced negative mobility can be observed for the nearly whole spectrum of
the thermal fluctuations intensity D ∈ [10−6, 10−1]. However, it is rarely to be found in the
parameter space of considered model. Despite the destructive impact of rising temperature,
negative mobility can be induced even by relatively high value of noise intensity. In Fig. 15 in
panel (b) we present a regime of this effect induced by thermal fluctuations with noise intensity
D > 10−3 (blue curve). Furthermore, it should be emphasized that analogous regimes can
be also identified for the alternatively rescaled Langevin equation (12), i.e. when γ = 1. The
example of such regime is also shown in panel (b) (red curve).

In order to construct a temperature-tuned separation mechanism we first isolated all
negative mobility regimes induced by thermal fluctuations. In the next step the obtained
data was numerically explored to search for any pattern or correlations between the presence
of negative mobility and magnitude of the noise intensity D. Among many negative mobility
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Figure 16: Panel (a): directed velocity as a function of friction coefficient γ depicted for a
specific parameters regime for which the negative mobility occurs only for a one indivisible
interval of γ. The γ value for which directed velocity reaches its minimum (red dashed line)
is marked with vertical blue dashed line and is defined as γ∗. Panel (b): enlarged region
of negative mobility (grey field in panel (a)) with γ∗ point and width of negative mobility
window δγ marked on the friction coefficient γ axis. The cyan field stands for all γ points
that correspond to 5% vicinity of directed velocity minimum 〈v〉min.

regimes we isolated those for which this effect is present only for indivisible intervals of friction
coefficient γ. This procedure is briefly sketched in Fig. 16. For a given set of parameters in
panel (a) directed velocity 〈v〉 is negative only for γ values included in the interval marked
with grey. Therefore, the information about negative mobility regime can be restricted to just
pointing out the γ∗ value for which minimal directed velocity is observed and the width of
negative velocity interval, denoted here by δγ. In this way the isolated data can be redraw into
a γ∗ (D) plane in such a manner, that for given value of noise intensity D (x-axis) the marked
point surrounded by a vertical error bar will represent the γ interval (y-axis) for which the
negative mobility occurs. In this way a γ∗(D) plots were constructed in Fig. 17. The γ∗(D)
curves, presented in Fig. 17 (a) − (c) for different values of the external driving amplitude
a and frequency ω, actually show the dependence between the particle size R and the noise
intensity D. These parameter regimes enable to tune the negative mobility to all particles of
the size R by manipulating with the system temperature T ∝ D. The blue dots represent the
γ∗ ∝ R∗ value at fixed thermal fluctuations intensity and grey error bars show the width of
negative velocity interval δγ.

Since the grey error bars in the γ∗(D) plots seem significant, in panel (d) we additionally
depict the minimal velocity 〈v〉min (left axis) as well as the resolution capacity δγ (right
axis) versus temperature D for the parameter regime corresponding to panel (c). In order
to better understand the dependence between the negative mobility interval δγ and directed
velocity 〈v〉 one should take a look at this chart. The thermal noise initially increases both
the negative velocity interval δγ as well as the absolute value of minimal velocity 〈v〉min.
Also, there exists a noise intensity D for which δγ is maximal and 〈v〉min is minimal. When
thermal noise increases, the negative mobility peaks for 〈v〉(γ) dependence become wider and
more pronounced. This fact guarantees that the particle size R∗ ∝ γ∗ for which the negative
mobility is tailored will be well distinguished from the others. In order to illustrate this fact, in
panels (a)-(c) we additionally depicted the cyan regions that indicate the range of the particle
size γ∗ ∝ R∗ corresponding to the vicinity of minimum, i.e. [〈v〉min − 0.05〈v〉min, 〈v〉min +
0.05〈v〉min]. In this range δγ is usually equal to several percent of the value γ∗, which seems
to be reasonable for separation purposes. A more detailed discussion on this topic can be
found in article (A3) in section "Discussion".

After a careful analysis of the investigated parameter space we conclude that there is
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Figure 17: Panel (a)-(c): The friction coefficient, proportional to the particle size γ∗ ∝ R, for
which the Brownian particle velocity attains its global minimum 〈v〉min ≡ 〈v〉(γ∗) as a function
of temperature D ∝ T . The grey bars represent the friction coefficient interval δγ in which
the ANM effect takes place (see Fig. 16). The cyan region marks the range of the particle size
γ ∝ R corresponding to the vicinity of minimum, i.e. [〈v〉min−0.05〈v〉min, 〈v〉min+0.05〈v〉min].
Parameter values: (a) a = 5.55, ω = 1.5; (b) a = 5.55, ω = 1.65; (c) a = 5.75, ω = 5.65. In
all panels the bias value is set to f = 0.1. Plot (d) depicts the minimal velocity 〈v〉min (left
axis) as well as the resolution capacity δγ (right axis) versus temperature D for the parameter
regime illustrated in panel (c).

no single parameter regime covering a wide range of the particle size R∗ ∝ γ∗ targeted for
temperature tuned separation. However, parameters a, ω and f give enough freedom to cover
by parts a physically significant interval of moderate to large friction that is characteristic for
small particles at low Reynolds numbers (A3). The exemplary sets of data presented in Fig.
17 provide the separation mechanism for particles characterized by γ ∈ [0.5, 1].

5.3 The size-based separation mechanism

Finally, we broadened the scope of our research and took a closer look at the separation
mechanism that distinguishes particles due to their size R ∝ γ. Since for the temperature
induced mechanism there was found no single parameter regime that includes a wide range of
friction coefficient γ, it seemed reasonable to investigate other model parameters for triggering
negative mobility to given particle size R ∝ γ and thus entailing a separation process. Using
similar procedures to those presented in previous section, we investigated the parameter space
in order to extract separation regimes controlled by the external static force f , external
harmonic driving frequency ω or amplitude a. The step-by-step description of the data
analysis can be found in article (A4).

In Fig. 18 we present four data regimes for which negative mobility occurs in relation to
γ∗ and three selected parameters {f, ω, a}. Negative mobility effect is most prominent for
deterministic system, i.e. when D = 0. However, one may speculate that D = 0 case cannot
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Figure 18: The size targeted for separation γ∗ is depicted as a function of the parameters
of external forces applied to the system. Panel (a)–(b): regimes selected for static force f
dependence, a = 4.5, ω = 3.75 and a = 11.25, ω = 6.8, respectively. Panel (c): regimes
selected for time-periodic driving amplitude a dependence, f = 1.5, ω = 4.2. Panel (d):
regimes selected for time-periodic driving frequency ω dependence, f = 0.8, a = 9.375. The
data is depicted for different temperature D ∝ T of the system. Is should be emphasise here,
that in order to avoid overlapping data for subsequent D values, the curves in each panel were
visually separated by manually shifting slightly to the right.

be properly applied to real-based problems, where the thermal fluctuations affect the system.
Therefore, in addition we also depicted several curves for non-zero noise intensity D. Even
for D of magnitude near to 10−3 the negative mobility curve is observed for some parameter
regimes. It is important to notice here that when the noise intensity D increases, the negative
mobility areas do not change their position, but they tend to shrink and vanish. For this
reason, the subsequent data sets in every panel of Fig. 18 have been slightly shifted to the
right side of the plot.

By the detailed examination of curve for D = 0 in panel (a) let us remind how the data
presented in Fig. 18 can be used in the process of separating one particle species from the
others. The negative mobility curve, i.e. the points with directed velocity 〈v〉 < 0, is depicted
in γ∗(f) plane. For selected f value on the horizontal axis there exists only one γ∗ value for
which negative mobility occurs – for the others γ∗ values the positive directed velocity 〈v〉 is
observed. Since friction coefficient γ∗ is closely related to the particle size R (see equation
16), by choosing a proper value of bias f we can trigger negative mobility effect to the particle
species of this particular size, represented by γ∗, and therefore force those particles to move
in the opposite direction to applied bias. In this way, after a finite time, they will separate
from the rest of particles by moving in the reversed direction to the general trend, which is
along the bias f direction.

According to parameter regimes shown in Fig. 18, the method of particle separation can
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Figure 19: The γ∗ value targeted for separation by the negative mobility effect as a function
of amplitude a and frequency ω for different values of the bias f . The color scale indicates γ∗

value. Thermal noise intensity D is set to zero, D = 0.

be based on three different characteristics: external static force f – panel (a) and (b), external
periodic driving amplitude a – panel (c) and external periodic driving frequency ω – panel
(d). In γ∗(a) chart, the γ∗ value is proportional to amplitude a, while for the rest of charts
proportionality is inverted. The proposed data sets allows to select a wide range of particle
sizes R ∝ γ∗ ∈ [0.25, 2.5]. For example, providing the mixture of particles with the conditions
specified by data presented in panel (d), by manipulating just with frequency ω value one can
select, and thus isolate, a range of particles with γ∗ ∈ [0.25, 2.25]. It is important to notice
here, that presented data is only a sample data and there exist many parameter regimes that
can be used to establish the separation mechanism.

Finally, we also verified how many γ∗ values can be triggered out using introduced separa-
tion mechanism. In Fig. 19 we present a collection of two-dimensional maps, which illustrate
the γ∗ values targeted for separation as a function of amplitude a and frequency ω for different
values of bias f . The color scale symbolizes the γ∗ value. Similar to the case of mass-based
separation mechanism, color points depicted for given values of a and ω form an interesting
pattern, which shape seems to evolve according to increasing values of f . Small γ∗ values
are mostly targeted by small values of f and moderate to high values of frequency ω and
amplitude a. Higher values of γ∗ are related with small values of ω. As value of bias f
increases in the subsequent plots, the amount of γ∗ values slowly disappears.

At the end of this analysis let us recall the fact, that dimensionless parameters from
equation (7) are not directly equal to corresponding physical quantities that define the system.
Therefore, a given parameter value of {f, ω, a} that trigger a particular particle type isolation
can be obtained in experimental setup ambiguously – there exist several combinations of
physical quantity values that come down to desired value of dimensionless triggering parameter.

5.4 Conclusion

The separation mechanisms discussed in this section allow to isolate a given type of particles
from the others. Supposed that one could expose a mixture of particles to the specific
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conditions given by the Langevin equation (7) or (12) along with appropriate parameter
values chosen on the base of the regimes presented in the figures, one would be able to
efficiently isolate one species of particles from the whole mixture. Moreover, by changing a
single parameter value (e.g. external driving frequency ω) one could further fluently trigger
the different types of particles and in this way isolate subsequent particle species from the
mixture.

This separation process based on the Brownian mechanics appears to be quite unique
for several reasons. First of all, it has a significant advantage over the well-known sieving
methods. It allows to distinguish particles due to their sizes, as well as due to their masses.
The mass distinction may prove useful when particles sizes are very similar but the masses
vary significantly and thus the particles are difficult to sieve out. This problem is commonly
encountered when dealing with diseased cells in the living organisms [69].

Secondly, the main advantage of the proposed scheme is that it combines the benefits of
both active and passive separation techniques. The method uses an external driving force
as well as a constant bias, so the particle-sorting efficiency and throughput are expected to
be higher than for alternative passive and some active (e.g., ratchet) techniques. Moreover,
this scheme allows one not only to deflect different particle species along different transport
angles but also to steer them in opposite directions, and therefore it is ideal for separation
and fractionation purposes.

Thirdly, it should be emphasized once again that in the proposed model we operate on
dimensionless variables. Therefore, the presented model is independent of physical units and
can be easily adapted to given experimental setup. Each of the dimensionless parameters from
equations (7) and (12) is a combination of more than one physical quantity of the considered
system, and thus, the desired dimensionless value can be accomplished in several ways.

Finally, the presented mechanisms of the particles isolation can be used in biological
systems where the thermal fluctuations are an inherent feature of the system. We not only
incorporated thermal noise into presented model, but as one could already see, we also
demonstrated how to use it in order to trigger and amplify the separation of demanded
particles species. Furthermore, presented mechanisms allow for separation processes in which
particle isolation is possible even when the noise intensity value remains relatively high (Fig.
18). In addition, because the negative mobility can be induced by thermal fluctuations and
further, the whole separation process may be controlled by the intensity of thermal noise,
proposed mechanism can be successfully applied to electrically neutral particles and molecules.

In the end, let us refer to the issue mentioned at the beginning of the chapter, regarding the
search for low-cost separation methods and simple experimental setup required for practical
applications. The separation mechanisms presented in this chapter have not been involved
in any experimental research yet. Such action highly exceeds the scope of our study so
far. This dissertation has been typically focused on computational investigation on proposed
mechanisms. However, in recent years, at least several lab-on-chip experiments, in which for
the same condition negative mobility has been observed for one species of the particles and
not for the other, have been performed [23, 24, 25]. This fact fulfills the basic assumption
of proposed separation mechanisms. The lab-on-chip technology, known for low fabrication
costs and high-effective parallelization, is gaining more and more attention. Although the
technology is not easy to manufacture, a lot of bottleneck problems can be currently overcome
by the recent technology advancement on low-cost 3D printing and laser engraving [70, 71].
The progress made in this field of technology is astonishing, especially in the last two years of
global pandemic [72, 73, 74]. We believe that mechanisms presented in this dissertation may
inspire some further research that would put into practice negative mobility based concept
of particle separation and thus, based on the flexibility of introduced models, an innovative
low-costs and simple implementation particle separation method would be formulated.
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6 Closing discussion

In this guidebook we introduced the reader to the concept of negative mobility and we
described three variations of the particles isolation techniques established by this phenomenon:
(1) mass-based separation mechanism, (2) temperature-induced separation mechanism and (3)
size-based separation mechanism. We considered systems governed by Brownian dynamics and
we obtained our results by performing the complex numerical simulations. We demonstrated
that under an additional action of applied constant bias only particles of a given mass or
size migrate in the direction opposite to this net force, whereas the others move concurrently
towards it. The outcomes of our research have been published in four articles which are
listed at the beginning of this dissertation (A1, A2, A3, A4). The full text of the articles is
provided below. The negative mobility mechanisms described in this guidebook enable novel
particle isolation methods. We recalled some experiments that had already implemented the
basic concepts of the considered separation strategies and we commented extensively on the
advantages of introduced schemes.

However, we are also aware of some disadvantages of proposed ideas. In particular, our
consideration was limited only to one-dimensional Brownian dynamics which is a simplification
of the real-world situation and lab-on-chip devices geometry. Therefore, the application of
presented solutions may require further study to account for an extended dimensionality
of given experimental setup. However, we considered the minimal model for the negative
mobility effect to occur and thus we expect that in two or three dimensional models the
proposed separation strategies will be even more feasible. Furthermore, we formulated our
predictions in terms of the dimensionless variables which give opportunity to adapt given
experimental parameters to those appearing in the considered model.

Moreover, we did not include in our model any hydrodynamic corrections that may play a
crucial role in experimental reality. We adopted the simplest hydrodynamic effect expressed
by the friction term in Langevin equation (1) and ignored the number of phenomena that
may prove experimentally important. Therefore we are aware that out theoretical predictions
should be used as a guide towards physical reality indicating the direction for the future
experimental and theoretical research rather than taken as granted without approximation.

Future microfluidic applications would require development of suitable separation and
sorting devices that would need simple and low-cost fabrication techniques, provide ease of
operation and handling and offer high throughput and separation efficiency with lower energy
input [67]. Sorting based on mechanical properties may be a good candidate to respond to
these needs. It can provide a new avenue for sample preparation, detection and diagnosis for
a number of emerging biological and medical analyzes.

Being aware of both the advantages and disadvantages of the solutions we propose, we
remain optimistic and envision that the separation strategy introduced in this dissertation
provides selectivity required in present and future isolation of nano- and micro-particles,
proteins, organelles and cells, and thus it will constitute a base for a flexible and low-cost
modern isolation techniques.
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a b s t r a c t 

We study impact of inertia on directed transport of a Brownian particle under non- 

equilibrium conditions: the particle moves in a one-dimensional periodic and symmetric 

potential, is driven by both an unbiased time-periodic force and a constant force, and is 

coupled to a thermostat of temperature T . Within selected parameter regimes this system 

exhibits negative mobility, which means that the particle moves in the direction opposite 

to the direction of the constant force. It is known that in such a setup the inertial term is 

essential for the emergence of negative mobility and it cannot be detected in the limiting 

case of overdamped dynamics. We analyse inertial effects and show that negative mobility 

can be observed even in the strong damping regime. We determine the optimal dimen- 

sionless mass for the presence of negative mobility and reveal three mechanisms standing 

behind this anomaly: deterministic chaotic, thermal noise induced and deterministic non- 

chaotic. The last origin has never been reported. It may provide guidance to the possibility 

of observation of negative mobility for strongly damped dynamics which is of fundamen- 

tal importance from the point of view of biological systems, all of which in situ operate in 

fluctuating environments. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

If a system is at thermal equilibrium, its reaction to a weak external static force is so that the response is in the same 

direction of this applied force, towards a new equilibrium. E.g., when a constant force acts on a particle, it moves in the 

same direction of the force. If it is an electronic (electrical) device, the current-voltage dependence exhibits the similar 

properties, i.e. if the voltage increases the current increases. The ohmic characteristics is an example of it. It is what we 

call the normal transport. This restriction is no longer valid under nonequilibrium conditions when already an unperturbed 

system may exhibit a current due to the ratchet effect [1] . Another example is the seemingly paradoxical situation of the 

negative mobility phenomenon when the system response is opposite to the applied constant force [2] . Such anomalous 

transport behaviour was predicted theoretically in 2007 in a system consisting of an inertial Brownian particle moving in a 

one-dimensional periodic symmetric potential [3] . Within a year of this discovery, negative mobility was confirmed exper- 

imentally in the experiment involving determination of current-voltage characteristics of the microwaved-driven Josephson 

junction [4] . Yet further examples of this phenomenon have been described theoretically in companionship of coloured noise 

[5] , white Poissonian noise [6] , dichotomous process [7] and for Brownian motion with presence of time-delayed feedback 
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[8,9] , non-uniform space-dependent damping [10] and potential phase modulation [11] . Other illustrations include a vibra- 

tional motor [12] , two coupled resistively shunted Josephson junctions [13,14] , active Janus particles in a corrugated channel 

[15] , entropic electrokinetics [16] as well as nonlinear response of inertial tracers in steady laminar flows [17] . 

Modelling systems and understanding their generic properties discloses which components of the setup are crucial and 

which elements may be sub-relevant. For instance, transport in the micro-world is strongly influenced by fluctuations and 

random perturbations. In some systems, like biological cells [18] , they can even play a dominant role and a typical situation 

is that motion of particles is strongly damped. This fact justifies the use of an overdamped dynamics for which the particle 

inertial term M ̈x can be formally neglected in comparison to the dissipation term � ˙ x ( M is the particle mass, � is the friction 

coefficient and dot denotes a differentiation with respect to time t ). Omission of the inertial term enormously simplifies 

the modelling and in many cases allows for an analytical solutions of the corresponding Fokker–Planck equation. However, 

properties and features which are allowed to occur in systems with inertia can completely disappear when the inertial term 

is put to zero. Certainly a more correct approach in such a situation is to include the inertial term and use a technique of 

mathematical sequences of smaller and smaller dimensionless mass. Our main objective is to investigate impact of inertia 

on negative mobility of a Brownian particle moving in one-dimensional periodic systems. It is known that in such setups the 

inertial term is one of the key ingredients for the occurrence of this form of anomalous transport [19] and negative mobility 

is absent for the overdamped dynamics when M ̈x = 0 . We address the question whether it is still possible to observe the 

negative mobility phenomenon in strongly dissipative systems. In doing so, we first formulate the model and introduce the 

quantities of interest. Then we investigate the general transport behaviour as a function of model parameters and detect 

the optimal dimensionless mass for the presence of negative mobility. In the next part we demonstrate three mechanisms 

responsible for the emergence of this anomalous transport phenomenon: deterministic chaotic, thermal noise induced and 

deterministic non-chaotic. Finally, we discuss impact of inertia on the directed long time particle velocity and provide some 

conclusions. 

2. Model 

The model of a Brownian particle moving in a one-dimensional periodic landscape has been already well established in 

the literature [20] . It has been used to explore a wide range of phenomena including ratchet effects [21–23] , noise induced 

transport [24] , the negative mobility [3] , the enhancement of transport [25] , diffusion phenomena [26,27] and Gaussian 

white noise as a resource for work extraction [28] . Here, we consider exactly the same model as in [3] : a classical inertial 

Brownian particle of mass M , which moves in a spatially periodic potential U(x ) = U(x + L ) of period L and is subjected 

to both an unbiased time-periodic force A cos ( ωt ) of amplitude A and angular frequency � and an external static force F . 

Dynamics of such a particle is described by the following Langevin equation [3] 

M ̈x + � ˙ x = −U 

′ (x ) + A cos (�t) + F + 

√ 

2�k B T ξ (t) , (1) 

where prime denotes a differentiation with respect to the particle coordinate x . Thermal fluctuations due to the coupling of 

the particle with the thermal bath of temperature T are modelled by Gaussian white noise of zero mean and unity intensity, 

namely 

〈 ξ (t) 〉 = 0 , 〈 ξ (t) ξ (s ) 〉 = δ(t − s ) . (2) 

The noise intensity factor 2 �k B T (where k B is the Boltzmann constant) follows from the fluctuation-dissipation theorem 

[29] and ensures the canonical equilibrium Gibbs state when A = 0 and F = 0 . The potential U ( x ) is assumed to be in a 

symmetric form with the period L and the barrier height 2 �U , namely, 

U(x ) = �U sin 

(
2 π

L 
x 

)
. (3) 

There exists a wealth of physical systems that can be described by the Langevin equation (1) . Important cases that come to 

mind are the semiclassical dynamics of a phase difference across a resistively and capacitively shunted Josephson junction 

[30] and a cold atom moving in an optical lattice [1,31] . Other examples include superionic conductors [32] , dipoles rotating 

in external field [33] , charge density waves [34] and adatoms on a periodic surface [35] . 

2.1. Scaling and dimensionless Langevin equation 

Since only relations between scales of length, time and energy are relevant for the observed phenomena, not their abso- 

lute values, we next formulate the above presented equation of motion in its dimensionless form. This can be achieved in 

several ways [36] . Because investigation of impact of the particle inertia on the system dynamics is our main goal, in the 

present consideration we propose the use of the following scales as the characteristic units of length and time [36] 

ˆ x = 

x 

L 
, ˆ t = 

t 

τ0 
, τ0 = 

�L 2 

�U 

. (4) 

Under such a procedure the Langevin equation (1) takes the dimensionless form 

m ̈̂

 x + 

˙ ˆ x = − ˆ U 

′ ( ̂  x ) + a cos (ω ̂

 t ) + f + 

√ 

2 D ̂

 ξ ( ̂ t ) . (5) 
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In this scaling, the dimensionless mass is 

m = 

τ1 
τ0 

= 

M�U 

�2 L 2 
, (6) 

where the second characteristic time is τ1 = M/ � and the dimensionless friction coefficient is γ = 1 . Other parameters 

are: a = (L/ �U) A, ω = τ0 �, f = (L/ �U) F . The rescaled thermal noise reads ˆ ξ ( ̂ t ) = (L/ �U) ξ (τ0 ̂ t ) and assumes the same 

statistical properties as ξ ( t ), namely 〈 ̂  ξ ( ̂ t ) 〉 = 0 and 〈 ̂  ξ ( ̂ t ) ̂  ξ ( ̂ s ) 〉 = δ( ̂ t − ˆ s ) . The dimensionless noise intensity D = k B T / �U

is the ratio of thermal energy and half of the activation energy the particle needs to overcome the nonrescaled potential 

barrier. The dimensionless potential ˆ U ( ̂  x ) = sin (2 π ˆ x ) possesses the period ˆ L = 1 and the barrier height � ˆ U = 2 . From now 

on, we will use only the dimensionless variables and therefore, in order to simplify the notation, we will omit the hat 

notation in the above equation. 

2.2. Quantities of interest 

In the present study we are particularly interested in the impact of inertia on properties of directed transport of particles 

in the stationary state. In the dimensionless formulation (5) it can be realized by changing the dimensionless mass (6) . 

The case m = 0 corresponds to overdamped dynamics and the setting m �1 represents the strong damping regime, which 

means that τ 1 � τ 0 . The characteristic time τ 1 is obtained from a particular form of Eq. (1) , i.e. M ̇

 v + �v = 0 and has the 

interpretation of the relaxation time of the velocity of the free Brownian particle. The parameter τ 0 is extracted from the 

equation � ˙ x = −U 

′ (x ) which can be viewed as the characteristic time to travel a distance from a maximum of the potential 

U ( x ) to its minimum in the overdamped case (it is not exactly this time which is infinite in the considered case but τ 0 

scales it). It is remarkable that parameters of the potential U ( x ) such as its barrier height �U and period L are crucial 

for controlling the regimes of weak or strong damping. For instance, if M and � are fixed and the system is in a weak 

damping regime m �1, the transition to the strong damping case m �1 can be achieved by lowering the barrier height and 

lengthening the period of U ( x ). We have checked that for values m ∼0.1 and smaller the system (5) can be considered to be 

in the strong damping regime. 

Due to the presence of the external time-periodic driving a cos ( ωt ), as well as the friction term 

˙ x , the particle velocity 

˙ x (t) approaches a unique non-equilibrium asymptotic long time state, in which it is characterized by a temporally periodic 

probability density. This latter function has the same period as the driving T = 2 π/ω [37] . Therefore, the first statistical 

moment of the instantaneous particle velocity 〈 ̇ x (t) 〉 assumes for an asymptotic long time regime the form of a Fourier 

series over all possible harmonics [37] 

lim 

t→∞ 

〈 ̇ x (t) 〉 = 〈 v 〉 + v ω (t) + v 2 ω (t) + . . . (7) 

where 〈 v 〉 is the directed (time independent) velocity, while v n ω ( t ) denote time periodic higher harmonics of vanishing time- 

average over the fundamental period T = 2 π/ω. The observable of foremost interest in this study is the directed transport 

component 〈 v 〉 , which due to the mentioned particular decomposition can be obtained in the following way 

〈 v 〉 = lim 

t→∞ 

ω 

2 π

∫ t+2 π/ω 

t 

ds 〈 ̇ x (s ) 〉 , (8) 

where 〈 · 〉 indicates averaging over all realizations of thermal noise as well as over initial conditions for the position x (0) 

and the velocity ˙ x (0) . The latter is obligatory for the deterministic limit D ∝ T → 0 when dynamics may be non-ergodic and 

results can be affected by specific choice of initial conditions [26] . 

Due to the multidimensionality of the parameter space of the considered model, as well as its nonlinearity, the force- 

velocity curve 〈 v 〉 = 〈 v 〉 ( f ) is typically a nonlinear function of the applied bias f . From the symmetries of the underlying 

Langevin equation (5) it follows that this observable is odd as a function of the external static force f , i.e. 〈 v 〉 (− f ) = −〈 v 〉 ( f ) 
and in consequence 〈 v 〉 ( f = 0) ≡ 0 [1] . This is in clear contrast to the case of a ratchet mechanism, which exhibits the finite 

directed transport 〈 v 〉 � = 0 even at the vanishing static bias when f = 0 [2] . Since the observable of our interest is symmetric 

around f = 0 , we limit our consideration to the positive bias f > 0. Then, for sufficiently small values of the external force 

f the directed transport velocity 〈 v 〉 is usually its increasing function. Such regimes correspond to the normal, expected 

transport behaviour. However, in the parameter space there are also regimes for which the particle moves on average in 

the direction opposite to the applied bias, i.e. 〈 v 〉 < 0 for f > 0, exhibiting anomalous transport behaviour in the form of 

the negative mobility phenomenon [3,19] . It has been already shown that there are two fundamentally various mechanisms 

responsible for negative mobility in this setup, (i) generated by chaotic dynamics and (ii) induced by thermal equilibrium 

fluctuations [3] . The latter situation is nevertheless rooted in the sophisticated evolution of the corresponding deterministic 

system described by Eq. (5) with D = 0 . Its three-dimensional phase space { x, ˙ x , ωt} is minimal for chaotic evolution, which 

is important for negative mobility to occur. 

For the considered deterministic system with D = 0 there are three Lyapunov exponents λ1 , λ2 and λ3 . It can be easily 

checked that the system is dissipative, i.e. the phase space volume is contracting during the time evolution. Therefore the 

sum of all Lyapunov exponents must be negative [40] 

λ1 + λ2 + λ3 < 0 . (9) 
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Fig. 1. The Brownian particle asymptotic long time directed velocity 〈 v 〉 as a function of the amplitude a and the angular frequency ω of the external 

unbiased harmonic driving a cos ( ωt ) is shown for different values of the bias f with D = 0 and m = 0 . 1 . Panel (a) f = 0 . 2 , (b) f = 0 . 4 , (c) f = 0 . 6 , (d) 

f = 0 . 8 . 

One of the exponents, say λ3 = 0 and the other, say λ2 < 0. If the system is chaotic λ1 must be positive indicating divergence 

of the trajectories. Therefore to detect chaotic behaviour of the system it is sufficient to calculate the maximal Lyapunov 

exponent λ = λ1 and check whether it is larger than zero [41] . 

3. Numerical simulation 

Unluckily, the Fokker–Planck equation corresponding to the Langevin equation (5) cannot be handled by any known 

analytical methods. For this reason, in order to analyse transport properties of the system, we carried out comprehensive 

numerical simulations. We integrated the Langevin equation (5) by employing a weak version of the stochastic second order 

predictor corrector algorithm with a time step typically set to about 10 −2 × 2 π/ω. We chose the initial coordinates x (0) and 

velocities ˙ x (0) equally distributed over the intervals [0, 1] and [ −2 , 2] , respectively. The quantities of interest were ensemble 

averaged over 10 3 − 10 4 different trajectories, which evolved over 10 3 − 10 4 periods of the external harmonic driving. All 

numerical calculations were performed by the use of CUDA environment implemented on a modern desktop GPU. This gave 

us possibility to speed up the computations up to a factor of the order 10 3 times as compared to a common present day 

CPU method. Details on this promising scheme can be found in Ref. [42] . Dynamics described by Eq. (5) is characterized 

by a 5-dimensional parameter space { m, a, ω, f, D }, the detailed exploration of which is a very challenging task even for 

our innovative computational method. However, we focus on the impact of the particle inertia on the anomalous transport 

processes occurring in this setup. This task is very tractable numerically with the currently available hardware. In order to 

find an anomalous transport regime, we start our analysis by looking at the deterministic system D = 0 . We set the bias to 

a low value, e.g. f = 0 . 5 , and check how the directed velocity 〈 v 〉 depends on the remaining parameters. In doing so we 

performed scans of the following area m × a ×ω ∈ [0.01, 10] × [0, 20] × [0, 20] at a resolution of 200 points per dimension 

to determine the general behaviour of the system and obtain reasonable bounds on the system parameters. Our results 

reveal that negative mobility is not present for ω > 18 and ω < 2. This is in agreement with the approximate solutions of 

Eq. (5) . In the limit of the low frequency ω < < 1 an adiabatic approximation is valid [43] . In such a situation the Brownian 

particle velocity ˙ x adiabatically follows the total external force f (t) = f + a cos (ωt) . For high frequencies a solution can be 

formulated in terms of Bessel functions [38] . To derive the Bessel function form one assumes that the Brownian particle 

velocity is sinusoidal and satisfy the deterministic variant of Eq. (5) , see page 947 of Ref. [38] . Shapiro et al. [39] originally 

suggested that in order to determine necessary coefficients of the assumed sinusoidal form of solution it is useful to expand 

the conservative force −U 

′ (x ) appearing in the model in a harmonic series given by the Bessel function. Finally, from our 

initial scans of the parameter space we infer that there is no net transport for a < 4. 

4. Results 

4.1. General behaviour of the system 

The study of various aspects of transport in the system (5) has been presented elsewhere [3,19] . Here, we focus our 

analysis primarily on the relationship between inertia and negative mobility. In Fig. 1 we present the asymptotic long time 

directed velocity 〈 v 〉 depicted as a function of the amplitude a and angular frequency ω of the external harmonic driving 

a cos ( ωt ), for the strongly damped Brownian particle with the dimensionless mass m = 0 . 1 and different values of the exter- 

nal bias f . Surprisingly, despite the fact that the inertia is one order smaller than the dimensionless friction coefficient γ = 1 , 
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Fig. 2. The directed velocity 〈 v 〉 versus the amplitude a and the angular frequency ω is depicted for different values of thermal noise intensity D with 

m = 0 . 1 and f = 0 . 5 . Panel (a) D = 0 , (b) D = 10 −5 , (c) D = 10 −3 , (d) D = 10 −2 . 

Fig. 3. The directed velocity 〈 v 〉 versus the amplitude a and the angular frequency ω is presented for different values of the particle mass m with D = 0 

and f = 0 . 5 . Panel (a) m = 0 . 05 , (b) m = 0 . 1 , (c) m = 0 . 15 , and (d) m = 0 . 2 . 

there are regions in the parameter space of the system where negative mobility occurs. They form a band-like structure. The 

stripes of negative velocity are interspersed with the stripes of positive velocity and the difference in its magnitude in the 

neighbouring regions can be significant. This suggests that the system may be very sensitive to a small change of values of 

parameters. It can be observed that larger values of f lead to reduction of the negative mobility areas towards the lower ω 

and a . At the same time the bands of negative velocity become wider and more intense. In contrast, the regions of positive 

mobility increase population and supersede their negative counterparts. Overall, as the bias f is increased the band structure 

shrinks and finally disappears, and the averaged velocity is positive. For large values of f the velocity 〈 v 〉 exhibits Ohmic-like 

behaviour being a monotonically increasing function of f . In Fig. 2 we depict the same characteristic but for different val- 

ues of thermal noise intensity D with fixed m = 0 . 1 and f = 0 . 5 . One can expect that thermal noise perturbs deterministic 

dynamics. We observe that larger areas of negative mobility are relatively stable with respect to increasing temperature, 

while the smaller ones disappear more quickly. Thermal noise first blurs the band-like structure of negative mobility ar- 

eas, erasing the finer details of the regions visible in the deterministic case D = 0 . It seems to be obvious since thermal 

noise enables random transitions between deterministically coexisting basins of attraction. For high enough temperatures, 

negative mobility disappears completely. A careful inspection of Fig. 2 reveals that there are regions in the parameter space 

where the directed velocity 〈 v 〉 is zero or positive in the deterministic case, but becomes negative upon the introduction 

of noise. This fact suggests that thermal fluctuations may induce negative mobility or reverse its sign even for the strongly 

damped Brownian particle. Most likely for these parameter regimes there exists a large number of unstable periodic orbits 

transporting the particle in both positive and negative directions and influencing the relaxation dynamics from points lying 

far from the stable solutions. In the presence of thermal noise the particle is constantly kicked out from the stable solutions 

in the way which favour the unstable orbits transporting the particle to the negative direction. Finally, in Fig. 3 we present 
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Fig. 4. Fraction of the negative mobility area in the analysed parameter space, a ∈ [0, 20], ω ∈ [0, 20] is presented in panel (a) for D = 0 and different values 

of the bias f and (b) for f = 0 . 5 and various temperatures D . 

the directed velocity 〈 v 〉 versus the amplitude a and the angular frequency ω for different values of the mass m with D = 0 

and f = 0 . 5 . The stripes of negative mobility move towards lower values of ω and higher values of a as m is increased. 

The band-like structure changes its inclination and the regions becomes more horizontally oriented. Moreover, for larger 

masses m some new negative mobility bands appear, while at the same time the negative velocity tends to disappear in 

other regions. This effect suggests that there should exist an optimal mass m for which the occurrence of negative mobility 

is mostly pronounced. 

4.2. Optimal mass for the presence of negative mobility 

Since the impact of the mass m seems to be non-trivial, an interesting task is to find the value of m for which the 

presence of negative mobility is the most common. Our numerical scans of the parameter space allowed us to determine this 

value. The result is shown in Fig. 4 . In panel (a) we depict fraction of the negative mobility area in the analysed parameter 

space for the deterministic system D = 0 and different values of the bias f . A perhaps surprising finding is that for the small 

values of the static load f = 0 . 25 the optimal mass for the presence of negative mobility is m ≈0.13. It is significantly less 

than the magnitude of dimensionless friction coefficient, which for the employed scaling is equal to unity γ = 1 . This fact 

indicates that the friction plays prevalent role for the emergence of negative mobility. Moreover, even for the very strongly 

damped Brownian particle m � γ = 1 the area of negative mobility is non-zero and relatively large. In both limiting regimes 

of the overdamped m → 0 and the underdamped m → ∞ motion there are no regions of negative mobility. Ipso facto we 

confirmed numerically the no-go theorem formulated in Ref [19] . This conclusion is valid also for larger values of the bias 

f , however, then the optimal mass m for the presence of negative mobility becomes shifted towards higher, e.g. m ≈0.47 

for f = 0 . 8 . Moreover, as the static load f is increased the overall occurrence of negative mobility in the analysed parameter 

space is decreased and the presented curves come to be more flattened. In panel (b) we show the same characteristic but 

for the fixed bias f = 0 . 5 and different values of thermal noise intensity D . As temperature grows the regions of negative 

mobility in the parameter space tend to contract which is illustrated in the figure. Apart from this fact for stronger thermal 

noise, c.f. the case D = 10 −3 , the curve becomes noticeably more bimodal. This observation is most likely due to parameter 

regimes for which negative mobility is induced by thermal fluctuations. 

4.3. The mechanisms of negative mobility 

To gain further insight into the nature of negative mobility in this system, as the next step we identify, exemplify and 

analyse the mechanisms standing behind emergence of this phenomenon. In Fig. 5 we present the regime of parameters 

for which negative mobility occurs on grounds which are rooted solely in the complex, strongly damped and deterministic 

chaotic dynamics. Panel (a) depicts the directed velocity 〈 v 〉 versus the external static bias f . It is a nonlinear function 
without any obvious relation to the magnitude of the force f . Clearly, there are two windows of the latter parameter for 

which negative mobility 〈 v 〉 < 0 is observed. The first starts at f ≈0.1 and ends at f ≈0.7. In this interval, the minimal value 

of 〈 v 〉 ≈ −0 . 767 is at the bias value f = 0 . 658 . The second is present for the bias larger than approximately f ≈0.9. In turn, 

panel (b) presents the directed velocity 〈 v 〉 as a function of thermal noise intensity D for the fixed bias f = 0 . 66 for which 

〈 v 〉 ≈ −0 . 26 in the limit D → 0. In the regime of very low temperatures D → 0 the measured directed velocity is less than 

zero indicating that negative mobility has its origin in the complex deterministic dynamics. For increasing temperature 

the directed velocity grows as well up to the critical thermal noise intensity D ≈ 10 −3 , for which the Brownian particle 

response reverses its sign 〈 v 〉 > 0. In the high temperature limit D → ∞ (not depicted) all forces in the right hand side of Eq. 

(5) become negligible in comparison to thermal noise and thus the directed velocity vanishes completely 〈 v 〉 = 0 . Panel (c) 

of the same figure presents the bifurcation diagram of the latter quantity 〈 v 〉 illustrated as the function of the external bias f 
for the deterministic system with D = 0 . Each blue dot represents an attractor for the asymptotic long time directed velocity 

〈 v 〉 . For almost all values in the considered range of the bias f there is the continuum of the directed velocity solutions. This 

fact suggests that the system is predominantly chaotic in this interval. We confirm this hypothesis in panel (d) where we 

depict the maximal Lyapunov exponent λ for the deterministic system described by Eq. (5) with D = 0 versus the biasing 

force f . Accordingly, this quantity is positive in almost entire considered interval of the parameter f . In particular, it is so 

for the values of f corresponding to negative mobility. Therefore, we conclude that in the presented parameter regime this 



322 A. Słapik et al. / Commun Nonlinear Sci Numer Simulat 55 (2018) 316–325 

Fig. 5. The negative mobility of the strongly damped Brownian particle m �1 induced by the deterministic chaotic dynamics. Panel (a) the directed velocity 

〈 v 〉 , (c) bifurcation diagram of the directed velocity 〈 v 〉 , (d) the maximal Lyapunov exponent λ as the function of the external static bias f with D = 0 . Panel 

(b) the directed velocity 〈 v 〉 versus thermal noise intensity D for f = 0 . 66 . Other parameters are m = 0 . 0555 , a = 8 . 55 , ω = 12 . 38 . 

Fig. 6. The negative mobility of the strongly damped Brownian particle m �1 induced by thermal equilibrium fluctuations. The directed velocity 〈 v 〉 is 
presented versus external static bias f in panel (a) and versus thermal noise intensity D in panel (b). Parameters are the same as in Fig. 5 , except now 

m = 0 . 1047 , f = 0 . 5 and D = 0 . 0 0 09 . 

phenomenon is induced solely by the chaotic deterministic dynamics of the system given by Eq. (5) . Such a mechanism 

has been already reported in literature [3,19] , however, here we prove that it may operate also for the strongly damped 

Brownian particle m � γ = 1 . 

The second mechanism of the emergence of negative mobility is exemplified in Fig. 6 . In panel (a) we present the directed 

velocity 〈 v 〉 of the strongly damped Brownian particle m � γ = 1 versus the external static bias f for thermal fluctuations 

intensity D = 0 . 0 0 09 . In this case a very small amount of noise yields negative mobility in the linear response regime, i.e. 

for small forces f . For larger values of the bias f the directed velocity is positive 〈 v 〉 > 0 and the particle moves in the di- 

rection pointed by the static force f . Interestingly, there is an optimal value of f ≈0.5 for which negative mobility is most 

pronounced. To gain further insight into the origin of the discussed anomaly in the presented regime, in the neighbouring 

panel (b) we study the directed velocity 〈 v 〉 as a function of thermal noise intensity D ∝ T . Contrary to the previously pre- 

sented case, here at low temperature D → 0 the Brownian particle velocity is positive. The above described negative mobility 

manifests itself only in finite interval of temperature D ∈ (2 . 8 × 10 −4 , 3 . 2 × 10 −3 ) . Further increase of thermal noise intensity 

leads to disappearance of this phenomenon. Although a solely noise induced negative mobility can occur only under impact 

of thermal fluctuations, the underlying relevant mechanism is strongly influenced by the deterministic dynamics as it was 

already shown in Ref. [3] . 

Finally, in Fig. 7 we present a case of negative mobility induced by the deterministic non-chaotic dynamics of the system. 

Panel (a) illustrates the directed velocity 〈 v 〉 as a function of the external bias f for the deterministic case D = 0 and in the 

strong damping regime m �1. For very small values of the force f the directed velocity oscillates around zero. When the bias 

is of moderate magnitude there is a window for which the particle response is opposite to the applied constant perturbation, 

so we detect there negative mobility. Further increase of the external force rapidly reverses the particle current and causes 

its monotonic growth. In panel (b) we study the impact of thermal fluctuations on 〈 v 〉 in the parameter regime with f = 0 . 5 

corresponding to the minimal plateau depicted in the plot (a). Indeed, for the deterministic limit of the dynamics D → 0 the 

directed velocity 〈 v 〉 is negative suggesting that the observed phenomenon of negative mobility has the deterministic origin. 

An increase of thermal noise intensity ceases this effect. For this parameter regime there is a surprisingly simple struc- 

ture of attractors for the directed velocity which is visualized in the panel (c) in the deterministic case with D = 0 . In the 

considered interval of the external force f there are two asymptotically stable solutions corresponding to 〈 v 〉 = ±2 . Notably, 

in the bias window where negative mobility is observed only the attractor 〈 v 〉 = −2 survives. This unexpected simplicity 
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Fig. 7. The negative mobility of the strongly damped Brownian particle m �1 induced by the deterministic non-chaotic dynamics. Panel (a) the directed 

velocity 〈 v 〉 , (c) bifurcation diagram of the directed velocity 〈 v 〉 , (d) the maximal Lyapunov exponent λ as the function of the external static bias f with 

D = 0 . Panel (b) the directed velocity 〈 v 〉 versus thermal noise intensity D for f = 0 . 5 . Other parameters are the same as in Fig. 5 and m = 0 . 1 . 

Fig. 8. The directed velocity 〈 v 〉 of the driven Brownian particle versus its inertia m . Panel (a): a = 8 . 55 , ω = 12 . 38 and f = 0 . 5 . The blue curve is for 

the deterministic case D = 0 and the red curve is for the noisy system with D = 0 . 0 0 09 . Panel (b): a = 9 . 845 , ω = 16 . 64 , f = 0 . 25 and D = 10 −5 . (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

of solutions suggests that in the considered parameter regime the deterministic dynamics is non-chaotic, nonetheless still 

exhibits negative mobility. Our finding is confirmed in panel (d) where we depict the maximal Lyapunov exponent λ versus 

the bias f for the system with D = 0 . An interesting observation is that the dynamics is generally chaotic ( λ> 0) when two 

attractors 〈 v 〉 = ±2 coexist and it is non chaotic with λ = 0 in the window where negative mobility emerges. To the best 

of the authors knowledge such a mechanism has never been reported. It may potentially open a possibility of observation 

of the negative mobility phenomenon for the discontinuous or non-ergodic one-dimensional nonequilibrium overdamped 

dynamics, corresponding to the formal substitution m = 0 in Eq. (5) [19] . 

4.4. Impact of inertia 

To conclude this section we present in Fig. 8 the representative dependence of the directed velocity 〈 v 〉 on the inertia m 

for the deterministic and noisy system. In panel (a) the amplitude a and frequency ω of the periodic driving are the same 

as in the previous Figs. 5–7 . Here, the most pronounced negative mobility is observed for the mass m ≈0.1. For specifically 

tailored parameter sets this phenomenon could be detected for even smaller mass. We exemplify this situation in panel (b) 

where it is observed for m ≈0.03 which is indeed the regime of very strong damping. 

We observe that the system response is very sensitive to even smallest changes of the particle mass m . Moreover, there 

are multiple reversals of the sign of the directed velocity which are characteristic for a massive setup driven by the external 

harmonic force [44,45] . This finding can be utilized to particle sorting [46] . For instance, one can see from the above figure 

that particles with different masses can easily be guided into opposite direction by a suitable choice of the system param- 

eters. In addition, we want to point out that the occurrence of the three presented mechanisms of negative mobility are 

controlled by the magnitude of the particle inertia. Depending on its value the deterministic chaotic, thermal noise induced 

and the deterministic non-chaotic anomalous transport can be observed. It is worth to explicitly note that a tiny change 

from m = 0 . 1 to m = 0 . 1047 transforms the nature of negative mobility effect from deterministic non-chaotic to thermal 

noise induced, c.f. Figs. 6 and 7 . Therefore, the outlined mechanisms of the occurrence of negative mobility are also very 

sensitive to alteration of the particle inertia. 
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5. Conclusion 

In this work we investigated the impact of inertia on transport properties of a Brownian particle moving in a periodic 

symmetric structure, which in addition is exposed to a harmonic ac driving as well as a constant bias. The parameter space 

is 5-dimensional and its complete numerical exploration is far beyond the scope of this work. We first analysed the general 

behaviour of the directed velocity 〈 v 〉 as a function of the amplitude a and the angular frequency ω of the driving, for se- 

lected values of the remaining system parameters: the particle inertia m , the external bias f and thermal noise intensity D . 

These results reveal especially that the negative mobility phenomenon emerges also for the strongly damped motion of a 

Brownian particle when the dissipation dominates over inertia. Our scans of the parameter space allowed us to determine 

the optimal mass m ≈0.35 for the presence of the negative mobility phenomenon. By observing that the fraction of the 

negative mobility area in the analysed parameter space disappears for both the limiting cases of the overdamped m → 0 and 

underdamped m → ∞ motion, we confirmed with precise numerics the no-go theorem formulated in Ref. [19] . We gained 

further insights into the origin of negative mobility in this system by revealing three classes of mechanisms responsible 

for this anomalous transport process. It can be (i) caused by the complex deterministic chaotic dynamics of the system or 

(ii) induced by the thermal noise, or (iii) associated with the deterministic, yet non-chaotic system evolution. In particular, 

according to the best of authors knowledge, the latter origin has never been reported before. It may provide guidance to 

the possibility of observation of the negative mobility phenomenon for the discontinuous or non-ergodic one-dimensional 

nonequilibrium overdamped dynamics when the particle inertia is fixed to zero m = 0 . This case is of fundamental impor- 

tance from the point of view of biological systems, all of which in situ operate in strongly fluctuating environments. Finally, 

we depict the illustrative impact of the particle inertia on its transport properties to unravel its spectacular sensitiveness to 

variation of this parameter. We detect the phenomenon of multiple velocity reversals which may constitute a cornerstone 

of particle sorting. Moreover, a small change in the particle inertia can radically alter the mechanism of negative mobility. 

Our results can readily be experimentally tested with a single Josephson junction device or cold atoms moving in an 

dissipative optical lattice. Suitable parameter values, for which the above effects are predicted to occur, are accessible ex- 

perimentally. 
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A prerequisite for isolating diseased cells requires a mechanism for effective mass-based separation. This
objective, however, is generally rather challenging because typically no valid correlation exists between the
size of the particles and their mass value. We consider an inertial Brownian particle moving in a symmetric
periodic potential and subjected to an externally applied unbiased harmonic driving in combination with a
constant applied bias. In doing so, we identify a most efficient separation scheme which is based on the
anomalous transport feature of negative mobility, meaning that the immersed particles move in the direction
opposite to the acting bias. This work is the first of its kind in demonstrating a tunable separation
mechanism in which the particle mass targeted for isolation is effectively controlled over a regime of nearly
2 orders of mass magnitude upon changing solely the frequency of the external harmonic driving. This
approach may provide mass selectivity required in present and future separation of a diversity of nano- and
microsized particles of either biological or synthetic origin.
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The objective of separating and sorting particles of small
size is attracting growing interest [1–20], opening the way
towards the precise analysis of biophysical and synthetic
processes on the microscale. In this regime of sizes the
omnipresent Brownian jitter dynamics is of relevant
impact. Nowadays, effective isolation and separation tech-
niques are of essential importance in a wide range of areas
including both research and industrial applications.
Particularly, such techniques carry a large potential to
study selective transport of biological particles such as
whole cells, organelles, or DNA complexes. It has been
found that several diseases alter physical properties of cells
and therefore their sorting has great significance in health
care [21]. So far, much emphasis has been placed on size
based isolation techniques [6,7,10–13,15–18,20]. How-
ever, another aspect representing one of the most important
factors for specifically identifying a bioparticle presents its
own mass. For instance, cancer cells are found to differ in
mass as compared to healthy ones [21]. This fact suggests
that mass heterogeneity might be an important factor
associated with disease initiation and progression. A
reliable and effective approach to separating particles by
their masses is therefore much in demand and hence one
needs to learn more about various mechanisms for sepa-
rating different masses on the Brownian scale [14,22,23].
As is commonly appreciated, the task is challenging
because of the fact that heavier objects do not necessarily
imply also larger sizes. This very feature thereby excludes
passive mechanical separation techniques such as filtration
in artificial sieves [24].

In the following, we demonstrate a nonintuitive, yet
efficient, mass-based separation strategy taking advantage
of a paradoxical mechanism of negative mobility (NM)
[3,25–29]. In a regime of NM the particles move in a
direction opposite to the net acting force. This phenomenon
rests on two main ingredients: (i) a spatially periodic
nonlinear structure together with (ii) an inertial nonequili-
brium stochastic dynamics created, for example, via a time-
periodic varying driving force of vanishing mean value. We
demonstrate that under an additional action of an applied
constant bias only particles of a given mass migrate in the
direction opposite to this net force, whereas the others
move concurrently towards it. This opens the possibility of
steering different particle species in opposite directions
under identical experimental conditions. Moreover, we
demonstrate that the mass targeted for separation can be
tuned by nearly 2 orders of magnitude by changing only the
frequency of external time-periodic driving. The proof of
principle experiment of a similar separation scheme but
based rather on the particle size has been already demon-
strated in Refs. [30,31], using a lab-on-a-chip device,
consisting of insulator dielectrophoresis in a nonlinear,
symmetric microfluidic structure with electrokinetically
induced transport. This system was built employing a
photolithographic device fabrication strategy without the
need of making use of more complex nanofabrication
techniques. Very recently, it allowed one to induce not
only for colloidal particles but even for a biological
compound in the form of mouse liver mitochondrion
[32]. Therefore, the separation scheme proposed here
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may provide mass selectivity required for individual iso-
lation of nano- and microparticles, proteins, organelles, and
cells. Yet other suitable setups which allow one to test our
theoretical predictions would be based on cold atoms
dwelling in optical lattices [33,34].
Let us consider a classical inertial Brownian particle

dynamics of mass M moving in a spatially periodic one-
dimensional potential UðxÞ ¼ Uðxþ LÞ of period L which
is subjected to an unbiased time-periodic force A cos ðΩtÞ
of amplitude A and angular frequency Ω, as well as an
external static force F. The Brownian dynamics of such a
particle is described by the Langevin equation [35]

MẍþΓ_x¼−U0ðxÞþAcosðΩtÞþFþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΓkBT
p

ξðtÞ: ð1Þ

The parameter Γ denotes the friction coefficient and kB is
the Boltzmann constant. The periodic potential UðxÞ is
taken to possess reflection symmetry with period L and a
potential height 2ΔU, i.e.,

UðxÞ ¼ ΔU sin

�

2π

L
x

�

: ð2Þ

The interaction with a heat bath of temperature T is
described by thermal fluctuations modeled by Gaussian
white noise of zero mean and unit intensity, i.e.,

hξðtÞi ¼ 0; hξðtÞξðsÞi ¼ δðt − sÞ: ð3Þ

Despite the apparent simplicity of this model setup it
exhibits peculiar transport behaviors including, e.g., a
nonequilibrium noise enhanced transport efficiency [28],
anomalous diffusion [36], amplification of normal diffusion
[37,38], or also a nonmonotonic temperature dependence of
normal diffusion [39].
For our analysis we first recast Eq. (1) into its dimen-

sionless form, i.e.,

m ̈x̂þ _̂x ¼ −Û0ðx̂Þ þ a cos ðωt̂Þ þ f þ
ffiffiffiffiffiffiffi

2D
p

ξ̂ðt̂Þ; ð4Þ

where x̂ ¼ x=L, t̂ ¼ t=τ0, and τ0 ¼ ΓL2=ΔU. The dimen-
sionless mass m is given by the ratio of two characteristic
timescales, reading

m ¼ τ1
τ0

¼ MΔU
Γ2L2

; ð5Þ

where τ1 ¼ M=Γ. We here emphasize the fact that the
dimensionless mass m depends not only on the actual
physical mass of the particle M but also on the friction
coefficientΓ aswell as the parameters of the potential, i.e., on
half of its barrier heightΔU and the periodL. The strength of
frictionΓ enters inversely the scaledmass value and it implies

that the rescaled mass assumes in the regime of viscous
moderate-large friction (i.e., operating at low Reynolds
numbers, being typical for microsized particles immersed
in solution [40,41]) a rather small value. The dimensionless
noise intensity reads D ¼ kBT=ΔU. The remaining quan-
tities are explicitly defined as detailed in Ref. [35]. Fromhere
on, we stick throughout to these dimensionless variables. In
order to simplify the notation, we will also omit the hat
notation in Eq. (4).
The observable of main interest for mass separation is the

directed velocity hvi of the particle, reading [35]

hvi ¼ lim
t→∞

1

t

Z

t

0

dsh_xðsÞi; ð6Þ

where h·i indicates averaging over the thermal noise
realizations as well as over the initial conditions for the
position xð0Þ and velocity _xð0Þ of the Brownian particle.
The latter is required in the deterministic limit D ∝ T → 0
when the dynamics may turn out to be nonergodic and
dependent on specific choice of these initial condi-
tions [42].
Knowingly, the Fokker-Planck equation corresponding to

the Langevin Eq. (4) cannot be solved analytically in closed
form. The task is thus to systematically analyze by compre-
hensive numerical means the emerging and rich variety of
possible transport behaviors. The setup comprises a complex
five-dimensional parameter space fm; a;ω; f; Dg.We none-
theless succeeded in performing the numerical analysis with
unprecedented resolution. Overall, we considered nearly 109

different parameter sets. The high precision was made
possible solely due to an innovative computational method
which is based on employing GPU supercomputers, for
details see in Ref. [43].
The underlying symmetries of the Langevin dynamics in

Eq. (4) imply that the directed velocity hvi behaves odd as a
function of the external static biasf, i.e., hvið−fÞ ¼ −hviðfÞ
so that hviðf ¼ 0Þ≡ 0 [3]. Generally, hvi is an increasing
function in the direction of the static bias f as one commonly
would expect. The resulting particle transport velocity thus
follows in the direction of the acting bias f, hvi ¼ μðfÞf,
with a positive-valued nonlinear mobility μðfÞ > 0.
However, in the parameter space there occur also regimes
for which the particle moves on average in the opposite
direction to the applied bias; i.e., hvi < 0 for f > 0 thus
exhibiting anomalous transport in the form of NM with
μðfÞ < 0 [26–29]. The key prerequisite for the occurrence of
the latter phenomenon is that the system (i) is driven far from
thermal equilibrium into a time-dependent nonequilibrium
state, whose inertial dynamics does exhibit (ii) zero crossings
of hvi [26,27]. In our case this condition is induced by the
presence of the external time-periodic driving a cos ðωtÞ
which in turn overrides the limiting response behavior
encoded with the Le Chatélier–Braun equilibrium principle
[44], stating that at finite f the response occurs into the

PHYSICAL REVIEW LETTERS 122, 070602 (2019)

070602-2



direction of the applied force towards a new, displaced
equilibrium.
With panel (a) of Fig. 1 we exemplify two force-velocity

characteristics, hviðfÞ, corresponding to normal and NM
transport behavior. Please note the sensitivity of the latter
effect with respect to minute changes in the dimensionless
mass m. A tiny change in mass by Δm ¼ 0.03 is accom-
panied with the reverse of the particle response (note the
blue line versus the green line behavior). There is seem-
ingly no clear relationship detectable among the set of
parameter values and the occurrence of this NM phenome-
non. A small displacement in the parameter space may
either cause a sudden emergence of NM or its rapid
absence. One important observation is that typically it
occurs in regimes for which the values of the parameters are
a priori unknown. The interested reader is referred to the
animation of the maps hviðω; mÞ for several different
magnitudes of the ac-driving amplitude a which can be
inspected on the web [45].

Among the regimes of NM in the parameter space there
are tailored ones for which the latter phenomenon appears
only for a very narrow interval of the mass m. This is
illustrated with panel (b) of Fig. 1 where we depict the
directed velocity hvi of the Brownian particle versus the
mass m. An interesting transport property can be detected:
among many particles with masses from a wide interval
m ∈ ½10−2; 101� only those with a massm ≈ 1.13 will move
in the opposite direction hvi < 0 to the acting bias f ¼ 1.
All other particles with positive velocity hvi will follow
towards the direction of the bias. As a result, the particles
with mass very close to m ≈ 1.13will be separated from all
the others. This process of mechanical separation seems to
be very promising provided that one would be able to
control the mass m� of particles which are intended to be
separated. The half-width δm ≈ 0.01 of the interval where
the NM occurs is indicated in the inset of the panel (b). It
can be viewed as the resolution capacity for separation.
However, we stress that typically NM in these intervals is
sharply peaked, meaning that due to the clear difference
between the magnitude of the negative velocity indeed only
the particles with the precisely defined mass m� will be
pronouncedly isolated from the others moving in the same
or the opposite direction. We in turn undertook the attempt
to search for such parameter regimes of the Langevin
equation (4) that would enable us to control the occurrence
of the NM by tuning just one parameter.
After this comprehensive numerical analysis we identi-

fied practically all sets of parameters fa;ω; f; Dg for which
NM emerges only for a narrow interval of mass
½m� − δm;m� þ δm�. Among selected parameter regimes,
we focused on those which reveal a specific functional
dependence between the isolated mass m� and the

(a)

(b)

FIG. 1. (a) The force-directed velocity curve hviðfÞ is depicted
for the two parameter regimes corresponding to normal (blue) and
anomalous (green) transport behavior in the form of NM. Note
the sensitivity of the latter effect with respect to changes of the
dimensionless mass m. The chosen parameters are a ¼ 10,
ω ¼ 5.95, and D ¼ 0.001. (b) The directed velocity hvi versus
mass m. In the inset we present the blow up (red region) showing
the interval of the NM phenomenon as marked by the gray area.
Parameters are a ¼ 5.125, ω ¼ 3.75, f ¼ 1, D ¼ 0.0001.

FIG. 2. Two-dimensional map of the directed velocity hvi of
the Brownian particle as a function of the externally applied
periodic driving frequency ω and mass m. The magnitude of
velocity hvi is indicated by the color code with blue indicating
regimes with NM. Chosen remaining parameters are set at
a ¼ 5.9375, f ¼ 1, D ¼ 0.0001.
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parameter a, ω, f, or D. In Fig. 2 we present such an
example of the directed velocity hvi map as a function of
the external driving frequency ω and scaled mass m. The
magnitude of the velocity hvi is indicated with a
corresponding color code. The blue regime corresponds
to NM. It can be observed that for a given value
of the frequency ω NM is present solely for a particular
value of mass m�. Therefore, using those tailored
parameters read off from Fig. 2 we are able to tune the
NM to the particle of a given mass m� by changing the
value of the external driving frequency ω at fixed periodic
driving strength. Doing so allows for efficient mass
separation from an interval covering nearly 2 orders of
magnitude.
In order to examine our results even more accurately we

isolated the NM area from corresponding two parameter
maps into a graph of the target mass m� versus the
external driving frequency ω. The result is depicted in
Fig. 3 for zero temperature D ∝ T ¼ 0. A change of
thermal noise intensity from D ¼ 0 up to temperature D ≈
0.0003 does not significantly alter the desired character-
istics which is quite robust with respect to temperature
variation. Because NM derives from the complex deter-
ministic dynamics, strong thermal noise of sufficient
intensity is expected to cause a blurring of the phenome-
non [35]. Interestingly, however, increasing thermal noise
strength produces a shrinking of corresponding NM
intervals, thereby optimizing the range δm. This feature
implies an improvement of the selectivity for separation.
In the inset of Fig. 3 we additionally depict different
parameter regime allowing tunable mass separation for
even higher temperature D ¼ 0.001. Moreover, our
method of mass separation is stable against a variation
of the amplitude strength a (not depicted). The effect is
present for a wide range of amplitudes a ∈ ½4; 8�. At this

point we remark that the effect of mass separation upon
harvesting the NM phenomenon is also present for the
dependence m�ðaÞ and alike for m�ðfÞ; the range of
tunable mass separation proves, however, somewhat
smaller.
Finally, we consider yet a further issue: Let us assume

that we deal with a given mass m� which we want to
separate from the rest. The question then is, for how many
different masses m� taken from the extended interval m� ∈
½10−2; 101� is it possible to isolate the sought-after param-
eter set fa;ω; f; Dg for which only this very specific mass
value m� displays NM, thereby allowing its separation in a
most efficient unique manner. We note that for a single
mass m� there might be several parameter regimes obeying
this condition. The answer to this question is summarized
with Fig. 4. There, the distribution of the mass m� targeted
for separation via the NM phenomenon in the parameter
plane of the ac-driving amplitude a and frequency ω is
depicted for different values of the static bias f. We observe
that small masses can be isolated with low values of a and
ω. Medium and large masses are separated when the
amplitude and frequency assume moderate magnitudes.
We detected that with this method and for a fixed bias value
f ¼ 1 nearly all masses from the considered interval can be
isolated. We also find that the overall distribution of the
massm� targeted for separation depicted (in color) in Fig. 4
is robust with respect to a variation of bias f, noting that for
smaller values of f it undergoes a stretching.
In conclusion, this work provides an effective solution

for the objective of the tunable mass separation. In our
scheme, mass targeted for isolation can be controlled by
nearly 2 orders of magnitude by merely changing the
frequency ω of the external harmonic driving. This task
apparently cannot be accomplished with similar quality by
use of alternative methods such as filtration techniques or
schemes which are based on fluid-driven Brownian motor
methodology [1,46,47]. The approach presented here uses

FIG. 3. The dependence of the mass m� tailored for separation
as a function of the external driving frequency ω for zero
temperature D ∝ T ¼ 0 with fixed a ¼ 5.125 and f ¼ 1. In
the inset we present a different regime with D ¼ 0.001 allowing
for efficient and tunable mass separation via negative mobility.

FIG. 4. The massm� targeted for separation (color coded scale)
via the NM effect as a function of the external ac-driving strength
a and frequency ω for different values of the bias f. Thermal
noise intensity is set to zero D ¼ 0.
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only a spatially periodic nonlinear structure in combination
with unbiased external time-periodic driving. Our method
can further be adapted to the needs by proper fabrication of
the nonlinear landscape described by its barrier height ΔU
and period L. Other advantages are (i) as a representative of
active techniques it offers an improved averaged migration
speed as compared to alternative approaches [32], (ii) in
contrast to microfluidic methods it allows the possibility to
not only deflect different particle species along different
transport angles, but even to steer them in opposite
directions, (iii) use of small size of a lab-on-a-chip device
technology together with advantageous fabrication costs
allows for massive parallelization which makes high-
throughput separation possible. We envision that the
separation strategy proposed here provides mass selectivity
required in present and future isolation of nano and micro
particles, proteins, organelles and cells.

This work was supported by the Grants No. NCN 2017/
26/D/ST2/00543 (J. S.) and No. NCN 2015/19/B/ST2/
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An effective approach to isolation of submicrometer-sized particles is desired to separate cancer cells
and healthy cells or in therapy for Parkinson’s disease and Alzheimer’s disease. However, since biopar-
ticles span a large size range covering several orders of magnitude, the development of an adequate
separation method is a challenging task. We consider a collection of noninteracting Brownian particles
of various sizes moving in a symmetric periodic potential and subjected to external unbiased harmonic
driving as well as a constant bias. We reveal a nonintuitive, yet efficient, separation mechanism based on
a thermal-fluctuation-induced negative-mobility phenomenon in which particles of a given size move in a
direction opposite to the applied bias. By varying solely the temperature of the system, one can separate
particles of various strictly defined sizes. This approach may be an important step toward the development
of point-of-care lab-on-a-chip devices.

DOI: 10.1103/PhysRevApplied.12.054002

I. INTRODUCTION

Separation and fractionation of micrometer-sized and
submicrometer-sized particles has ever-growing impor-
tance in both research and industrial applications, includ-
ing chemical and biological research as well as medical
diagnostics [1]. For example, detection and treatment of
HIV infection relies on the isolation of human T lym-
phocytes from whole blood [2]. Similarly, separation of
neuronal cells plays a pivotal role in cell-replacement ther-
apy for neurodegenerative disorders such as Parkinson’s
disease and Alzheimer’s disease [3]. The bioparticle size is
often a signature of abnormal biological properties leading
to disease. This is apparent, for example, for mitochon-
dria and lipid droplets, where anomalous size indicates
Huntington’s disease [4] or leukemia [5]. In some cases
cancer cells are found to differ in size as compared with
healthy ones [6]. Therefore, efficient strategies for separa-
tion of bioparticles are required to investigate variations of
biomolecular signatures.

Unfortunately, bioparticles span a large size range
covering several orders of magnitude from hundreds of
nanometers to tens of micrometers [7,8]. For such a sub-
micrometer scale, thermal fluctuations are lead actors and
isolation techniques are rather scarce [9,10]. An ideal solu-
tion would be a tunable method that allows one to change
the bioparticle size targeted for separation by controlling
one of its parameters. In the following we demonstrate
a nonintuitive, yet efficient, separation strategy taking

*jerzy.luczka@us.edu.pl

advantage of a paradoxical mechanism of thermal-noise-
induced absolute negative mobility (ANM) [11–13]. Its
main advantage is that it combines the benefits of both
active and passive separation techniques. The method uses
an external driving force as well as a constant bias, so the
particle-sorting efficiency and throughput are expected to
be higher than for alternative passive and some active (e.g.,
ratchet) techniques. On the other hand, since the separation
process is induced and controlled by thermal fluctuations,
it can be applied also to electrically neutral objects that
carry no charge or dipole. Moreover, this scheme allows
one not only to deflect different particle species along dif-
ferent transport angles but also to steer them in opposite
directions, and therefore it is ideal for separation and frac-
tionation purposes. Finally, the same setup can be applied
to segregate particles with respect to their mass [14].

A key finding of this development is that the
omnipresent thermal fluctuations are not necessarily a
redundant nuisance but rather may provide a tunable mech-
anism for particle separation at the submicrometer scale.
It requires only two ingredients: (i) a symmetric spatially
periodic nonlinear structure and (ii) a nonequilibrium state
created by, for example, a time-periodic driving force of
vanishing mean value. We show that under the additional
action of a constant bias, thermal fluctuations guide par-
ticles of a given size in the direction opposite to this net
force, whereas the others move concurrently toward it,
all under identical experimental conditions. Moreover, we
demonstrate that by changing only the temperature of the
system, one is able to tune the negative-mobility effect
solely for a precisely defined size of the particle, therefore

2331-7019/19/12(5)/054002(8) 054002-1 © 2019 American Physical Society
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allowing its separation from the other particles of different
sizes.

Our setup can be experimentally realized using a lab-
on-a-chip device consisting of a microfluidic structure.
The oscillating force driving the system out of equilibrium
may be induced through hydrodynamic flow, but elec-
trophoresis, electro-osmosis, or dielectrophoresis can also
be used [10]. In particular, a proof-of-principle experiment
of a similar separation scheme was performed with insula-
tor dielectrophoresis in a nonlinear, symmetric microflu-
idic structure with electrokinetically activated transport
[15,16]. Recently, such a setup allowed the induction of
ANM not only for a colloidal particle but also for a biolog-
ical compound in the form of mouse-liver mitochondria
[17]. However, these experiments used for separation pur-
poses the deterministic ANM, whereas here we present an
essentially different approach based on the thermal-noise-
induced phenomenon. Temperature-driven tunability of
the proposed particle-separation process can be achieved
solely for this latter fundamentally distinct mechanism of
ANM.

II. MODEL

We study a collection of noninteracting classical Brow-
nian particles of various sizes that move in a spatially
periodic potential U(x) = U(x + L) of period L and are
additionally subjected to an unbiased time-periodic force
A cos �t of amplitude A and angular frequency �, as well
as an external static force F . The dynamics of a single par-
ticle of mass M is described by the following Langevin
equation [18]:

Mẍ + �ẋ = −U′(x) + A cos �t + F +
√

2�kBT ξ(t),
(1)

where the dot and the prime denote differentiation with
respect to time t and the particle coordinate x, respectively.
The coupling of the particle with a thermal bath of temper-
ature T is modeled by Gaussian white noise of zero mean
and unity intensity; that is,

〈ξ(t)〉 = 0, 〈ξ(t) ξ(s)〉 = δ(t − s). (2)

The parameter kB is the Boltzmann constant and � is the
friction coefficient. The potential U(x) is assumed to be
symmetric and in the simplest form; namely,

U(x) = �U sin
(

2π

L
x
)

. (3)

Despite its apparent simplicity, the model studied serves
as a paradigmatic example exhibiting peculiar transport
behavior, including noise-enhanced transport efficiency
[13,19], anomalous diffusion [20], amplification of normal

diffusion [21–23], and a nonmonotonic temperature depen-
dence of normal diffusion [24,25].

We first recast Eq. (1) in its dimensionless form. This
procedure ensures that the results obtained later are inde-
pendent of the setup, which is essential to facilitate the
choice in realizing the best setup for the testing our the-
ory by experimentalists. We rescale the particle coordinate
and time as

x̂ = x
L

, t̂ = t
τγ

, τγ = L

√
M
�U

, (4)

which transform Eq. (1) to the form

¨̂x + γ ˙̂x = −Û′(x̂) + a cos ωt̂ + f +
√

2D ξ̂ (t̂). (5)

The dimensionless friction coefficient γ is the ratio of the
two characteristic time scales:

γ = τγ

τ0
= �L√

M�U
, (6)

where τ0 = M/�. The parameter γ is crucial for the pro-
posed size-based separation because it depends, via the
Stokes formula, on the linear size R of the particle. For
example, for a spherical particle � = 6πηR, where η is the
viscosity of the surrounding medium and R is the radius
of the spherical particle. A (sub)micrometer-sized particle
typically has a rather small physical mass M , and there-
fore the rescaled friction coefficient γ is expected to be of
moderate to large magnitude as compared with the dimen-
sionless mass m, which in this scaling is set to unity,
m = 1. Other parameters are a = (L/�U)A, ω = τγ �,
and f = (L/�U)F . The rescaled potential is Û(x̂) =
U(Lx̂)/�U = sin 2π x̂ and has the unit period Û(x̂) =
Û(x̂ + 1). The dimensionless thermal noise ξ̂ (t̂) has the
same statistical properties as ξ(t), and D = kBT/�U is
the ratio of the thermal energy to half of the nonrescaled
potential barrier. From now on, only the dimensionless
variables are used in this study, and therefore to simplify
the notation, the hat symbol is omitted.

A. Methods

The observable of foremost interest in this study is the
stationary averaged velocity 〈v〉, which can be expressed
as

〈v〉 = lim
t→∞

1
t

∫ t

0
ds〈ẋ(s)〉, (7)

where 〈 〉 indicates averaging over all realizations of the
thermal noise as well as over the initial conditions for
the particle position x(0) ∈ [0, 1] and its velocity ẋ(0) ∈
[−2, 2] being uniformly distributed. The latter is obligatory
for the deterministic limit D ∝ T → 0 when the dynamics
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may be nonergodic and the results can be affected by the
specific choice of the initial conditions [26].

Unfortunately, the Fokker-Planck equation correspond-
ing to the Langevin equation (5) cannot be solved in
a closed form. For this reason we are forced to per-
form comprehensive numerical simulations. The dynamics
described by Eq. (5) is characterized by a five-dimensional
parameter space {γ , a, ω, f , D}, the detailed exploration of
which is a very challenging task. We perform numerical
simulations of Eq. (5) over a parameter domain in the area
γ × a × ω ∈ [0.1, 10] × [0, 25] × [0, 20] at a resolution of
400 points per dimension for several values of the force f
taken from the interval [0, 2] and thermal-noise intensity
D ∈ [0, 10−1]. Overall, we consider nearly 109 different
parameter sets. This exceptional precision is possible only
because of our innovative simulation method, which is
based on the use of graphics-processing-unit supercom-
puters; for details see Ref. [27]. In particular, we use a
weak second-order predictor-corrector method [28] with
the time step scaled by the fundamental period T = 2π/ω

of the external driving force (i.e., h = 10−2 × T). Since
we are interested in the asymptotic long-time state of
the system, numerical stability is an extremely impor-
tant problem to obtain reliable results. Fortunately, the
predictor-corrector algorithm is similar to implicit meth-
ods but it does not require the solution of the algebraic
equation at each step. It offers good numerical stability,
which it inherits from the implicit counterpart of its correc-
tor. The stationary averaged velocity 〈v〉 is averaged over
the ensemble of 210 = 1024 trajectories, each starting with
different initial conditions according to the distribution pre-
sented above. The number of realizations of stochastic
dynamics is not accidental but is chosen to maximize the
numerical simulation performance. The quantity of interest
is calculated after it reaches its asymptotic stationary value,
which typically occurs after 104 periods of the external
harmonic driving T = 2π/ω.

III. RESULTS

Our idea how to separate submicrometer-sized parti-
cles is as follows. The stationary averaged velocity 〈v〉
depends, via dynamics determined by Eq. (5), on the fric-
tion coefficient γ = γ (R), which in turn is a function of
the particle size R. Assume that there is a collection of, for
example, four types of particles with R1 < R2 < R3 < R4.
We want to separate only particles with radius R2. To this
aim we should find such a parameter regime {a, ω, f , D} in
which the particles of sizes R1, R3, and R4 move in the pos-
itive direction, 〈v〉 > 0, whereas particles with radius R2
travel in the negative direction, 〈v〉 < 0. Then only parti-
cles of size R2 will be separated from the rest. We now look
for parameter regimes permitting such an isolation process
by using the ANM phenomenon.

In the normal transport regime (outside the parame-
ter range for ANM), for sufficiently small values of the
external perturbing bias f , the Green-Kubo linear response
theory holds true and the standard response of the system
is that the average particle velocity is an increasing func-
tion of the static force (i.e., 〈v〉 = μf ). However, there are
also regimes for which particles move on average in the
direction opposite to the applied bias, namely, 〈v〉 < 0 for
f > 0, exhibiting anomalous behavior in the form of nega-
tive mobility, μ < 0 [12,29,30]. The key ingredient for the
occurrence of the latter effect is that the system is driven
far away from thermal equilibrium into a time-dependent
nonequilibrium state [12,18,29]. In our case this condi-
tion is guaranteed by the presence of the external harmonic
driving a cos ωt.

In Fig. 1(a) we demonstrate the ANM phenomenon. For
γ = 2.135, the average velocity 〈v〉 assumes the same sign
as the force f , which results in typical transport behav-
ior, consistent with the direction of the applied bias. For
γ = 1.935, however, the average response of the system is
opposite to the acting static bias f (i.e., 〈v〉 < 0 for small
f > 0), indicating the ANM phenomenon. No relationship
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FIG. 1. (a) Average velocity 〈v〉 as a function of the static force f for two different values of the friction γ . (b) Average velocity 〈v〉
versus thermal-noise intensity D ∝ T for different values of γ . The other parameters are a = 5.75, ω = 3.75, f = 0.1, and D = 0.0002.
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is detectable between the set of parameter values and the
occurrence of the ANM effect, and therefore the values
of the friction coefficient chosen here are just exemplary
ones. It was shown that there exist two fundamentally
different mechanisms responsible for the emergence of
ANM in our setup: (i) it can be generated by the deter-
ministic chaotic dynamics [29] or (ii) it can be induced
by thermal-equilibrium fluctuations [12]. Very recently, a
third mechanism generating the ANM effect was discov-
ered. Accordingly, the ANM phenomenon may emerge
as well within deterministic and nonchaotic parameter
regimes [31].

In Fig. 1(b) we study the temperature dependence of the
average velocity 〈v〉 in the exemplary parameter regime
corresponding to the ANM effect. For γ = 1.895, the
ANM phenomenon is observed even in the limit of vanish-
ing thermal-noise intensity D ∝ T → 0, indicating that in
this regime the latter effect is caused purely by the deter-
ministic dynamics of the system. This mechanism is the
most populated in the parameter space. As illustrated in
Fig. 1(b), in such a case thermal fluctuations typically have
a destructive impact (i.e., when the thermal-noise intensity
increases, the ANM disappears). On the other hand, for
γ = 1.935, the ANM is induced by thermal fluctuations.
This means that there is a finite window of temperature
D ∝ T in which the average velocity 〈v〉 < 0 with f > 0,
and this effect is not observed in the limit of vanishing
thermal-noise intensity D → 0.

We now attempt to find a parameter regime for which
particles differing in size could be isolated by an appro-
priate dose of thermal fluctuations D ∝ T. Motivated by
the large size range typically encountered in biochemi-
cal applications, we aim to develop a tunable scheme that
allows us to control the particle size targeted for isola-
tion by changing solely the temperature of the system.
In doing so we are automatically restricted to parameter
sets corresponding to thermal-noise-induced ANM as for

the deterministic mechanism temperature has a destructive
influence on the latter effect. These regimes are signifi-
cantly less populated in the parameter space than the deter-
ministic ones, and therefore this task is highly challenging.

As the first step of our analysis, we isolate all parameter
regimes {a, ω, f , D} for which the ANM effect is induced
by thermal fluctuations and observed for only one narrow
interval of the friction coefficient γ . We exemplify this
procedure in Fig. 2, where we depict the average veloc-
ity 〈v〉 versus the friction γ , which can be identified with
the particle size R. Among many particles of sizes corre-
sponding to the friction in a wide interval γ ∈ [10−1, 10],
only those with friction coefficient γ ∗ = 1.59 will move in
the opposite direction 〈v〉 < 0 to the applied bias f > 0.
Other particles will move toward the direction of the bias.
As a consequence, only those particles with γ ∗ ≈ 1.59 will
be separated from the others. In Fig. 2(b) we magnify the
interval in which the ANM phenomenon occurs. It can be
viewed as the resolution capacity of this method. In the
case presented it reads δγ ≈ 0.1. However, as illustrated,
typically negative velocity 〈v〉 is noticeably peaked in such
a region and therefore the particles of the precisely defined
size γ ∗ for which the velocity is minimal 〈v〉min = 〈v〉(γ ∗)
will be pronouncedly isolated from the others. We stress
that the dimensionless friction coefficient γ in Eq. (6)
depends not only on the actual friction � ∝ R but also
on the parameters of the potential �U and L. Therefore,
experimentalists may exploit these characteristics of the
periodic substrate to further adapt the particle size targeted
for separation.

Given the target audience of this journal, we now pro-
vide the exemplary set of the model parameters expressed
in real, physical units corresponding to the regime pre-
sented in Fig. 2. In doing so we use the data for the
microfluidic system reported in Ref. [17] that was success-
fully used to separate colloidal particles and mouse-liver
mitochondria by use of the ANM effect. In particular, for
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FIG. 2. (a) Average velocity 〈v〉 versus the friction coefficient γ . ANM is observed only for a narrow interval marked in gray. (b) An
enlargement of this region. The parameter values are as follows: a = 5.75, ω = 4.0, f = 0.1, and D = 0.0006.
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a realistic colloidal particle of radius R = 2.2 μm, for
which the negative-mobility effect is tailored, suspended
in an aqueous solution with viscosity η = 8.9 × 10−4 Pa s
at temperature T = 25 ◦C, the characteristic timescales are
τγ = 0.4 s and τ0 = 0.25 s. These imply that the potential
barrier �U = 43 eV and the spatial period of the potential
L = 11 μm. Consequently, the conservative force −U′(x)
is of the order of �U/L = 0.63 pN. The amplitude and
the frequency of the external driving read A = 3.6 pN and
� = 10 Hz, respectively. Finally, the constant bias F is
0.063 pN. All characteristic timescales, τγ = 0.4 s, τ0 =
0.25 s, and T = 2π/� = 0.628 s, are of the same order
of magnitude, which is typical for the parameter regimes
in which the ANM effect is observed. Moreover, the order
of magnitude of piconewtons appearing here is adequate
for the biomolecular scale as, for example, the Brownian-
motion force on an Escherichia coli bacterium averaged
over 1 s is 0.01 pN and the propulsion developed by a
molecular motor is 5 pN [32].

As the second step of the analysis we focus on the
parameter regimes {a, ω, f } for which a specific functional

dependence between the friction γ ∗ (equivalently the size
R∗ of the particle) intended for isolation and tempera-
ture D ∝ T can be revealed. In Figs. 3(a)–3(c) we present
three exemplary curves γ ∗(D) for different values of the
external harmonic driving amplitude a and the frequency
ω. They are obtained from characteristics 〈v〉(γ ) com-
puted for many different temperatures D ∝ T; see Fig. 2(a).
Each blue dot in the plot represents the friction coefficient
γ ∗ for which the Brownian-particle velocity attains its
global minimum value at fixed thermal-fluctuation inten-
sity. The gray bars indicate the friction-coefficient interval
δγ where the ANM effect occurs; see Fig. 2(b). The
conclusion is that there is no single parameter regime
covering a wide range of the particle size R∗ ∝ γ ∗ tar-
geted for separation by changing solely the temperature
D ∝ T. However, the parameters a, ω, and f give enough
freedom to cover by parts a physically significant inter-
val of moderate to large friction that is characteristic for
small particles at low Reynolds numbers; for example, for
Fig. 3(a) γ ∗ ∈ [0.84, 0.96], for Fig. 3(b) γ ∗ ∈ [0.55, 0.58],
and for Fig. 3(c) γ ∗ ∈ [0.58, 0.75]. Using one of these
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FIG. 3. (a)–(c) Friction coefficient (proportional to the particle size) γ ∗ ∝ R for which the Brownian-particle velocity attains its global
minimum 〈v〉min ≡ 〈v〉(γ ∗) as a function of temperature D ∝ T. The gray bars represent the friction-coefficient interval δγ in which
the ANM effect occurs [see Fig. 2(b)]. The cyan region marks the range of the particle size γ ∝ R corresponding to the vicinity of the
minimum; that is, [〈v〉min − 0.05〈v〉min, 〈v〉min]. The other parameters are as follows: (a) a = 5.55, ω = 1.5; (b) a = 5.75, ω = 1.65;
(c) a = 5.75, ω = 5.65. In (a)–(c) the bias f = 0.1. (d) The minimal velocity 〈v〉min (left axis) as well as the resolution capacity δγ

(right axis) versus temperature D for the parameter regime corresponding to (c).
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exemplary tailored parameter regimes, one is able to tune
the ANM to the particle of a given size R∗ ∝ γ ∗ by chang-
ing solely the temperature D ∝ T of the system. Doing this
allows us to separate particles with respect to their size in
an efficient and tunable way.

IV. DISCUSSION

At first glance the magnitude of the intervals δγ where
the ANM occurs that are represented in Figs. 3(a)–3(c)
by the gray bars may look alarming. However, this fact
should be considered as an intrinsic feature rather than a
bug. First, we discuss the typical dependence of the res-
olution capacity δγ on temperature D. This function is
depicted in Fig. 3(d) (right axis) for the parameter regime
corresponding to Fig. 3(c). The reader may observe there
the nonmonotonic dependence of δγ on temperature D,
which is very characteristic for the negative-mobility phe-
nomenon induced by thermal fluctuations. The anomalous
transport effect emerges at the minimal temperature Dmin,
and then δγ initially increases, passes through its maxi-
mum observed for an appropriate dose of thermal noise,
and then starts to decrease until it reaches the maximal tem-
perature Dmax. In Fig. 3(d) we depict also the dependence
of the minimal velocity 〈v〉min = 〈v〉(γ ∗), corresponding to
the particle size γ ∗ for which the negative mobility is tai-
lored, on temperature D. Luckily, we observe that initially
thermal noise not only increases the interval δγ where the
ANM is detected but at the same time increases the abso-
lute value of the global minimum of the Brownian-particle
velocity 〈v〉min. Moreover, we notice that there is a tem-
perature for which the resolution capacity δγ is maximal
and the velocity 〈v〉min is minimal. This means that even
though as thermal noise increases the ANM peaks in char-
acteristics 〈v〉(γ ) become wider and more pronounced;
see Fig. 2(b). This fact guarantees that the particle size
γ ∗ for which the ANM is tailored will be well distin-
guished from the others. For this reason, in Figs. 3(a)–(c)
we additionally mark in cyan the region of the particle
size γ corresponding to the vicinity of the minimum; that
is, [〈v〉min − 0.05〈v〉min, 〈v〉min]. In this range δγ typically
equals several percent of the value of γ ∗, which is rea-
sonable for separation purposes. Since this interval is a
projection of the window [〈v〉min − 0.05〈v〉min, 〈v〉min] onto
the γ axis, the so-obtained δγ is not necessarily symmetric
around γ ∗.

Second, taking into account the above discussion, we
point out that even though there will be two particle species
differing in size γ1 ∝ R1 and γ2 ∝ R2 both in the range
where ANM occurs [see the gray area in Fig. 2(b)], typ-
ically they will still be separated from each other since
usually 〈v〉(γ1) �= 〈v〉(γ2). This means that, unfortunately,
they will both travel in the direction opposite the applied
constant force f but there will be a gap between them
because of the difference in their velocities. This opens

up an intriguing possibility for simultaneous separation
of several particle species under identical experimental
conditions.

We now comment on the salient difference between this
work and our previous work [14]. The obvious one is
that here we discuss the separation scheme with respect
to the particle size γ ∝ R rather than its mass m. More-
over, in our previous paper we used the negative-mobility
effect, whose roots lie solely in the deterministic dynam-
ics of the system; see Fig. 1(b). As the latter mechanism
is significantly more populated in the parameter space of
the model than the thermal-noise-induced one, it allows
us to find an unique parameter set for which the particle
mass intended for separation is effectively controlled over
a regime of nearly 2 orders of mass magnitude on changing
solely the frequency ω of the external harmonic driv-
ing. Another difference is that typically the deterministic
ANM is quickly destroyed by temperature increase, mean-
ing that the mentioned parameter regime works effectively
only for low thermal-noise intensities. As a consequence,
the ANM peaks in the characteristics 〈v〉(m) are much
steeper, the resolution capacity δm is significantly greater,
and the overall selectivity of the method is superior. On
the other hand, here the negative-mobility effect is induced
by thermal fluctuations, meaning that one is able to find a
parameter set allowing one to observe the ANM in a tem-
perature regime as high as D = 10−2 [see Fig. 3(c)], which
is not the case for the deterministic mechanism. Moreover,
only because of this different origin the negative-mobility
effect can be controlled by thermal fluctuations. This fact
combined with an appropriate experimental implementa-
tion opens the opportunity to separate particles that carry
no charge or dipole, or can hardly be manipulated by
means of an external field or force. The price that needs
to be paid for this possibility is a slight loss of accuracy in
the separation process.

Finally, we comment briefly on the hydrodynamic cor-
rections that may play a key role in experimental reality.
We take into account only the simplest hydrodynamic
effect expressed by the Stokes term in the model equation
(1) and ignore a number of additional phenomena that
may prove experimentally important. In particular, when
the particle travels in a system with geometrical con-
straints, which is typically the case, for example, in a
microfluidic device, its boundaries significantly modify
the particle dynamics. The geometry usually increases the
hydrodynamic drag. This effect is notoriously difficult to
treat analytically and numerically [33], and certainly lies
beyond the scope of this paper. Nevertheless, for some
systems it appears to be extremely important and may
cause significant underestimation of the results [34]. It
can be accurately incorporated by a phenomenological
modification based on the experimentally measured quan-
tities and appropriate rescaling of the model parameters
[34]. Since the hydrodynamic drag is increased for such
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systems, we expect that this effect is likely to hamper the
direct observation of the ANM phenomenon. Our prelimi-
nary results show that the latter anomalous transport effect
notably decreases with the increase of friction (drag) (not
depicted). Moreover, simultaneously the ANM becomes
less populated in the parameter space, which makes it even
harder to detect (not shown). Therefore, we are aware that
our theoretical predictions following from Eq. (5) should
be used as a guide toward “physical reality” indicating the
direction for future experimental and theoretical research
rather than taken as granted without approximations.

V. CONCLUSION

In conclusion, this work provides an effective method
for tunable size-based particle separation. In this scheme
the particle size intended for isolation can be controlled
by changing solely the temperature of the system with-
out modifying the setup. It requires a symmetric spatially
periodic nonlinear structure, external time-periodic driv-
ing, and a constant bias. Our approach can be readily
realized with a lab-on-a-chip device [17] by using cur-
rent lithographic techniques to develop robust separation
applications. These may be further enhanced by advances
in three-dimensional-printing technologies, which were
recently exploited down to the nanometer range [35]. For
this reason we envision that the method investigated can
be adapted to a wide range of separation problems in
which size selectivity is required, hopefully leading to,
for example, new diagnostic applications with commercial
potential [36].
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Particle isolation techniques are in the spotlight of many areas of science and engineering. In food 
industry, a harmful bacterial activity can be prevented with the help of separation schemes. In health 
care, isolation techniques are used to distinguish cancer and healthy cells or in therapy for Alzheimer’s 
and Parkinson’s diseases. We consider a cloud of Brownian particles of different sizes moving in a 
periodic potential and subjected to an unbiased driving as well as a constant force. We reveal an 
efficient separation strategy via the counterintuitive effect of negative mobility when particles of a 
given size are transported in a direction opposite to the applied constant force. We demonstrate a 
tunable separation solution in which size of the particle undergoing separation may be controlled by 
variation of the parameters of the external force applied to the system. This approach is an important 
step towards the development of point-of-care lab-on-a-chip devices.

Separation of (sub)micro sized particles is of paramount importance due to its vast applications including in par-
ticular medical  diagnostics1. Anomalies in a bioparticle size often indicate various illnesses. This is apparent, for 
instance, for Alzheimer’s, Parkinson’s2 and Huntington’s  disease3, needless to say that often cancer cells noticeably 
deviates in size from healthy  ones4. A reliable and effective approach to separating bioparticles is therefore much 
in demand. They span a large size range covering several orders of magnitude from nanometers to  micrometers5,6 
what crucially complicates the development of such highly anticipated strategies. For instance, deadly viruses 
like HIV or COVID-19 are approximately 0.1 micrometer in  diameter7. On the other hand, the soma of a neuron 
can vary from 4 to 100 micrometers in  diameter8. For such a broad (sub)micrometer scale, efficient isolation 
techniques are required to allow tunability of the particle size intended for separation. Unluckily, the latter are 
rather  scarce9,10, however, recently some progress has been made in this  direction11–13.

In this work we aspire to partially fill this significant know-how gap by demonstrating a nonintuitive, yet 
efficient separation strategy taking advantage of a paradoxical mechanism of negative  mobility14–17. We show that 
under the action of a static bias only particles of a given linear size move in the direction opposite to this net force 
whereas the others migrate concurrently towards it. This effect creates a possibility of steering different species 
of particles in opposite directions under identical experimental conditions thus facilitating their separation. A 
proof-of-principle experiment of a similar isolation scheme was performed with insulator dielectrophoresis in 
a nonlinear, symmetric microfluidic structure with electrokinetically activated  transport18,19. Recently, such a 
setup allowed to induce the negative mobility not only for a colloidal particle but also for a biological compound 
in the form of mouse-liver  mitochondria20.

Motivated by the large size range encountered in biochemical applications, a crucial result of this work is a 
demonstration of a tunable separation strategy, in which the size of the particle undergoing separation may be 
effectively controlled by variation of the parameters characterizing the external force applied to the particle, e.g. 
the magnitude of the static bias. The same setup can be applied to segregate particles with respect to their mass in 
a similar tunable  manner21. This approach may provide selectivity required for individual isolation of nano and 
micro particles, proteins, organelles and cells and thus constitutes an important step towards the development of 
robust lab-on-a-chip devices exploited in both research and industrial applications, in particular point-of-care 
medical diagnostics.

The paper is organized as follows. In “Model” section we outline the model of a Brownian particle dwelling in 
a spatially periodic potential under the action of both an external harmonic driving as well as a constant bias. In 
the next section we exemplify the negative mobility phenomenon. “Negative mobility” section provides crucial 
results of the paper, namely, a tunable particle separation strategy. In “Tunable particle separation”  section we 
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discuss the possibility of tailoring particle isolation in the considered system. Finally, the last section is devoted 
to summary and conclusion.

Model
The system considered in this study is a classical inertial Brownian particle of mass M which moves in a spatially 
periodic one-dimensional potential U(x) = U(x + L) of the period L, additionally subjected to an unbiased 
time-periodic force A cos (�t) of the amplitude A and the angular frequency � , as well as an external static force 
F. Dynamics of such a particle is described by the Langevin  equation22

where the dot and the prime denote differentiation with respect to time t and the particle coordinate x, respec-
tively. Coupling of the particle with thermal bath of temperature T is modeled by Gaussian white noise of zero 
mean and unity intensity, namely

The noise intensity factor 2ŴkBT (where kB is the Boltzmann constant) follows from the fluctuation-dissipation 
 theorem23 and ensures that the system reaches the equilibrium state when A = 0 and F = 0 . The potential U(x) 
is spatially periodic with the period L and the barrier height 2�U ,

At first glance the studied system looks simply, however, it exhibits peculiar transport behaviour including 
noise-enhanced transport  efficiency16, anomalous  diffusion24,25, amplification of normal  diffusion26,27 and a non-
monotonic temperature dependence of normal  diffusion28.

As the first step of the analysis we transform the Eq. (1) into its dimensionless form. This aim can be achieved 
in several ways. It often allows to simplify the setup description as after the rescaling procedure some parameters 
appearing in the corresponding dimensional version may be eliminated thus reducing the complexity of the prob-
lem. Moreover, recasting into the dimensionless variables ensures that the results obtained later are independent 
of the setup which is essential to facilitate the choice in realizing the best setup for testing theoretical predictions 
in experiments. Here, we propose the use of the following scales as the characteristic units of length and time

The Langevin Eq. (1) transformed according to the above variables reads

The rescaled dimensionless friction coefficient γ is the ratio of two characteristic time scales

where τ1 = M/Ŵ is characteristic time for the velocity relaxation of the free Brownian particle. The dimensionless 
mass is set to unity, m = 1 . Other rescaled parameters are as follows: a = (L/�U)A , ω = τ0� , f = (L/�U)F . 
The dimensionless potential Û(x̂) = U(Lx̂)/�U = sin(2π x̂) has the period L̂ = 1 . The dimensionless thermal 
noise ζ(t̂) assumes the same statistical properties as ξ(t) , i.e. �ζ(t̂)� = 0 and �ζ(t̂)ζ(ŝ)� = δ(t̂ − ŝ) . The dimension-
less noise intensity D = kBT/�U  is the ratio of thermal energy and half of the non-rescaled potential barrier. 
From now on, only the dimensionless variables will be used in this study and therefore, in order to simplify the 
notation, the ∧-symbol will be omitted in the Eq. (5).

The dimensionless friction coefficient γ is the most important parameter for later mentioned process of the 
particle separation with respect to its size. It is due to the fact that even for the simplest model of hydrodynamic 
interactions occurring in this setup it depends on the linear size R of the particle. For instance, the spherical 
particle diffusing in the surrounding medium is subjected to Stokes drag −Ŵẋ where Ŵ = 6πηR and η is the vis-
cosity of the  environment29. We stress that (sub)micro sized particles typically possess small mass and therefore 
for them the dimensionless friction coefficient γ given by Eq. (6) is expected to be either of the order or larger 
than the dimensionless mass m = 1.

The directed velocity.  The particle mobility describes its ability to move through the medium as a response 
to the biased force acting on it. Hence, the observable of foremost interest in this study is a directed velocity 〈v〉 
of the particle which may be written as

where �·� indicates averaging over all realizations of thermal noise as well as over initial conditions for the par-
ticle position x(0) and its velocity ẋ(0) . The latter is obligatory for the deterministic limit D ∝ T → 0 when the 
dynamics may be non-ergodic and results can be affected by the specific choice of initial  conditions30.

(1)Mẍ + Ŵẋ = −U ′(x) + A cos (�t) + F +
√

2ŴkBT ξ(t),

(2)�ξ(t)� = 0, �ξ(t) ξ(s)� = δ(t − s).

(3)U(x) = �U sin

(

2π

L
x

)

.

(4)x̂ = x

L
, t̂ = t

τ0
, τ0 = L

√
M

�U
.

(5)¨̂x + γ ˙̂x = −Û ′(x̂) + a cos (ωt̂) + f +
√

2γD ζ(t̂).

(6)γ = τ0

τ1
= ŴL√

M�U
,

(7)�v� = lim
t→∞

1

t

∫ t

0

ds �ẋ(s)�,
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The Fokker–Planck equation corresponding to the Langevin Eq. (5) cannot be solved analytically in a closed 
form. Therefore the system may be analyzed only by numerical simulations. Equation (5) is characterized by a 
5-dimensional parameter space {γ , a,ω, f ,D} the detailed exploration of which is a very challenging task. All 
numerical calculations were performed using an innovative computational method which is based on employ-
ing graphics processing unit supercomputers. This procedure allowed us to speed up computations by about 103 
times compared to traditional methods. For technical details we refer the reader to Ref.31.

negative mobility
In general, the directed velocity 〈v〉 is an increasing function of the static force f and the resultant particle trans-
port follows the direction of the bias, i.e. �v� = µ(f )f  with a positive nonlinear mobility µ(f ) > 0 . However, in 
the parameter space there are also regimes for which the particle moves on average in the opposite way, namely 
〈v〉 < 0 for f > 0 . Such anomalous transport behaviour is characterized by a negative mobility µ(f ) < 015,32,33. 
The key ingredient for the occurrence of the latter effect is that the system is driven away from thermal equi-
librium into a time-dependent nonequilibrium  state15. This fact provides a negation of the Le Chatelier–Braun 
equilibrium  principle34 stating that the response of the system perturbed in equilibrium occurs into the direction 
of the applied bias towards a new equilibrium state. In our case this condition is guaranteed by the presence of 
the external harmonic driving a cos (ωt).

It is known that there exist two fundamentally different mechanisms responsible for the emergence of nega-
tive mobility in the considered system. Firstly, it may be generated solely by the deterministic dynamics given by 
Eq. (5) with D ∝ T = 015,32. Secondly, it can be induced by an appropriate dose of thermal  fluctuations15. Among 
the first mentioned class we distinguish two completely distinct scenarios. For the deterministic counterpart of 
the system the negative mobility may be induced either by chaos-assisted  dynamics32 or regular, non-chaotic 
attractors transporting the particle in the direction opposite to the applied  bias35. Our numerical research reveals 
that the most common reason for the occurrence of the negative mobility is rooted in the complexity of the 
deterministic and chaotic  dynamics35,36. This observation is of great importance for uncovering the parameter 
regimes allowing the particle separation.

In Fig. 1 we illustrate the negative mobility effect. For γ = 1.29 the directed velocity 〈v〉 > 0 assumes the same 
sign as the force f > 0 leading to the normal particle transport regime with µ > 0 . However, for γ = 1.23 , the 
directed velocity 〈v〉 < 0 is opposite to the bias f > 0 and in consequence the negative mobility effect emerges 
µ < 0 . If the value of f is positive and large enough then the sign of 〈v〉 coincides with the force f again. Therefore 
this anomalous transport behaviour is observed only in the vicinity of the zero bias f = 0 and often is termed as 
the absolute negative  mobility37. As it is illustrated in the the panel (b) the presented parameter regime belongs 
to the class of deterministically induced negative mobility as for the limiting case of vanishing thermal noise 
intensity D → 0 the directed velocity is negative 〈v〉 < 0 . We want to stress that this limit should be considered 
with utmost care as in such a case attractors transporting the particle in opposite directions may coexist and the 
dynamics may be non-ergodic. It means that depending on the initial conditions, a particle would either move 
in the direction of the bias force or opposite to  it32. Nevertheless, at any finite D > 0 , possibly coexisting deter-
ministic attractors turn metastable and due to thermally activated transitions between them the ergodicity of 
dynamics is restored. Consequently, the directed velocity 〈v〉 is independent of the initial conditions. Moreover, 
as it is shown in the panel (b) the deterministically induced negative mobility effect is generally quite robust with 
temperature change and usually survives up to moderate thermal noise intensities.

tunable particle separation
We now want to harvest the negative mobility phenomenon to separate (sub)micrometer sized particles. This 
task may be achieved as follows. Imagine that there is a mixture of several species of spherical particles each 
differing by its linear size R. The friction coefficient γ , via e.g. Stokes formula, depends on the particle radius 
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Figure 1.  The average velocity 〈v〉 depicted as a function of the static force f for two different values of the 
friction γ . Normal and anomalous transport behaviour in the form of negative mobility is observed for γ = 1.29 
and γ = 1.23 , respectively. In the panel (b) we present the average velocity 〈v〉 versus temperature D ∝ T for 
γ = 1.23 . Other parameters are: a = 4.5,ω = 3.75 , f = 0.2 , and D = 0.0001.
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γ = γ (R) . We can extract the given species of particles R∗ characterized by the friction coefficient γ ∗ ≡ γ (R∗) if 
only for this particular group of particles the negative mobility effect arises, i.e. 〈v〉 < 0 for γ ∗ and 〈v〉 > 0 for the 
rest. Therefore this task translates to discovery in the complex four-dimensional parameter subspace {a,ω, f ,D} 
regimes where in the characteristic 〈v〉(γ ) there exists only one interval δγ of the friction coefficient around the 
desired particle size γ ∗ for which the negative mobility 〈v〉 < 0 emerges. In such a way only particles with the 
radius R∗ would be extracted from the mixture.

Motivated by the large size range typically encountered in biochemical applications, we aim to develop a 
tunable scheme that allows to control the particle size targeted for isolation by changing only one parameter of 
the system. In Ref.21 it has been shown that the negative mobility effect can be harvested to separate the (sub)
micrometer sized particles with respect to their mass. The particle mass targeted for isolation might be effectively 
controlled over a regime of nearly two orders of magnitude upon changing solely the frequency ω of the external 
harmonic driving. Moreover, in Ref.36 an efficient separation mechanism based on thermal fluctuation induced 
negative mobility phenomenon has been proposed. By tuning solely temperature of the system D ∝ T , one can 
extract from the mixture of particle species differing by size only those of a strictly defined radius. This scheme 
opens an opportunity to separate particles that carry no charge or dipole, however, it may be inconvenient since 
temperature variation typically takes too much time to offer a robust experimental implementation. Therefore, in 
contrast, in this work we harvest the negative mobility effect to develop the particle separation strategy in which 
the particle size intended for isolation will be controlled by changing only the parameters characterizing the 
externally applied force, namely, the static bias f or the amplitude a or the frequency ω of the harmonic driving.

Unfortunately, there is no clear relationship between the presence of the negative mobility and the model 
parameter values. A tiny displacement in the parameter space may either cause a sudden emergence of the 
negative mobility or its rapid decay. Therefore, extensive numerical simulations of Eq. (5) were performed in 
order to systematically investigate the established parameter space. As the deterministically induced negative 
mobility is the most populated mechanism in the parameter space we set D = 0 . Then Eq. (5) was simulated for 
several values of the bias f ∈ [0, 2] and a parameter domain in the area γ × a × ω ∈ [0.1, 10] × [0, 25] × [0, 20] 
at a resolution of 400 points per dimension. Overall, we considered nearly 109 different parameter sets. This 
exceptional precision was possible only because of our innovative simulation  method31.

The so collected data was transformed into two-dimensional maps presenting the directed velocity 〈v〉 versus 
two chosen model parameters to facilitate the further analysis. The results of foremost interest are those with γ 
dependence since the friction coefficient may be used as an indicator to differentiate particles by their size. We 
explored the data to discover any correlations between the presence of the negative mobility, the friction coef-
ficient γ as well as the magnitude of the parameters a, ω and f. We exemplify such a situation in Fig. 2 where we 
depict the directed velocity 〈v〉 as a function of the static bias f and the friction coefficient γ . The color bar in the 
plot represents the magnitude of the directed velocity 〈v〉 . The occurrence of the negative mobility is marked by 
blue areas for which 〈v〉 < 0 . The reader can observe a linear trend between the friction coefficient γ , the static 
bias f and the emergence of the anomalous transport. The negative mobility effect occurs for progressively smaller 
values of γ as the force f increases. Among many so discovered negative mobility regimes we distilled only those 
where the latter phenomenon is present solely for one indivisible interval δγ of the friction coefficient γ thus 
permitting the particle separation.

We exemplify this procedure in Fig. 3 where we depict the directed velocity 〈v〉 versus the friction coefficient 
γ which can be identified with the particle size. As it is illustrated in the panel (a), among many particle sizes 
corresponding to the friction coefficient γ ∈ [0.2, 4] only those with the friction coefficient γ ∗ ≈ 1.05 will move 
in the direction opposite 〈v〉 < 0 to the applied bias f > 0 . Other particles will travel concurrently towards it. 
As a result, only the particles with γ ∗ ≈ 1.05 will be extracted from the heterogeneous mixture. Panel (b) pre-
sents a magnification of the interval δγ where the effect of negative mobility emerges. It can be interpreted as a 

Figure 2.  Two-dimensional map of the directed velocity 〈v〉 as a function of the static force f and the friction 
coefficient γ . The magnitude of 〈v〉 is indicated by the color bar. Blue areas represent the parameter regimes 
corresponding to the negative mobility. Parameter values: a = 4.5 , ω = 3.75 and D = 0.
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resolution capacity of this method. In this case it reads δγ ≈ 0.0678 . The selectivity of the proposed separation 
scheme is impressive as δγ /γ ∗ ≈ 0.06 . Moreover, as it is illustrated, typically the velocity 〈v〉 is noticeably peaked 
in the interval δγ where the negative mobility occurs. The mechanism of the latter anomalous transport effect 
is rooted in the deterministic dynamics and as such thermal fluctuations generally have destructive impact on 
 it35,36. Therefore the above outlined particle separation strategy is viable in low to moderate temperature regimes 
in which the size targeted for isolation γ ∗ , i.e. the middle of the interval δγ , coincides well with the the friction 
coefficient γmin for which the directed velocity attains its minimal value �v�min ≡ �v�(γmin) . It means that not 
only the selectivity of this method is impressive but also the particle separation process is quick.

Such approach allowed us to distill parameter regimes which reveal a specific functional dependence between 
the particle size tailored for separation γ ∗ and the parameters of the external force applied to the system thus 
allowing for tunable particle isolation. In Fig. 4 we present the friction coefficient γ ∗ versus the static bias f, 
the amplitude a and the frequency ω all depicted for different temperature of the system D ∝ T . The data were 
obtained from the characteristics 〈v〉(γ ) computed for many values of the control parameter, c.f. Fig. 3. Each dot 
represents the friction coefficient γ ∗ undergoing the separation process at the fixed f, a or ω , see panels (a)-(d). 
The bars indicate the friction coefficient interval δγ where the negative mobility emerges. Here we note that the 
curves on the corresponding panels overlap with the one representing the deterministic solution D = 0 . Therefore 
to visualize the impact of temperature on the separation process in the corresponding insets we schematically 
show the solutions depicting subsequent D values. The reader may observe that using those tailored parameters 
read off from Fig. 4 one is able to tune the negative mobility to the particle of a given size γ ∗ by changing solely 
the static bias f or the amplitude a or the frequency ω . In this way it will be separated from the others possessing 
positive mobility and thus moving concurrently towards the applied bias f.

From the experimental point of view the most convenient way to manipulate the particle separation is pre-
sumably by altering the static bias f. It is because in many realistic setups it is implemented via the constant 
external field, e.g. in the microfludic experiments in the form of a spatially uniform electric field which induces 
the particle  electrophoresis10. In most cases its intensity can be changed relatively easily, as opposed to the fre-
quency ω of the external harmonic driving which often requires complete rebuilding of the experimental setup. 
We note that the parameter sets reported in Fig. 4 allow for the tunable separation of the particles in the regime 
of moderate-large friction coefficient which is characteristic for low Reynolds numbers, being typical for (sub)
micro sized particles immersed in a  solution38. For example in the panels (a) and (b) corresponding to the isola-
tion driven by the constant force f, the friction coefficient γ ∗ ∈ [0.6, 2.5] , whereas in (d) when the separation 
is controlled by the frequency ω the size γ ∗ ∈ [0.25, 1.75] . The reader can observe that the friction coefficient 
γ ∗ is a decreasing function of the force f and the frequency ω (panels (a), (b) and (d)) while for the amplitude 
a it depicts an increasing dependence (panel (c)). Finally, we note that the dimensionless friction coefficient γ 
in Eq. (6) is influenced not only by the actual friction Ŵ but also by the parameters �U  and L of the potential. 
Therefore, experimentalists may exploit these characteristics of the periodic substrate to further adapt the particle 
size targeted for separation.

Last but not least, Fig. 4 reveals the impact of temperature D ∝ T on the tunability of the separation process. 
As it was stated before, since the negative mobility effect derives from the deterministic dynamics of the system, 
thermal fluctuations have a destructive influence on it. When temperature increases the regions of negative 
mobility allowing for the controllable particle separation progressively shrink and eventually vanish completely. 
Therefore the reported tunability of the friction coefficient γ ∗ is optimized for low to moderate temperature 
regimes D ∝ T . However, for instance, the panel (c) illustrates an interesting effect of thermal fluctuations. An 
increase of temperature leads not only to shrinking of the range of the friction coefficient γ ∗ for which the nega-
tive mobility is observed but also to significant decrease of the intervals where this phenomenon occurs, thereby 
optimizing the width δγ . It means that then the tunability of the method is limited but selectivity of the separation 
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Figure 3.  Panel (a): the directed velocity 〈v〉 versus the friction coefficient γ . The negative mobility is observed 
solely for a narrow interval δγ marked by the grey region. The particle size intended for separation γ ∗ is chosen 
as the middle of this window. Panel (b) presents a blow up of the interval where the negative mobility emerges. 
Parameter values: a = 4.5 , ω = 3.75 , f = 0.7 and D = 0.0001 . Note that a and ω is the same as in Figs. 1 and 2.
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process increases. We remark that the particle isolation upon harvesting the negative mobility phenomenon 
is also present for different parameter regimes, however, the range of its tunability proves somewhat smaller.

tailoring particle separation
Now we consider another, complementary issue. Let us assume that we deal with particles of a given size γ ∗ 
which we want to extract from the heterogeneous mixture. We address the following question: for how many 
different sizes γ ∗ taken from the extended interval γ ∗ ∈ [0.1, 10] it is possible to find a parameter set {a,ω, f ,D} 
for which the negative mobility effect emerges in the small interval [γ ∗ − δγ /2, γ ∗ + δγ /2] around the targeted 
value γ ∗ , therefore allowing its separation in a unique manner, c.f. Fig. 3? We found that in most cases the mag-
nitude δγ /γ ∗ is equal to a few percent but frequently is even smaller. We note that for a single γ ∗ there might 
be several parameter regimes fulfilling this condition thus facilitating the choice in realizing the best parameter 
set. We present the answer of this experimentally and practically relevant question in Fig. 5. The distribution of 
the size γ ∗ targeted for separation is shown there in the parameter plane of the amplitude a and the frequency ω 
for different values of the static bias f. The color coded scale displays the friction coefficient γ ∗ value. We observe 
that small particles can be isolated when the static bias f is likewise small and moderate to large values of the 
frequency ω . On the other hand, medium and large particles are separated for small frequencies ω . We note that 
the distribution of the particle size targeted for isolation γ ∗ undergoes a stretching when the static bias f decreases. 
Moreover, in such a case the range of the particles which might be segregated by harvesting the negative mobility 
effect is extended as well. Finally, even though the considered panel depicts the deterministic D = 0 dynamics, 
we found that the distribution of γ ∗ depicted there is quite robust with temperature change and survives up to 
moderate thermal noise intensity, see Fig. 1b.
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Figure 4.  Tunable particle separation. The size targeted for separation γ ∗ is depicted as a function of the 
parameters of the external force applied to the particle. In panel (a) and (b) versus the static bias f, (c) vs the 
amplitude a and (d) vs the frequency ω . All is depicted for different temperature D ∝ T of the system. We 
stress that all curves for different temperatures shown on the corresponding panels overlap with each other. 
Therefore to visualize the impact of temperature on the separation process in the corresponding insets we 
schematically show the solutions depicting subsequent D > 0 values. CAUTION: the insets do not have labels 
at x-axis to stress the fact that all curves presented there overlap with the deterministic D = 0 solution and only 
γ ∗-axis is relevant for the reader. Other parameters read (a): a = 4.5,ω = 3.75 , (b): a = 11.25,ω = 6.8 , (c): 
f = 1.5,ω = 4.2 , (d): f = 0.8, a = 9.375.
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conclusion
In this work we provide an efficient method for tunable separation of (sub)micro sized particles via the negative 
mobility phenomenon. The approach presented here requires only a spatially periodic nonlinear structure in 
combination with an unbiased external time-periodic driving. In this scheme the particle size intended for isola-
tion can be effectively controlled by changing solely the parameters of the external force applied to the system, 
namely, the static bias or the amplitude or the frequency of the external harmonic driving. The approach can be 
further adapted to the needs by proper fabrication of the nonlinear potential landscape determined by its barrier 
height and period. It allows the possibility to not deflect the separated particles along the different angles but to 
steer them in the opposite direction making the isolation process robust.

Our theoretical predictions should be used as a guide towards physical reality indicating the direction for 
future theoretical and experimental research. In particular, one needs to carefully consider higher dimensional 
systems as well as geometrical constraints together with hydrodynamic interaction which in real experiments 
may play essential role. We expect that such research would potentially lead to implementation of the proposed 
scheme in a lab-on-chip device, as it has been recently demonstrated for a similar  system20. We envision that 
current lithographic techniques with advantageous fabrication costs may be used to develop high throughput 
separation applications concerning in particular biophysical and biochemical problems. Taking into account 
recent progress in 3D printing technologies allowing its scaling down to the nanometer range the proposed 
scheme may have even significant commercial potential in  future39.

Methods
We employed a weak 2nd order predictor-corrector  method40 to simulate stochastic dynamics given by Eq. 
(5). We integrated it with the time step scaled by the fundamental period T = 2π/ω of the external harmonic 
driving, namely h = 10−2 × T , with the exception of smallest ω < 1 values for which the step was chosen to be 
h = 10−3 × T . The initial positions x(0) and velocities v(0) were uniformly distributed over the intervals [0, 1] 
and [−2, 2] , respectively. The directed velocity 〈v〉 was averaged over the ensemble of 210 = 1024 trajectories, 
each starting with a different initial condition according to the above distributions. The number of realisations 
of stochastic dynamics is not accidental and was chosen carefully to maximise the performance of the numerical 
simulation, see Ref.31 for more details. The time span of the simulations was set to [0, 104T] to guarantee that the 
directed velocity 〈v〉 relaxed to its asymptotic long time stationary value.

Received: 10 May 2020; Accepted: 31 August 2020

References
 1. Yager, P., Edwards, T., Fu, E., Helton, K. & Nelson, K. Microfluidic diagnostic technologies for global public health. Nature 442, 

412 (2004).
 2. Korecka, J. A., Verhaagen J. & Hol, E. M. Cell-replacement and gene-therapy strategies for Parkinson’s and Alzheimer’s disease. 

Regen. Med. 2, 425 (2007).
 3. Heffner, R. R. & Barron, S. A. The early effects of ischemia upon skeletal muscle mitochondria. J. Neurol. Sci. 38, 295 (1978).
 4. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Mater. 55, 3989 (2007).

Figure 5.  The particle size γ ∗ (color coded scale) targeted for separation via the negative mobility effect as a 
function of the amplitude a and the frequency ω for different values of the bias f. Thermal noise intensity D is set 
to zero D = 0.



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:16639  | https://doi.org/10.1038/s41598-020-73470-w

www.nature.com/scientificreports/

 5. Bhagat, A. A. et al. Microfluidics for cell separation. Med. Biol. Eng. Comput. 48, 999 (2010).
 6. Xuan, J. & Lee, M. L. Size separation of biomolecules and bioparticles using micro/nanofabricated structures. Anal. Methods 6, 27 

(2014).
 7. Fehr A. R. & Perlman S. Coronaviruses: an overview of their replication and pathogenesis. In Coronaviruses. Methods in Molecular 

Biology, vol 1282 (Humana Press, New York, 2015)
 8. Kandel, E. R., Schwartz, J. H. & Jessell, T. M. Principles of Neural Science 4th edn. (McGraw-Hill, New York, 2000).
 9. Sajeesh, P. & Sen, A. K. Particle separation and sorting in microfluidic devices: a review. Microfluid. Nanofluid. 17, 1 (2014).
 10. Sonker, M., Kim, D., Egatz-Gomez, A. & Ros, A. Separation phenomena in tailored micro- and nanofluidic environments. Annu. 

Rev. Anal. Chem. 12, 475 (2019).
 11. Bogunovic, L., Eichhorn, R., Regtmeier, J., Anselmetti, D. & Reimann, P. Particle sorting by a structured microfluidic ratchet device 

with tunable selectivity: theory and experiment. Soft Matter. 8, 3900 (2012).
 12. Kim, D., Luo, J., Arriaga, E. A. & Ros, A. Deterministic ratchet for sub-micrometer (bio)particle separation. Anal. Chem. 90, 4370 

(2018).
 13. Zhang, J. et al. Tunable particle separation in a hybrid dielectrophoresis (DEP)- inertial microfluidic device. Sensors Actuat. B 267, 

14 (2018).
 14. Eichhorn, R., Reimann, P. & Hänggi, P. Brownian motion exhibiting absolute negative mobility. Phys. Rev. Lett. 88, 190601 (2002).
 15. Machura, Ł, Kostur, M., Talkner, P., Łuczka, J. & Hänggi, P. Absolute negative mobility induced by thermal equilibrium fluctuations. 

Phys. Rev. Lett. 98, 040601 (2007).
 16. Spiechowicz, J., Hänggi, P. & Łuczka, J. Brownian motors in the microscale domain: enhancement of efficiency by noise. Phys. Rev. 

E 90, 032104 (2014).
 17. Spiechowicz, J., Hänggi, P. & Łuczka, J. Coexistence of absolute negative mobility and anomalous diffusion. New J. Phys. 21, 083029 

(2019).
 18. Ros, A. et al. Absolute negative mobility. Nature 436, 928 (2005).
 19. Eichhorn, R., Regtmeier, J., Anselmetti, D. & Reimann, P. Negative mobility and sorting of colloidal particles. Soft Matter. 6, 1858 

(2010).
 20. Luo, J., Muratore, K., Arriaga, E. & Ros, A. Deterministic absolute negative mobility for micro- and submicrometer particles 

induced in a microfluidic device. Anal. Chem. 88, 5920 (2016).
 21. Slapik, A., Łuczka, J., Hänggi, P. & Spiechowicz, J. Tunable mass separation via negative mobility. Phys. Rev. Lett. 122, 070602 

(2019).
 22. Hänggi, P. & Marchesoni, F. Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387 (2009).
 23. Marconi, U. M. B., Puglisi, A., Rondoni, L. & Vulpiani, A. Fluctuation-dissipation: response theory in statistical physics. Phys. Rep. 

461, 111 (2008).
 24. Spiechowicz, J. & Łuczka, J. Subdiffusion via dynamical localization induced by thermal equilibrium fluctuations. Sci. Rep. 7, 16451 

(2017).
 25. Spiechowicz, J. & Łuczka, J. SQUID ratchet: statistics of transitions in dynamical localization. Chaos 29, 013105 (2019).
 26. Reimann, P. et al. Giant acceleration of free diffusion by use of tilted periodic potentials. Phys. Rev. Lett. 87, 010602 (2001).
 27. Spiechowicz, J. & Łuczka, J. Josephson phase diffusion in the superconducting quantum interference device ratchet. Chaos 25, 

053110 (2015).
 28. Spiechowicz, J. & Łuczka, J. Diffusion in a biased washboard potential revisited. Phys. Rev. E 101, 032123 (2020).
 29. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics 2nd edn. (Butterworth-Heinemann, Oxford, 1987).
 30. Spiechowicz, J., Łuczka, J. & Hänggi, P. Transient anomalous diffusion in periodic systems: ergodicity, symmetry breaking and 

velocity relaxation. Sci. Rep. 6, 30948 (2016).
 31. Spiechowicz, J., Kostur, M. & Machura, Ł. GPU accelerated Monte Carlo simulation of Brownian motors dynamics with CUDA. 

Comput. Phys. Commun. 191, 140 (2015).
 32. Speer, D., Eichhorn, R. & Reimann, P. Transient chaos induces anomalous transport properties of an underdamped Brownian 

particle. Phys. Rev. E 76, 051110 (2007).
 33. Nagel, J. et al. Observation of negative absolute resistance in a Josephson junction. Phys. Rev. Lett. 100, 217001 (2008).
 34. Landau, L. D. & Lifshitz, E. M. Statistical Physics, Part 1 3rd edn. (Butterworth-Heinemann, Oxford, 1980).
 35. Slapik, A., Łuczka, J. & Spiechowicz, J. Negative mobility of a Brownian particle: strong damping regime. Commun. Nonlinear Sci. 

Numer. Simul. 55, 316 (2018).
 36. Slapik, A., Łuczka, J. & Spiechowicz, J. Temperature-induced tunable particle separation. Phys. Rev. Appl. 12, 054002 (2019).
 37. Kostur, M., Machura, Ł, Talkner, P., Hänggi, P. & Łuczka, J. Anomalous transport in biased ac-driven Josephson junctions: negative 

conductances. Phys. Rev. B 77, 104509 (2008).
 38. Happel, J. & Brenner, H. Low Reynolds Number Hydrodynamics (Prentice Hall, Englewood Cliffs, 1965).
 39. Chiu, D. T. et al. Small but perfectly formed? Successes, challenges and opportunities for microfluidics in the chemical and biologi-

cal sciences. Chemistry 2, 201 (2017).
 40. Platen, E. & Bruti-Liberati, N. Numerical Solution of Stochastic Differential Equations with Jumps in Finance in Stochastic Modelling 

and Applied Probability (Springer, Berlin, 2010).

Acknowledgements
This work has been supported by the Grant NCN No. 2017/26/D/ST2/00543 (J. S.).

Author contributions
 A.S. carried out numerical calculations. All authors contributed to the discussion and analysis of the results. 
J.S. wrote the manuscript.

competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.



9

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16639  | https://doi.org/10.1038/s41598-020-73470-w

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020


	Introduction
	The transport model
	Negative mobility
	The non-intuitive phenomenon
	The role of system parameters
	The origin
	Strong damping regime
	Negative mobility in experiments

	Computational details
	Separation mechanisms
	The mass-based separation mechanism
	The temperature-induced separation mechanism
	The size-based separation mechanism
	Conclusion

	Closing discussion
	References

